THE SPECTRUM OF THE SUB-LAPLACIAN ON THE HEISENBERG GROUP

Aparajita Dasgupta, Shahla Molahajloo and Man-Wah Wong

(Received March 26, 2010)

Abstract

We give a complete analysis of the spectrum of the unique self-adjoint extension of the sub-Laplacian on the one-dimensional Heisenberg group.

1. The sub-Laplacian on the Heisenberg group. If we identify \boldsymbol{R}^{2} with the complex plane \boldsymbol{C} via the obvious identification

$$
\boldsymbol{R}^{2} \ni(x, y) \leftrightarrow z=x+i y \in \boldsymbol{C},
$$

and we let

$$
H=C \times R
$$

then \boldsymbol{H} becomes a noncommutative group when it is equipped with the multiplication \cdot given by

$$
(z, t) \cdot(w, s)=\left(z+w, t+s+\frac{1}{4}[z, w]\right), \quad(z, t),(w, s) \in \boldsymbol{H}
$$

where $[z, w]$ is the symplectic form of z and w defined by

$$
[z, w]=2 \operatorname{Im}(z \bar{w}) .
$$

In fact, \boldsymbol{H} is a unimodular Lie group on which the Haar measure is just the ordinary Lebesgue measure $d z d t$.

Let \mathfrak{h} be the Lie algebra of all left-invariant vector fields on \boldsymbol{H}. Then a basis for \mathfrak{h} is given by X, Y and T, where

$$
\begin{aligned}
& X=\frac{\partial}{\partial x}+\frac{1}{2} y \frac{\partial}{\partial t}, \\
& Y=\frac{\partial}{\partial y}-\frac{1}{2} x \frac{\partial}{\partial t},
\end{aligned}
$$

and

$$
T=\frac{\partial}{\partial t} .
$$

2000 Mathematics Subject Classification. Primary 47F05; Secondary 47G30
Key words and phrases. Heisenberg group, sub-Laplacian, twisted Laplacians, self-adjoint extensions, essential self-adjointness, eigenvalues, spectrum, point spectrum, continuous spectrum, residual spectrum, essential spectrum.

This research has been supported by the Natural Sciences and Engineering Research Council of Canada.

The sub-Laplacian \mathcal{L} on \boldsymbol{H} is then defined by

$$
\mathcal{L}=-\left(X^{2}+Y^{2}\right) .
$$

Let $\partial / \partial z$ and $\partial / \partial \bar{z}$ be partial differential operators on \boldsymbol{C} defined by

$$
\frac{\partial}{\partial z}=\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}
$$

and

$$
\frac{\partial}{\partial \bar{z}}=\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}
$$

Then we look at the vector fields Z and \bar{Z} on \boldsymbol{H} given by

$$
Z=X-i Y=\frac{\partial}{\partial z}+\frac{1}{2} i \bar{z} \frac{\partial}{\partial t}
$$

and

$$
\bar{Z}=X+i Y=\frac{\partial}{\partial \bar{z}}-\frac{1}{2} i z \frac{\partial}{\partial t}
$$

\bar{Z} is the celebrated Hans Lewy operator in [9] that defies local solvability on \boldsymbol{R}^{3}, and

$$
\mathcal{L}=-\frac{1}{2}(Z \bar{Z}+\bar{Z} Z) .
$$

A simple computation gives

$$
\mathcal{L}=-\Delta-\frac{1}{4}\left(x^{2}+y^{2}\right) \frac{\partial^{2}}{\partial t^{2}}+\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \frac{\partial}{\partial t},
$$

where

$$
\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} .
$$

The symbol $\sigma(\mathcal{L})$ of \mathcal{L} is then given by

$$
\sigma(\mathcal{L})(x, y, t ; \xi, \eta, \tau)=\left(\xi+\frac{1}{2} y \tau\right)^{2}+\left(\eta-\frac{1}{2} x \tau\right)^{2}
$$

for all (x, y, t) and (ξ, η, τ) in \boldsymbol{H}. It is then easy to see that \mathcal{L} is nowhere elliptic on \boldsymbol{R}^{3}. Since

$$
[X, Y]=T
$$

it follows from a theorem of Hörmander [8, Theorem 1.1] that \mathcal{L} is hypoelliptic.
The aim of this paper is to compute the spectrum of the unique positive and self-adjoint extension \mathcal{L}_{0} of the sub-Laplacian \mathcal{L} as an unbounded linear operator from $L^{2}(\boldsymbol{H})$ into $L^{2}(\boldsymbol{H})$ with dense domain given by the Schwartz space $\mathcal{S}(\boldsymbol{H})$. This is carried out by using the spectral analysis of the twisted Laplacians obtained by taking the inverse Fourier transform of the subLaplacian with respect to the center, i.e., the time t of the Heisenberg group.

We recall in Section 2 the twisted Laplacians and their spectral analysis. The essential self-adjointness of \mathcal{L} as an unbounded linear operator from $L^{2}(\boldsymbol{H})$ int $L^{2}(\boldsymbol{H})$ with dense
domain $\mathcal{S}(\boldsymbol{H})$ is recalled in Section 3. The spectrum of the unique self-adjoint extension \mathcal{L}_{0} of \mathcal{L} is then computed in Section 4.

The results in this paper are valid for the sub-Laplacian on the n-dimensional Heisenberg group $\boldsymbol{H}_{n}, n>1$, in which the underlying space is $\boldsymbol{C}^{n} \times \boldsymbol{R}$, but we have chosen to present the results for the one-dimensional Heisenberg group \boldsymbol{H} for the sake of simplicity and transparency.
2. The twisted Laplacians. For $\tau \in \boldsymbol{R} \backslash\{0\}$, let Z_{τ} and \bar{Z}_{τ} be partial differential operators given by

$$
Z_{\tau}=\frac{\partial}{\partial z}+\frac{1}{2} \tau \bar{z}
$$

and

$$
\bar{Z}_{\tau}=\frac{\partial}{\partial \bar{z}}-\frac{1}{2} \tau z
$$

Then we are interested in the twisted Laplacian L_{τ} defined by

$$
L_{\tau}=-\frac{1}{2}\left(Z_{\tau} \bar{Z}_{\tau}+\bar{Z}_{\tau} Z_{\tau}\right)
$$

More explicitly,

$$
L_{\tau}=-\Delta+\frac{1}{4}\left(x^{2}+y^{2}\right) \tau^{2}-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \tau
$$

The fundamental connection between the sub-Laplacian and the twisted Laplacians is given by the following theorem $[1,3,4]$.

THEOREM 2.1. Let $u \in \mathcal{S}^{\prime}(\boldsymbol{H}) \cap C^{\infty}(\boldsymbol{H})$ be such that $\check{u}(z, \tau)$ is a tempered distribution of τ on \boldsymbol{R} for each z in \boldsymbol{C}, where \check{u} is the inverse Fourier transform of u with respect to time t. Then for almost all τ in $\boldsymbol{R} \backslash\{0\}$,

$$
(\mathcal{L} u)^{\tau}=L_{\tau} u^{\tau},
$$

where

$$
(\mathcal{L} u)^{\tau}(z)=(\mathcal{L} u)^{\vee}(z, \tau), \quad z \in \boldsymbol{C},
$$

and

$$
u^{\tau}(z)=\check{u}(z, \tau), \quad z \in \boldsymbol{C} .
$$

REMARK 2.2. We note that the Fourier transform \hat{f} of a function f in $L^{1}(\boldsymbol{R})$ is taken to be the one defined by

$$
\hat{f}(\xi)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} e^{-i x \xi} f(x) d x, \quad \xi \in \boldsymbol{R}
$$

In order to study the spectral theory of L_{τ}, we first introduce the τ-Fourier-Wigner transform $V_{\tau}(f, g)$ of the functions f and g in the Schwartz space $\mathcal{S}(\boldsymbol{R})$ by

$$
V_{\tau}(f, g)(q, p)=(2 \pi)^{-1 / 2}|\tau|^{1 / 2} \int_{-\infty}^{\infty} e^{i \tau q y} f\left(y+\frac{p}{2}\right) \overline{\left(y-\frac{p}{2}\right)} d y
$$

for all q and p in \boldsymbol{R}. If $\tau=1$, then we get

$$
V_{1}(f, g)=V(f, g),
$$

which is the classical Fourier-Wigner transform in, for instance, [6, 13, 16]. It can be shown easily that

$$
V_{\tau}(f, g)(q, p)=|\tau|^{1 / 2} V(f, g)(\tau q, p)
$$

For $\tau \in \boldsymbol{R} \backslash\{0\}$ and $k=0,1,2, \ldots$, we define the function $e_{k, \tau}$ on \boldsymbol{R} by

$$
e_{k, \tau}(x)=|\tau|^{1 / 4} e_{k}(\sqrt{|\tau|} x), \quad x \in \boldsymbol{R}
$$

where e_{k} is the Hermite function given by

$$
e_{k}(x)=\frac{1}{\left(2^{k} k!\sqrt{\pi}\right)^{1 / 2}} e^{-x^{2} / 2} H_{k}(x), \quad x \in \boldsymbol{R},
$$

and

$$
H_{k}(x)=(-1)^{k} e^{x^{2}}\left(\frac{d}{d x}\right)^{k}\left(e^{-x^{2}}\right), \quad x \in \boldsymbol{R}
$$

For $j, k=0,1,2, \ldots$, we define the function $e_{j, k, \tau}$ on \boldsymbol{C} by

$$
e_{j, k, \tau}=V_{\tau}\left(e_{j, \tau}, e_{k, \tau}\right)
$$

and an easy computation gives

$$
e_{j, k, 1}=V_{1}\left(e_{j, 1}, e_{k, 1}\right)=V\left(e_{j}, e_{k}\right)
$$

where $V\left(e_{j}, e_{k}\right)$ is the classical Hermite function on \boldsymbol{C} studied in [16].
The following result is an analog of [16, Proposition 21.1].
Proposition 2.3. The set $\left\{e_{j, k, \tau} ; j, k=0,1,2, \ldots\right\}$ is an orthonormal basis for $L^{2}(\boldsymbol{C})$.

The following theorem gives a complete spectral analysis of $L_{\tau}, \tau \in \boldsymbol{R} \backslash\{0\}$.
Theorem 2.4. For $j, k=0,1,2, \ldots$,

$$
L_{\tau} e_{j, k, \tau}=(2 k+1)|\tau| e_{j, k, \tau}
$$

A proof of Theorem 2.4 can be modeled on the proof of [16, Theorem 22.2].
3. Essential self-adjointness. In this section we look at the sub-Laplacian \mathcal{L} as an unbounded linear operator from $L^{2}(\boldsymbol{H})$ into $L^{2}(\boldsymbol{H})$ with dense domain given by $\mathcal{S}(\boldsymbol{H})$.

Proposition 3.1. \mathcal{L} is a symmetric operator from $L^{2}(\boldsymbol{H})$ into $L^{2}(\boldsymbol{H})$ with dense domain $\mathcal{S}(\boldsymbol{H})$. In fact, it is positive.

The proof follows from a simple integration by parts and is hence omitted. So, the subLaplacian \mathcal{L} is closable and we denote its closure by \mathcal{L}_{0}. Thus, \mathcal{L}_{0} is a closed, symmetric and positive operator from $L^{2}(\boldsymbol{H})$ into $L^{2}(\boldsymbol{H})$. In fact, from the work [10] of Masamune, \mathcal{L} is essentially self-adjoint in the sense that it has a unique self-adjoint extension, which is the same as \mathcal{L}_{0}. Details on essential self-adjointness can be found in [11, Theorem X.23].
4. The spectrum. Let A be a closed linear operator from a complex Banach space X into X with dense domain $\mathcal{D}(A)$. Then the resolvent set $\rho(A)$ of A is defined to be the set of all complex numbers λ for which $A-\lambda I: \mathcal{D}(A) \rightarrow X$ is bijective, where I is the identity operator on X. The spectrum $\Sigma(A)$ is simply the complement of $\rho(A)$ in \boldsymbol{C}.

Following Yosida [17], the point spectrum $\Sigma_{p}(A)$ of A is the set of all complex numbers λ such that $A-\lambda I$ is not injective. The continuous spectrum $\Sigma_{c}(A)$ of A is the set of all complex numbers λ such that the range $R(A-\lambda I)$ of $A-\lambda I$ is dense in $X,(A-\lambda I)^{-1}$ exists, but is unbounded. The residual spectrum $\Sigma_{r}(A)$ of A is the set of all complex numbers λ such that $(A-\lambda I)^{-1}$ is bounded, but the range $R(A-\lambda I)$ is not dense in X. It is easy to see that $\Sigma_{p}(A), \Sigma_{c}(A)$ and $\Sigma_{r}(A)$ are mutually disjoint and

$$
\Sigma(A)=\Sigma_{p}(A) \cup \Sigma_{c}(A) \cup \Sigma_{r}(A) .
$$

Moreover, it is well-known that if A is a self-adjoint operator on a complex and separable Hilbert space X, then

$$
\Sigma_{r}(A)=\emptyset .
$$

The precise description of the spectrum of the sub-Laplacian on the Heisenberg group is given by the following theorem.

THEOREM 4.1. $\Sigma\left(\mathcal{L}_{0}\right)=\Sigma_{c}\left(\mathcal{L}_{0}\right)=[0, \infty)$.
Proof. We first prove that \mathcal{L}_{0} has no eigenvalues in $[0, \infty)$. We know from the paper [4] that 0 is not an eigenvalue of \mathcal{L}_{0}. Now, let λ be a positive number such that there exists a function u in $L^{2}(\boldsymbol{H})$ for which

$$
\mathcal{L}_{0} u=\lambda u .
$$

Then

$$
L_{\tau} u^{\tau}=\lambda u^{\tau} .
$$

But this implies that $u^{\tau}=0$ for all τ in $\boldsymbol{R} \backslash\{0\}$ with

$$
|\tau| \neq \lambda /(2 k+1), \quad k=0,1,2, \ldots
$$

This proves that $u=0$ and hence we get a contradiction. Since \mathcal{L}_{0} is self-adjoint, it follows that

$$
\Sigma\left(\mathcal{L}_{0}\right)=\Sigma_{c}\left(\mathcal{L}_{0}\right)
$$

So, it remains to prove that $\mathcal{L}_{0}-\lambda I$ is not surjective for all λ in $[0, \infty)$. Suppose that $\mathcal{L}_{0}-\lambda_{0} I$ is surjective for some λ_{0} in $[0, \infty)$. Then λ_{0} is in the resolvent set $\rho\left(\mathcal{L}_{0}\right)$ of \mathcal{L}_{0}. Hence there exists an open interval $I_{\lambda_{0}}$ such that $\lambda_{0} \in I_{\lambda_{0}}$ and $I_{\lambda_{0}} \subset \rho\left(\mathcal{L}_{0}\right)$. Let f be the function on \boldsymbol{H} defined by

$$
f(x, y, t)=h(x, y) e^{-t^{2} / 2}, \quad x, y, t \in \boldsymbol{R}
$$

where h is an arbitrary function in $L^{2}\left(\boldsymbol{R}^{2}\right)$. Then for all λ in $I_{\lambda_{0}}$, we can find a function u_{λ} in $L^{2}(\boldsymbol{H})$ such that

$$
\left(\mathcal{L}_{0}-\lambda I\right) u_{\lambda}=f
$$

Taking the inverse Fourier transform with respect to t, we get

$$
\left(L_{\tau}-\lambda I\right) u_{\lambda}^{\tau}=h e^{-\tau^{2} / 2}
$$

for almost all τ in $\boldsymbol{R} \backslash\{0\}$. So, $L_{\tau}-\lambda I$ is surjective for all τ in a set S_{λ} for which the Lebesgue measure $m\left(\boldsymbol{R} \backslash S_{\lambda}\right)$ of $\boldsymbol{R} \backslash S_{\lambda}$ is zero. Now, let $\tau \in \bigcap_{r \in I_{\lambda_{0}} \cap \boldsymbol{Q}} S_{r}$, where \boldsymbol{Q} is the set of all rational numbers. Then $L_{\tau}-\lambda I$ is surjective and hence injective for all λ in $I_{\lambda_{0}} \cap \boldsymbol{Q}$. Hence $L_{\tau}-\lambda I$ is bijective for all λ in $I_{\lambda_{0}}$ by the fact that the resolvent set of L_{τ} is an open set. On the other hand, $L_{\tau}-\lambda I$ is one to one if and only if

$$
\lambda \neq(2 k+1)|\tau|, \quad k=0,1,2, \ldots .
$$

This is a contradiction if we choose τ in $\bigcap_{r \in I_{\lambda_{0}}} S_{r}$ to be a sufficiently small number such that $(2 k+1)|\tau| \in I_{\lambda_{0}}$ for some nonnegative integer k.

As an application of Theorem 4.1, we first give the various essential spectra that are useful to us. Let A be a closed linear operator densely defined on a complex Banach space X. The essential spectrum $\Sigma_{D S}(A)$ of A due to Dunford and Schwartz [5] is the set of all complex numbers λ such that $R(A-\lambda I)$ is not closed in X. Now, let $\Phi_{W}(A)$ be the set of all complex numbers λ such that $A-\lambda I$ is Fredholm and let $\Phi_{S}(A)$ be the set of all complex numbers λ such that $A-\lambda I$ is Fredholm with zero index. Then the essential spectrum $\Sigma_{W}(A)$ and the essential spectrum $\Sigma_{S}(A)$ of A due to, respectively, Wolf [14, 15] and Schechter [12] are defined by

$$
\Sigma_{W}(A)=\boldsymbol{C} \backslash \Phi_{W}(A)
$$

and

$$
\Sigma_{S}(A)=\boldsymbol{C} \backslash \Phi_{S}(A)
$$

It is obvious that

$$
\Sigma_{D S}(A) \subseteq \Sigma_{W}(A) \subseteq \Sigma_{S}(A)
$$

In the situation of the sub-Laplacian on the Heisenberg group, we have the following result.

Theorem 4.2. The equalities

$$
\Sigma_{D S}\left(\mathcal{L}_{0}\right)=\Sigma_{W}\left(\mathcal{L}_{0}\right)=\Sigma_{S}\left(\mathcal{L}_{0}\right)=[0, \infty)
$$

hold.
Proof. It is enough to prove that

$$
[0, \infty) \subseteq \Sigma_{D S}\left(\mathcal{L}_{0}\right)
$$

Suppose that $\lambda \in[0, \infty)$ is not in $\Sigma_{D S}\left(\mathcal{L}_{0}\right)$. Then the range $R\left(\mathcal{L}_{0}-\lambda I\right)$ of $\mathcal{L}_{0}-\lambda I$ is closed in $L^{2}(\boldsymbol{H})$. By Theorem 4.2, $\lambda \in \Sigma_{c}\left(\mathcal{L}_{0}\right)$ and hence $R\left(\mathcal{L}_{0}-\lambda I\right)$ is dense in $L^{2}(\boldsymbol{H})$. Therefore $\mathcal{L}_{0}-\lambda I$ is bijective, i.e., $\lambda \in \rho\left(\mathcal{L}_{0}\right)$. This is a contradiction.

REMARK 4.3. The technique in this paper can be used to compute the spectrum of the unique self-adjoint extension $\Delta_{\boldsymbol{H}, 0}$ of the Laplacian $\Delta_{\boldsymbol{H}}$ on the Heisenberg group \boldsymbol{H} given by

$$
\Delta_{\boldsymbol{H}}=-\left(X^{2}+Y^{2}+T^{2}\right) .
$$

In fact,

$$
\Sigma\left(\Delta_{\boldsymbol{H}, 0}\right)=\Sigma_{c}\left(\Delta_{\boldsymbol{H}, 0}\right)=[0, \infty),
$$

which is a result in [7], and furthermore,

$$
\Sigma_{D S}\left(\Delta_{\boldsymbol{H}, 0}\right)=\Sigma_{W}\left(\Delta_{\boldsymbol{H}, 0}\right)=\Sigma_{S}\left(\Delta_{\boldsymbol{H}, 0}\right)=[0, \infty) .
$$

References

[1] A. Dasgupta and M. W. Wong, Weyl transforms and the inverse of the sub-Laplacian on the Heisenberg group, Pseudo-differential operators: Partial differential equations and time-frequency analysis, 27-36, Fields Inst. Commun. 52, American Mathematical Society, Providence, RI, 2007.
[2] A. Dasgupta and M. W. Wong, Essential self-adjointness and global hypoellipticity of the twisted Laplacian, Rend. Semin. Mat. Univ. Politec. Torino 66 (2008), 75-85.
[3] A. Dasgupta and M. W. Wong, Weyl transforms and the heat equation for the sub-Laplacian on the Heisenberg group, New developments in pseudo-differential operators, 33-42, Oper. Theory Adv. Appl. 189, Birkhäuser, Basel, 2009.
[4] A. Dasgupta and M. W. Wong, Fourier-Wigner transforms and Liouville's theorems for the sub-Laplacian on the Heisenberg group, Linear and non-linear theory of generalized functions and its applications, 67-75, Banach Center Publ. 88, Polish Acad. Sci. Inst. Math., Warszawa, 2010.
[5] N. Dunford and J. Schwartz, Linear operators, Part II, Interscience Publishers, John Wiley \& Sons, NewYork-London, 1963.
[6] G. B. Folland, Harmonic analysis in phase space, Ann. of Math. Stud. 122, Princeton University Press, Princeton, NJ, 1989.
[7] K. Furutani, K. Sagami and N. Otsuki, The spectrum of the Laplacian on a certain nilpotent Lie group, Comm. Partial Differential Equations 18 (1993), 533-555.
[8] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.
[9] H. Lewy, An example of a smooth linear partial differential equation without solutions, Ann. of Math. (2) 66 (1957), 155-158.
[10] J. Masamune, Essential self-adjointness of a sublaplacian via heat equation, Comm. Partial Differential Equations 30 (2005), 1595-1609.
[11] M. Reed and B. Simon, Methods of modern mathematical physics II, Fourier analysis, self-adjointness, Academic Press, New York-London, 1975.
[12] M. Schechter, Spectra of partial differential operators, Second Edition, Ser. Appl. Math. Mech. 14, NorthHolland Publishing Co., Amsterdam, 1986.
[13] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Math. Notes 42, Princeton University Press, Princeton, NJ, 1993.
[14] F. Wolf, On the essential spectrum of partial differential boundary problems, Comm. Pure Appl. Math. 12 (1959), 211-228.
[15] F. Wolf, On the invariance of the essential spectrum under a change of boundary conditions of partial differential boundary operators, Indag. Math. 21 (1959), 142-147.
[16] M. W. Wong, Weyl transforms, Universitext, Springer-Verlag, New York, 1998.
[17] K. Yosida, Functional analysis, Classics Math., Springer-Verlag, Berlin, 1995.

Department of Mathematics
IISER Kolkata
Mohanpur, Nadia 741252
West Bengal
INDIA
E-mail address: adgupta@iiserkol.ac.in
Department of Mathematics and Statistics
York University
4700 KeEle Street
Toronto, Ontario M3J 1P3
CANADA
E-mail address: mwwong@mathstat.yorku.ca

School of Engineering and Science
(MATHEMATICAL SCIENCES)
Jacobs University
Research I, Campur Ring 1, Bremen 28759
Germany
E-mail address: s.molahajloo@ jacobs-university.de

