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THE SPECTRUM OF VECTOR BUNDLE FLOWS

WITH INVARIANT SUBBUNDLES

R. C. SWANSON1

Abstract. A vector bundle flow (<!>', <j>') on the vector bundle E over a compact

metric space M induces a one-parameter group {$%} of bounded operators acting

on the continuous sections of E, with infinitesimal generator L. An example is

given by the tangent flow (T<j>', </>'), if <f>' is a flow on a smooth manifold. In this

article, the spectrum of the generator L is used to study the exponential growth

rates of bundle trajectories in the neighborhood of a fixed invariant subbundle, e.g.

the tangent bundle of a submanifold of M. Auxiliary normal and tangential spectra

are introduced, and their relationship and fine structure are explored.

Introduction. The aim of this paper is to link linear dynamics in vector bundles to

the spectra of certain Banach space operators associated with a linear vector

bundle flow. Of particular interest is the behavior of such systems at a fixed

invariant subbundle, e.g. the tangent bundle of an invariant submanifold, discussed

below. What sets this article apart from related work of, say, Sacker and Sell [8], [9]

is a faithfulness to the operator-theoretic point of view, which allows one to sieve

out the "easy" functional analysis from the harder dynamics. The payoff comes if

difficult results become natural and easy-to-state facts about operators, or, con-

versely, statements about the spectrum lead to new dynamical considerations.

Specific examples of such dividends are given in [1], [5] as well as in this paper.

In §1 we introduce the pertinent notation and terminology (see also [1]); while in

§2, we isolate results from abstract operator theory which are then applied, in §3, to

vector bundle flows with a fixed invariant subbundle. As in [9], we identify the

tangential spectrum along the subbundle, a(LF), and the normal spectrum a(L);

but as operator spectra, yielding the inclusion a(L) c o(LF) u o(L) (Theorem 3.2),

which implies Theorem 1 of [9]. Next, sufficient conditions are given for the crucial

equality o(L) = o(LF) u o(L), which means, roughly, that the growth rates of the

bundle trajectories can be determined from the normal and tangential dynamics.

We describe a flow example showing that the equality can fail. Theorem 3.5

generalizes the result in [9] asserting that equality always holds if the base flow is

chain recurrent. Finally, we discuss the existence of complementary invariant

subbundles in terms of operator theory.

1. The spectrum of a vector bundle flow. Let M denote a compact metric space

which admits a one-parameter group of homeomorphisms {<i>'},eR. Suppose A is a
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continuous complex vector bundle over M with projection map it: E^>M. We

assume further that E is equipped with a one-parameter group of (linear) vector

bundle automorphisms $': E -> E which covers the base flow: ir$' = 4>'tt.

When M is a smooth manifold, an important example is provided by the tangent

flow. In that case, {<j>1} is generated by a C1 vector field X on M, while the vector

bundle flow {$'} corresponds to T<$>' acting on the tangent bundle TM.

We may suppose E admits a continuous Finsler structure with fiber norm,

| • | = | • \x. By compactness, the space T(E) of continuous cross sections of E is

independent of the choice of Finsler.

Define a continuous group {$*}, / in R, of bounded operators on T(E) by setting

$*tj = <b~'-q<p', if Tj is in T(E). We impose the mild restriction that <J>? is a

C0-semigroup [4], which always holds for smooth vector bundle flows. The infini-

tesimal generator,

L-n = -jt *N«-o.

is called the Lie derivative along $'. For tangent flows, L is the usual Lie derivative

along the vector field.

A good deal is known about the operator L, which is a closed first order

differential operator with dense domain. Let a{L) denote the usual operator

spectrum of L. Sacker and Sell [8] have introduced a "spectrum" 2 of real

numbers-roughly, the exponential growth rates of bundle trajectories-which we

shall refer to as the Sacker-Sell spectrum of the bundle flow.

Up to imaginary translation, 2 behaves like a true operator spectrum:

Proposition 1.1 [2, Theorem 3.2]. 2 = Re[a(L)].

Let &(S) denote the union of these circles about the origin which meet the set S

of complex numbers. The following exponentiation result is proved in [2].

Theorem 1.2. Let <ï>f denote the group of bounded operators on T(E) generated by

L. Then the following relations obtain:

e*m c CT(d>ft) c fi[e'a(L)].

Remarks. The equality e'oW = a(<I>f) holds quite generally. If the nonperiodic

points of $' are dense, for a smooth flow, then equality holds. Equality also holds

for nonsingular tangent flows [1].

2. Linear operators with invariant subspaces. In this section A denotes any linear

operator, possibly unbounded, having closed graph and dense domain D(A), which

acts in the complex Banach space X. For example, the Lie differentiation operator

L has these properties.

The spectrum a(A) consists of all complex numbers A such that A — X fails to

admit a bounded inverse defined on all of X. Let y be a fixed closed subspace of A

such that A(D(A) n Y) c Y, and let AY = A\D(A) n Y. We also have the quo-

tient operator A defined in the Banach space X/ Y with domain ir(D(A)), where it:

X -> X/ Y is the usual projection.
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We now list some results for closed operators which are well known for bounded

operators with an invariant subspace. Property (i) is given in [5, p. 15], while (ii) is

in [3, p. 24]. Statement (iii) is immediate from (ii). The proofs are similar to the

bounded case.

Proposition 2.1. For an operator A in X with closed graph and dense domain, the

spectra a(A), o(AY) and o(A) are such that

(i) a(A) c a(Ay) u a(A).

(ii) a(AY) \ a(A) =_a(A) \ o(A).

(iii) If a(AY) n o(A) c a(A), then

o(A) = a(AY) u a(J).

Define, as in [3, p. 8], the approximate point spectrum, written aap(A), to consist of

complex numbers X such that there is a sequence {xn} in A with ||xn|| = 1 and

limn^J|L4 - AKH = 0.
The pertinent properties of oap(A) are summarized below. We shall continue to

assume the hypotheses of Proposition 2.1.

Proposition 2.2. If aip{A) is the approximate point spectrum, then

(i) The boundary of o(A) is contained in o&p(A).

(ü)°¡¡p(Ay)coí¡p(A).

(iii) Ifa(Ay) = aip(AY), then a(A) = a(AY) u a(A).

Proof. Statement (i) is well known, and the proof in [3, p. 9] is valid for

unbounded operators. Property (ii) is obvious. Together, Proposition 2.1(h) and (ii)

above, imply the fact (iii).

The last result of this section, dealing with the existence of invariant comple-

ments, is an easy consequence of the Riesz decomposition theorem [7, p. 421] and

Proposition 2.1(i).

Proposition 2.3. Let A be a bounded operator on X such that o(AY) n o{A) = 0.

Then there exists a unique closed subspace Z in X such that

(i) X = Y © Z, AZ c Z, ando(Ä) = a(Az).

(ii) o(A) = o(AY) U o(A).

3. The normal and tangential spectra. As in §1, suppose that a continuous vector

bundle flow (O', <f>') acts on the vector bundle (E, M) and gives rise to a

C0-semigroup of bounded operators {<£*} acting on T(E). Let F c E denote a

continuous subbundle of E which is invariant under $'. Let T(F) denote the closed

subspace of T(E) which consists of the continuous sections of F. We may also form

the quotient vector bundle E/ F and the Banach section space T(E/F). Since F is

invariant, we can define the restriction map LF = L|r(A), where L generates {$? }

and LF is understood to act only on the intersection of the domain of L and the

space T(F). By Proposition 1.1, the Sacker-Sell spectra have the form

2 = Re[o-(L)]    and   2r = Re[*x(Lf)]. (3.1)
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We call 2r the tangential spectrum after the particular case in which E = TM, the

tangent bundle, and F = TP, the tangent bundle of a smooth submanifold P in M,

invariant under the base flow <¡>'.

The Sacker-Sell normal spectrum is defined as follows [9]: Fix any continuous

subbundle G c E which complements F. Let/?c be the projection onto G, then

defines a vector bundle flow on G called the normal flow. Set $5vX = e_A,i>5v, for

each real number X. Then the normal spectrum 2^ is the set of all X such that $>'N x

does not admit an exponential dichotomy over at least one v in M. This definition

is independent of the choice of complement G [9]. We now match this up to the Lie

spectrum.

The Lie derivative L along i>' induces an operator L acting in the space Y(E/F)

and also, in the obvious way, an operator L acting in the quotient space

Y(E)/T(F).

Proposition 3.1. (i) o(L) = o(L), and (ii) 2^ = Re[a(L)].

Proof. The exact vector bundle sequence

0-> F^E^E/F

determines a corresponding exact sequence of Banach spaces

0 -+ T(F) -* T(E) -* T(E/F).

Thus, there is a Banach space isomorphism

J:T(E)/Y(F)^Y(E/F),

such that JL = LJ. This proves (i).

Let A denote the infinitesimal generator of the semigroup {O^}* generated by

the normal flow defined above. Then A acts on sections in T(G) and has the form

Atj(x) = pG(Li)(x)). Proposition 1.1 implies that 2^ = Re[o(A)]. Let a: E/F^> G

be the isomorphism determined by the splitting E = F © G. Then a determines an

isomorphism A: Y(E/F)-+T(G) such that AL = KA. Therefore, o(K) = o(L),

and (ii) now follows from (i).

We come now to our main results. The next theorem is a restatement of

Proposition 2.1 for the Lie derivative.
_

Theorem 3.2. The Lie spectra o(L), o(LF) and a(L) have the following properties.

(i) o-(L) c o(LF) u a(L).

(ii) Ifo(LF) n a(L) c a(L), then

o(L) = o(LF) u a(L).

Corollary 3.3 [9, Theorem 1]. The spectra 2, 2r and 2^ satisfy the relation

2 c 2r u 2„.

Remark. The corollary derives from Theorem 3.2(i) and Proposition 1.2. Since

the Lie spectrum need only partially intersect a given vertical line in the plane, the

corollary does not seem to imply the theorem.

Since the semigroup spectrum is, up to rotation, the exponential image e'"^,

spectral results for Of readily translate to facts about the Lie spectrum o(L).
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Lemma 3.4 [6, p. 367]. The complex number e'x is in o"ap(4>*) provided that

sup{\e~sX<&sv\, s in R} is finite for some nonzero v in E.

Mané [6] only establishes Lemma 3.4 for discrete tangent flows, but his methods

give the lemma with minor modifications.

Theorem 3.5. If the flow {<?>'} is chain recurrent, then

(i) a(<&?) = aap(*f).

(ii) [9, Theorem 2] 2 = 2r u 2W.

Proof. For (i), it suffices to show that a(<E>f) c aap(i>f). If e'x G a(í>f) then

1 E a(e"'A$*) and the vector bundle flow {e~'x&} is not hyperbolic (see [1]). The

hypothesis now implies, by [10], [11], the existence of at least one bounded bundle

trajectory {e'^&v} for some v =?= 0 in E. By Lemma 3.4, e'x is in aap($f). The

same proof shows that a($f|r(F)) = aap(i>*|r(F)). Result (ii) now follows from

Propositions 2.1, 1.1, and 2.2.

Remarks. The condition 2 = 1T u 2^ may fail, as the "hull" example in [9]

shows. The author has a smooth tangent flow example, based on a result of R.

Mané [6, Theorem A] showing that quasi-Anosov flows on submanifolds can

always be extended to flows on some manifold, which are hyperbolic at the

submanifold.

A result which can be derived from purely spectral hypotheses is the existence of

invariant complementary subbundles. Thus, if 2^ n 2r = 0, then F is invariantly

complemented in E by some subbundle G [9, Theorem 3] and 2 = 2r u 2^. The

same result follows from the operator approach by applying Proposition 2.3 to split

T(E) into invariant complementary subspaces. By [12], these subspaces must be

given by section spaces T(F) and T(G) for some continuous splitting E = F © G.
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