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Abstract

We investigate the spectrum of the Volterra operator Vg with symbol an entire
function g, when it acts on weighted Banach spaces H∞

v
(C) of entire functions with

sup-norms and when it acts on Hörmander algebras Ap or A0

p
.

1 Introduction, notation and preliminaries

The aim of this note is to investigate the spectrum of the Volterra operator when it acts
continuously on a weighted Banach space of entire functions H∞

v (C). Our main result is
Theorem 2.3. The characterizations of continuous Volterra operators on H∞

v (C) obtained
by Taskinen and the author in [13] play an important role. The present research originated
with a question of A. Aleman in a meeting celebrated in Granada in February 2015 in
which the results in [13] were presented. In Section 3 we study the spectrum of Volterra
operators acting on a (DFN) Hörmander algebra Ap in Theorem 3.4, and on a Fréchet
Hörmander algebra A0

p in Theorem 3.5.
In what follows H(C) denotes the space of entire functions. The space H(C) is a

Fréchet space endowed with the compact open topology. The differentiation operator
Df(z) = f ′(z), the integration operator Jf(z) =

∫ z
0 f(ζ)dζ and the multiplication operator

Mh(f) = hf, h ∈ H(C), are continuous on H(C).
Given a non-constant entire function g ∈ H(C) with g(0) = 0, the Volterra operator

Vg with symbol g is defined on H(C) by

Vg(f)(z) :=

∫ z

0
f(ζ)g′(ζ)dζ (z ∈ C).

For g(z) = z this reduces to the integration operator. Clearly Vg defines a continuous
operator on H(C). The Volterra operator for holomorphic functions on the unit disc
was introduced by Pommerenke [28] and he proved that Vg is bounded on the Hardy
space H2, if and only if g ∈ BMOA. Aleman and Siskakis [3] extended this result for
Hp, 1 ≤ p < ∞, and they considered later in [4] the case of weighted Bergman spaces; see
also [26]. We refer the reader to the memoir by Peláez and Rättyä [27] and the references
therein. Volterra operators on weighted Banach spaces of holomorphic functions on the
disc of type H∞ have been investigated recently in [5]. Constantin started in [15] the study
of the Volterra operator on spaces of entire functions. She characterized the continuity
of Vg on the classical Fock spaces and investigated its spectrum. Constantin and Peláez
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[16] characterize the entire functions g ∈ H(C) such that Vg is bounded or compact on a
large class of Fock spaces induced by smooth radial weights. See also [13]. Aleman and
Constantin [1] and Aleman and Peláez [2] investigate the spectra of Volterra operators on
several spaces of of holomorphic functions on the disc.

A weight v is a continuous function v : [0,∞[→]0,∞[, which is non-increasing on [0,∞[
and satisfies limr→∞ rmv(r) = 0 for each m ∈ N. We extend v to C by v(z) := v(|z|). For
such a weight, the weighted Banach space of entire functions is defined by

H∞
v (C) := {f ∈ H(C) | ∥f∥v := supz∈C v(|z|)|f(z)| < ∞},

and it is endowed with the weighted sup norm ∥·∥v. Changing the value of v on a compact
interval does not change the space and gives an equivalent norm. Spaces of this type
appear in the study of growth conditions of analytic functions and have been investigated
in various articles, see e.g. [10, 11, 22] and the references therein.

For an entire function f ∈ H(C), we denote M(f, r) := max{|f(z)| | |z| = r}. Using
the notation O and o of Landau, f ∈ H∞

v (C) if and only if M(f, r) = O(1/v(r)), r → ∞.
By C, C ′, c etc. we denote positive constants, the value of which may vary from place to
place.

Let T : X → X be a continuous operator on a space X. The resolvent of T on X is
the set ρ(T,X) of all λ ∈ C such that T − λI : X → X is bijective and has a continuous
inverse. Here I stands for the identity operator on X. The spectrum σ(T,X) of T is the
complement in C of the resolvent. The point spectrum is the set σpt(T,X) of those λ ∈ C

such that T −λI is not injective. Observe that in this paper we consider operators defined
not only on Banach spaces, but also on more general spaces: H(C) and the Hörmander
algebra A0

p are Fréchet spaces and the Hörmander algebra Ap is the dual of a Fréchet
space. Accordingly, when we refer to a space, we mean a Hausdorff locally convex space.
We refer the reader to [25] for results and terminology about functional analysis.

At this point we include some preliminary results, in particular about the spectrum
of the Volterra operator on H(C) that are inspired by [1] and [2]. Let g ∈ H(C) be a
non-constant entire function such that g(0) = 0 and let Vgf(z) =

∫ z
0 f(ζ)g′(ζ)dζ, z ∈ C,

denote the Volterra operator associated with g, that acts continuously on H(C).

Proposition 1.1 The operator Vg − λI : H(C) → H(C) is injective for each λ ∈ C. In
particular σpt(Vg, H(C)) = ∅. Moreover, 0 ∈ σ(Vg, H(C)).

Proof. If (Vg − λI)f = 0, then λf(0) = 0 and f(z)g′(z) = λf ′(z), z ∈ C,. If λ = 0, we
get f = 0, since g is not constant. In case λ ̸= 0, we get f(z) = C exp(g(z)/λ), which
implies f = 0, since f(0) = 0.

The operator Vg is not surjective on H(C) because Vgf(0) = 0 for each f ∈ H(C).
Thus 0 ∈ σ(Vg, H(C)). ✷

Lemma 1.2 Given λ ∈ C, λ ̸= 0, and h ∈ H(C), the equation f − (1/λ)Vgf = h has a
unique solution given by

f(z) = Rλ,gh(z) = h(0)e
g(z)
λ + e

g(z)
λ

∫ z

0
e−

g(ζ)
λ h′(ζ)dζ, z ∈ C.

Proof. This is well known; see e.g. [1, p. 200] or [2, p. 2]. The uniqueness follows
from Proposition 1.1. It is enough to substitute in the equation to check the result.
Alternatively, the equation implies f(0) = h(0) and that f is the solution of the equation
y′ − (g′(z)/λ)y = h′(z). The result is also obtained solving this linear equation. ✷
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Proposition 1.3 Let g ∈ H(C) be a non-constant entire function such that g(0) = 0.
The Volterra operator Vg satisfies σ(Vg, H(C)) = {0} and σpt(Vg, H(C)) = ∅.

Proof. This is a direct consequence of Proposition 1.1 and the continuity of the operator
Rλ,g : H(C) → H(C), λ ̸= 0. ✷

Lemma 1.4 Let X ⊂ H(C) be a locally convex space that contains the constants and such
that the inclusion X ⊂ H(C) is continuous. Assume that Vg : X → X is continuous for
some non-constant entire function g such that g(0) = 0. Then

{0} ∪ {λ ∈ C \ {0} | e
g

λ /∈ X} ⊂ σ(Vg, X).

If X is a Banach space, then

{0} ∪ {λ ∈ C \ {0} | e
g

λ /∈ X} ⊂ σ(Vg, X).

Proof. Since X contains the constants, Vg is not surjective and 0 ∈ σ(Vg, X). If λ /∈
σ(Vg, X), then λ ̸= 0 and the operator Rλ,g : X → X defined in Lemma 1.2 is continuous.

In particular, Rλ,g(1) = e
g

λ ∈ X. This implies the desired inclusion. Recall that in case
X is a Banach space, σ(Vg, X) is compact. ✷

Lemma 1.5 Let X ⊂ H(C) be a locally convex space that contains the constants and
such that the inclusion X → H(C) is continuous. Assume that Vg : X → X is continuous
for some non-constant entire function g such that g(0) = 0. The following conditions are
equivalent:

(i) λ ∈ ρ(Vg, X).

(ii) Rλ,g : X → X is continuous.

(iii) (a) e
g

λ ∈ X, and

(b) Sλ,g : X0 → X0, Sλ,gh(z) := e
g(z)
λ

∫ z
0 h′(ζ)e−

g(ζ)
λ dζ, z ∈ C, is continuous on the

subspace X0 of X of all the functions h ∈ X with h(0) = 0.

Proof. This follows directly from the definitions. ✷

Lemma 1.6 Let X ⊂ H(C) be a locally convex space that contains the constants and
such that the inclusion X → H(C) is continuous. Let X0 be the subspace of X of all the
functions h ∈ X with h(0) = 0. The following conditions are equivalent for λ ∈ C \ {0}.

(i) Sλ,g : X0 → X0, Sλ,gh(z) := e
g(z)
λ

∫ z
0 h′(ζ)e−

g(ζ)
λ dζ, z ∈ C, is continuous.

(ii) T : X0 → X0, Th(z) := e
g(z)
λ

∫ z
0 h(ζ)g′(ζ)e−

g(ζ)
λ dζ, z ∈ C, is continuous.

Proof. This is a direct consequence of the identity

e
g(z)
λ

∫ z

0
h′(ζ)e−

g(ζ)
λ dζ = h(z) + (1/λ)e

g(z)
λ

∫ z

0
h(ζ)g′(ζ)e−

g(ζ)
λ dζ,

valid for h ∈ H(C), h(0) = 0, that can be seen integrating by parts. ✷
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2 Spectra of Volterra operators on H
∞
v (C)

We concentrate our attention in the Volterra operator acting on the Banach space H∞
v (C),

with v(r) = exp(−αrp), where α, p > 0. According to [13, Corollaries 3.8, 3.12 and 3.13],
we have the following result.

Proposition 2.1 Assume that v(r) = exp(−αrp), α > 0, p > 0.

(i) Vg : H∞
v (C) → H∞

v (C) is continuous if and only if g is a polynomial of degree less
than or equal to the integer part of p.

(ii) Vg : H∞
v (C) → H∞

v (C) is compact if and only if g is a polynomial of degree strictly
less than p.

Observe that if p is not an integer in Proposition 2.1, then the operator Vg is automat-
ically compact once it is bounded.

Lemma 2.2 Let v be a weight such that v(r)eαr
n
is non-increasing on [r0,∞[ for some

r0 > 0, α > 0 and n ∈ N. The operator T : H∞
v (C) → H∞

v (C) defined by

Tγh(z) := eγz
n

∫ z

0
ζn−1h(ζ)e−γζndζ, z ∈ C,

is continuous if |γ| < α.

Proof. Changing the value of v(r) on a compact interval, we may assume that v(r)eαr
n

is non-increasing on [0,∞[. Fix z ∈ C, z ̸= 0. For each 0 ≤ t ≤ 1 we have

v(|z|) ≤ v(t|z|)eα|z|
n(tn−1).

Therefore we can estimate

v(|z|)|Tγh(z)| = v(|z|)

∣

∣

∣

∣

∫ 1

0
zntn−1h(tz)eγz

n(1−tn)dt

∣

∣

∣

∣

≤

≤ |z|n
∫ 1

0
tn−1|h(tz)|v(tz)e|γ||z|

n(1−tn)eα|z|
n(tn−1)dt ≤

≤ ||h||v|z|
n

∫ 1

0
tn−1e(α−|γ|)|z|n(tn−1)dt =

(1/n)||h||v(α− |γ|)−1
(

1− e−(α−|γ|)|z|n
)

≤ (1/n)(α− |γ|)−1||h||v,

since α− |γ| > 0. ✷

Theorem 2.3 Assume that v(r) = exp(−αrp), α > 0, p > 0. Let g be a polynomial of
degree n less than or equal to the integer part of p with g(0) = 0.

(i) If the degree n of g satisfies n < p, then σ(Vg, H
∞
v (C)) = {0}.

(ii) If p = n ∈ N and g(z) = βzn + k(z), k a polynomial of degree strictly less than n,
then σ(Vg, H

∞
v (C)) = {λ ∈ C | |λ| ≤ |β|/α}.

Moreover, we have σ(Vg, H
∞
v (C)) = {0} ∪ {λ ∈ C \ {0} | e

g

λ /∈ H∞
v (C)}.
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Proof. (i) If n is less than or equal to the integer part of p − 1, then Vg : H∞
v (C) →

H∞
v (C) is compact. This implies that σ(Vg, H

∞
v (C)) = {0}, since Vg has no eigenvalues

by Proposition 1.1.
Assume now that p− 1 < n < p. For each λ ̸= 0, e

g

λ ∈ H∞
v (C) as it is easy to check.

Suppose first that g(z) = βzn for some β ̸= 0. For λ ̸= 0, take α > |β|/|λ|. Clearly
v(r)eαr

n
is non-increasing on [r0,∞[ for some r0 > 0. We can apply Lemma 2.2 to conclude

that

Tβ/λh(z) := e
βzn

λ

∫ z

0
ζn−1h(ζ)e−

βζn

λ dζ, z ∈ C,

is continuous on the subspace of H∞
v (C) of the functions vanishing at 0. By Lemma 1.6,

the operator

Sλ,gh(z) := e
g(z)
λ

∫ z

0
h′(ζ)e−

g(ζ)
λ dζ, z ∈ C,

is continuous in the same Banach space. Finally, Lemma 1.5 implies λ ∈ ρ(Vg, H
∞
v (C)).

This completes the proof in this case.
Suppose now that g(z) = βzn + k(z) for some β ̸= 0 and some polynomial k of degree

strictly less than n. Setting g1(z) := βzn, we have Vg = Vg1 + Vk, and Vk is a compact
injective operator on H∞

v (C). If λ ̸= 0, we have Vg − λI = (Vg1 − λI) + Vk, and Vg − λI
is bijective if and only if Vg1 − λI is bijective. This is a consequence e.g. of [20, Corollary
34.14] keeping in mind that both Vg − λI and Vg1 − λI are injective by Proposition 1.1.
Therefore, we conclude σ(Vg, H

∞
v (C)) = σ(Vg1 , H

∞
v (C)) = {0}.

(ii) We suppose now that v(r) = exp(−αrn), α > 0, and that g is a polynomial of
degree exactly n.

Again we consider first the case g(z) = βzn. For λ ∈ C \ {0}, we have e
g

λ ∈ H∞
v (C) if

and only if |β|/|λ| ≤ α. Therefore, we can apply Lemma 1.4 to conclude that {λ | |λ| ≤
|β|/α} ⊂ σ(Vg, H

∞
v (C)). Now take λ ∈ C with |λ| > |β|/α. Since v(r) exp(αrn) = 1, we

apply Lemma 2.2 and Lemma 1.6 to get that the operator

Sλ,gh(z) := e
g(z)
λ

∫ z

0
h′(ζ)e−

g(ζ)
λ dζ, z ∈ C,

is continuous on the subspace of H∞
v (C) of the functions vanishing at 0. Consequently

λ ∈ ρ(Vg, H
∞
v (C)) by Lemma 1.5, which yields σ(Vg, H

∞
v (C)) = {λ ∈ C | |λ| ≤ |β|/α} in

the present case.
In the general case g(z) = βzn + k(z), β ̸= 0 and some polynomial k of degree

strictly less than n, we proceed as in the proof of part (i) to conclude σ(Vg, H
∞
v (C)) =

σ(Vg1 , H
∞
v (C)), g1(z) = βzn.

✷

Given a weight v, one defines the following closed subspace of H∞
v (C)):

H0
v (C) := {f ∈ H(C) | lim

|z|→∞
v(|z|)|f(z)| = 0}.

The polynomials are contained and dense in H0
v (C). By [12, Ex 2.2], the bidual

of H0
v (C) is isometrically isomorphic to H∞

v (C). By [13, Corollaries 3.8 and 3.12] Vg is
bounded onH0

v (C) if and only if it is bounded onH∞
v (C) when v(r) = exp(−αrp), α, p > 0.

Now, proceeding as in the proof of [5, Lemma 1] or [6, Lemma 2.1] one can show, for
v(r) = exp(−αrp), that if Vg is bounded on H∞

v (C), then it coincides with the bi-transpose
(Vg)

′′ of Vg : H0
v (C) → H0

v (C). Accordingly, σ(Vg, H
0
v (C)) = σ(Vg, H

∞
v (C)).
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3 Spectra of Volterra operators on Hörmander algebras

A function p : C → [0,∞[ is called a growth condition if it is continuous, subharmonic,
radial, increases with |z| and satisfies:

(α) log(1 + |z|2) = o(p(|z|)) as |z| → ∞,

(β) p(2|z|) = O(p(|z|)) as |z| → ∞.

Given a growth condition p, we define the following weighted spaces of entire functions
(see e.g. [8] and [9]):

Ap := {f ∈ H(C)| there is A > 0 : sup
z∈C

|f(z)| exp(−Ap(z)) < ∞},

endowed with the inductive limit topology, for which it is a (DFN)-algebra (cf. [23]). We
also define

A0
p := {f ∈ H(C)| for all ε > 0 : sup

z∈C
|f(z)| exp(−εp(z)) < ∞},

endowed with the projective limit topology, for which it is a nuclear Fréchet algebra (cf.
[24]).

Clearly A0
p ⊂ Ap. Condition (α) implies that the polynomials are dense in Ap and

in A0
p. Condition (β) implies that both spaces are stable under differentiation. By the

closed graph theorem, the differentiation operator D is continuous on Ap and on A0
p. It

was observed in [7, Lemma 4.1] that the integration operator J is continuous on both
spaces.

Weighted algebras of entire functions of this type, usually known as Hörmander alge-
bras, have been considered since the work of Berenstein and Taylor [9] by many authors;
see e.g. [8] and the references therein. Braun, Meise and Taylor studied in [14], [23] and [24]
the structure of (complemented) ideals in these algebras. As an example, when p(z) = |z|a,
then Ap consists of all entire functions of order a and finite type or order less than a, and
A0

p is the space of all entire functions of order at most a and type 0. For a = 1, Ap is the
space of all entire functions of exponential type, and A0

p is the space of entire functions of
infraexponential type.

The following Lemma, that is a consequence of condition (β) for the growth condition
p, is well known.

Lemma 3.1 If p : C → [0,∞[ is a growth condition, then there are M > 0 and s > 0
such that p(r) ≤ Mrs +M for each r ∈ [0,∞[.

Proposition 3.2 Let g be an entire function.

(i) Vg : Ap → Ap is continuous if and only if g ∈ Ap.

(ii) Vg : A0
p → A0

p is continuous if and only if g ∈ A0
p.

Proof. We show (i), the proof of (ii) being similar. The identities D ◦ Vg = Mg′ , Vg =
J ◦Mg′ and the continuity of D and J on Ap imply that Vg : Ap → Ap is continuous if and
only the operator of multiplication Mg′ : Ap → Ap is continuous. Since Ap is an algebra
containing the constants, this holds if and only if g′ ∈ Ap. We can apply again that D
and J are continuous on Ap to conclude that this statement is equivalent to g ∈ Ap. ✷
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The spectrum of the integration operator J on Ap and A0
p was investigated in [7,

Proposition 4.7]. This result, that corresponds to Vg for g(z) = z, is extended in this
section.

Lemma 3.3 Let p : C → [0,∞[ be a growth condition and let h be an entire function.

(i) The function eh belongs to Ap if and only if M(h, r) = O(p(r)) as r → ∞. If this is
the case, then h is a polynomial.

(ii) The function eh belongs to A0
p if and only if M(h, r) = o(p(r)) as r → ∞. If this is

the case, then h is a polynomial.

Proof. (i) If M(h, r) = O(p(r)) as r → ∞, then eh clearly belongs to Ap. To prove the
converse, denote by A(h, r) the maximum of the real part of h in the circle |z| ≤ r for
r > 0. As eh ∈ Ap, there is C > 0 such that A(h, r) ≤ Cp(r)+C for each r > 0. We apply
Carathéodory inequality for the circle |z| ≤ 2r (c.f. [21, Theorem 6.8]) and property (β)
of p to get

M(h, r) ≤ 2(A(h, 2r)− Reh(0)) + |h(0)| ≤ 2Cp(2r) + 2(C + |h(0)|) ≤ C ′p(r) + C ′.

Now Lemma 3.1 and a standard argument imply that h is a polynomial.
(ii) By [24, Lemma 2.3], eh ∈ A0

p if and only if there is a growth condition q such that

eh ∈ Aq and q(r) = o(p(r)), r → ∞. By part (i), M(h, r) = O(q(r)) = o(p(r)), r → ∞.
The reverse implication is trivial.

✷

Theorem 3.4 Let p : C → [0,∞[ be a growth condition and let g ∈ Ap be non-constant.

(i) If M(g, r) = O(p(r)), r → ∞, is not satisfied (which happens in particular when
p(r) = o(r), r → ∞), then σ(Vg, Ap) = C.

(ii) If M(g, r) = O(p(r)), r → ∞, then σ(Vg, Ap) = {0}. In this case g is a polynomial
and r = O(p(r)), r → ∞.

Moreover, in both cases we have σ(Vg, Ap) = {0} ∪ {λ ∈ C \ {0} | e
g

λ /∈ Ap}.

Proof. First observe that M(g/λ, r) = (1/|λ|)M(g, r) for each λ ∈ C \ {0} and r > 0.
Therefore, it follows from Lemma 3.3 (i) that e

g

λ ∈ Ap for some (all) λ ̸= 0, if and only if
eg ∈ Ap, that is equivalent to M(g, r) = O(p(r)) as r → ∞.

(i) If M(g, r) = O(p(r)) as r → ∞ is not satisfied, then e
g

λ /∈ Ap for each λ ̸= 0 by our
remarks above. We can apply Lemma 1.4 to conclude σ(Vg, Ap) = C.

Observe that in case p(r) = o(r), r → ∞, then M(g, r) = O(p(r)) as r → ∞ is not
satisfied, since otherwise we would have M(g, r) = O(p(r)) = o(r) as r → ∞, that implies
that g is constant; a contradiction.

(ii) If M(g, r) = O(p(r)), r → ∞, then e
g

λ ∈ Ap for each λ ̸= 0. Given λ ∈ C \ {0},

setting G = e
g

λ , 1/G = e−
g

λ , the operator Sλ,g of Lemma 1.5 (iii) satisfies Sλ,g = MG ◦J ◦
M1/G◦D. These four operators are continuous on the algebra Ap. Therefore λ ∈ ρ(Vg, Ap),
and σ(Vg, Ap) = {0}.

In this case, since g must be a non constant polynomial, the assumption in (ii) implies
r = O(p(r)), r → ∞.

✷
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Theorem 3.5 Let p : C → [0,∞[ be a growth condition and let g ∈ A0
p be non-constant.

(i) If M(g, r) = o(p(r)), r → ∞, is not satisfied (which happens in case p(r) = O(r), r →
∞), then σ(Vg, A

0
p) = C.

(ii) If M(g, r) = o(p(r)), r → ∞, then σ(Vg, A
0
p) = {0}. In this case g is a polynomial

and r = o(p(r)), r → ∞.

Moreover, in both cases, we have σ(Vg, A
0
p) = {0} ∪ {λ ∈ C \ {0} | e

g

λ /∈ A0
p}.

Proof. Since M(g/λ, r) = (1/|λ|)M(g, r) for each λ ∈ C \ {0} and r > 0, Lemma 3.3 (ii)
implies that e

g

λ ∈ A0
p for some (or all) λ ̸= 0 if and only if eg ∈ A0

p.

(i) If M(g, r) = o(p(r)) as r → ∞ is not satisfied, then e
g

λ /∈ A0
p for each λ ̸= 0 by our

comments above. By Lemma 1.4 we have σ(Vg, Ap) = C.
Observe that in case p(r) = O(r), r → ∞, then M(g, r) = o(p(r)) as r → ∞ does not

hold. Otherwise, M(g, r) = o(p(r)) = O(r) as r → ∞, which implies that g is constant; a
contradiction.

(ii) If M(g, r) = o(p(r)), r → ∞, then e
g

λ ∈ A0
p for each λ ̸= 0 by our comments

above. Given λ ∈ C \ {0}, setting G = e
g

λ , the operator Sλ,g of Lemma 1.5 (iii) satisfies
Sλ,g = MG ◦ J ◦M1/G ◦D and is continuous on the algebra A0

p. Therefore λ ∈ ρ(Vg, A
0
p).

Since g must be a non constant polynomial, the assumption in (ii) yields r = o(p(r))
as r → ∞.

✷
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Volterra operators and semigroups in weighted Banach spaces of analytic functions,
Collect. Math. 65 (2014), 233-249.

[6] M.J. Beltrán, J. Bonet, C. Fernández, Classical operators on weighted Banach spaces
of entire functions, Proc. Amer. Math. Soc. 141 (2013), 4293–4303.

[7] M.J. Beltrán, J. Bonet, C. Fernández, Classical operators on the Hörmander algebras,
Discr. Cont. Dynam. Syst. 35 (2015), 637-652.

[8] C. A. Berenstein and R. Gay. Complex analysis and special topics in harmonic anal-
ysis. Springer-Verlag, New York, 1995.

8



[9] C. Berenstein and B. A. Taylor, A new look at interpolation theory for entire functions
of one variable, Adv. in Math. 33 (1979), 109–143.

[10] K.D. Bierstedt, J. Bonet, A. Galbis, Weighted spaces of holomorphic functions on
balanced domains, Michigan Math. J. 40 (1993), no. 2, 271-297.

[11] K.D. Bierstedt, J. Bonet, J. Taskinen, Associated weights and spaces of holomorphic
functions, Studia Math. 127 (1998), 137-168.

[12] K.D. Bierstedt, W. H. Summers, Biduals of weighted Banach spaces of analytic func-
tions, J. Austral. Math. Soc. Ser. A 54 (1993), no. 1, 70-79.

[13] J. Bonet, J. Taskinen, A note about Volterra operators on weighted Banach spaces of
entire functions, Math. Nachr. (to appear).

[14] R. W. Braun, Weighted algebras of entire functions in which each closed ideal admits
two algebraic generators, Michigan Math. J. 34 (1987), 441–450.

[15] O. Constantin, A Volterra-type integration operator on Fock spaces, Proc. Amer.
Math. Soc. 140 (2012), 4247-4257.
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[27] J.A. Peláez, J. Rättyä, Weighted Bergman Spaces induced by rapidly decreasing
weights, Memoirs Amer. Math. Soc. 227, 2014.

[28] Ch. Pommerenke, Schlichte Funktionen un analytische Functionen von beschrn̈kter
mittlerer Oszilation, Comment. Math. Helv. 52 (1977), 591-602.

[29] J.H. Shapiro, Composition Operators and Classical Function Theorey, Springer, New
York, 1993.

Author’s address:
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