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Abstract The electron spectrometer, spede, has been developed and will be employed in conjunction with
the Miniball spectrometer at the HIE-ISOLDE facility, CERN. spede allows for direct measurement of
internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momen-
tum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of
γ rays and conversion electrons in Coulomb-excitation experiments using radioactive ion beams.

1 Introduction

In-beam spectroscopic methods have extensively been em-
ployed to uncover the governing forces in atomic nuclei.
The outcome of the development of detector materials
and detection techniques has culminated in large γ-ray
detector arrays and various electron spectrometers (see
e.g. References [1,2,3,4] and references therein). In or-
der to establish a complete picture of de-excitation pro-
cesses in a single experiment, simultaneous observation of
all de-excitation paths is required. The combination of ef-
ficient detection of both γ rays and conversion electrons,
as demonstrated by the sage spectrometer [5], can be
considered as one of the latest milestones in in-beam spec-
troscopy. The advent of radioactive beam facilities, such as
the recently commissioned HIE-ISOLDE post-accelerator
at CERN [6], have allowed for multi-step Coulomb-excitation
experiments employing radioactive ion beams to be per-
formed. For the analysis of Coulomb-excitation data it is
of particular importance to obtain complementary spec-
troscopic information, e.g. electron conversion coefficients
[7]. In this paper a compact SPectrometer for Electron
DEtection (spede), which will be combined with the Mini-
ball spectrometer [8] at HIE-ISOLDE, is described.
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2 The spede conversion electron

spectrometer

The features of spede and its compatibility with the Mini-
ball spectrometer are described in the following subsec-
tions. Shown in Figure 1 is spede including the Miniball
particle detector for Coulomb-excitation experiments, a
double-sided silicon strip detector (CD detector) [9]. The
development of spede has been discussed in detail in Ref-
erences [10,11,12].

2.1 Si-detector assembly

spede utilises a 24-fold segmented annular Si detector for
the detection of internal conversion electrons. The detec-
tor is placed upstream and at a variable distance from the
target. The conceptual design of spede and the suppres-
sion of the δ-electron background, discussed in more de-
tails in Subsection 2.2, assure that the conversion-electron
signals are not overwhelmed by the high background. This
allows for the placement of the detector in close proxim-
ity to the target, typically at a distance of 25mm, pro-
viding large angular coverage and detection efficiency of
the order of 8% across a wide energy range. In Coulomb-
excitation experiments the direct observation of electrons,
i.e., without the use of magnetic fields for electron trans-
portation, is essential for the kinematic correction of their
velocities. To correct for the velocity, the angle between
the detected electron and electron-emitting scattered par-
ticle is required. This can be obtained by using the spede
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2 P. Papadakis et al.: The SPEDE spectrometer

Figure 1: spede combined with the CD detector. Parts of the set-up are shown in cross-section for better visualisation.
Essential components have been labelled and are discussed in more detail in the text. The white arrow indicates the
beam direction.

detector for the detection of electrons and the CD detec-
tor for the identification of scattered beam- and target-like
particles, with the required angular, energy and time res-
olution.

A 17mm aperture in the centre of the detector allows
for the beam to pass through before impinging on the
target. The 24 detector segments are arranged in three
concentric rings around the beam aperture with 8 seg-
ments each. The segmentation scheme was optimised to
provide sufficient position resolution for kinematic cor-
rection of the observed electron energies, while keeping
the number of electronics channels relatively low [10]. The
widths of the segments (5.2, 3.9 and 3.2mm, from the in-
nermost) were chosen so that their individual surface areas
are kept approximately equal in order to keep the capaci-
tance the same across all segments. The intersegment gaps
are 0.05mm wide leading to a total detector inactive area
of less than 2%. The detector incorporates inner and outer
guard rings to guarantee a homogeneous potential across
the active area and minimise edge effects, also the bonding
pads are distributed around the outer edge of the detec-
tor. A photograph of the detector mounted on the Printed

Circuit Board (PCB) is presented in Figure 2 together
with the detector geometry. The thickness of the detector
presented here is 500µm and is optimised for electron en-
ergies up to 400 keV. Detectors with a thickness of up to
1500µm can be produced.

Each detector segment is connected to an AMPTEK
A250F/NF charge-sensitive preamplifier through a
PMBF4393 surface mount field effect transistor (FET).
The gain of the preamplifiers is 4V/pC, equivalent to
175mV/MeV. Both the FETs and preamplifiers are posi-
tioned on the detector PCB inside the vacuum chamber.
The preamplifier requires ±6V, which is filtered by ded-
icated circuits on the PCB. The bias voltage is supplied
on the rear common cathode of the detector through a
100 kΩ bias resistor, which is decoupled to ground through
a 100 nF capacitor. The bias voltage for a detector of thick-
ness 500µm is 90V and the leakage current at the op-
erating temperature is less than 1 nA. The preamplifiers
are AC coupled to the detector segments through 100 pF
capacitors. A 2.2MΩ resistor is connected to each indi-
vidual segment to act as the return path for the current
from the detector. Due to the output drive limitations of
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Figure 2: Photograph of the spede detector mounted on
the PCB. The FETs and some of the filtering components
can be seen around the detector. The dimensions of the
individual detector segments are indicated in millimetres
in the inset.

the preamplifiers a 51Ω resistor was added in series with
each output to prevent preamplifier loading and to back
terminate the 50Ω cable impedance. The circuit diagram
for a single detector segment is presented in Figure 3.

Figure 3: Circuit diagram of a single spede electronics
channel. The bias and preamplifier power supply filter-
ing circuits can be seen in the diagram together with the
feedback characteristics of the preamplifier.

Two electronics channels are attached to each connec-
tor shown in Figures 2 and 4. Micro-coaxial cable assem-
blies transport the signal from the connectors to the sig-
nal feedthroughs shown in Figure 1. These assemblies also
contain the preamplifier power cables.

To increase the stability of the Si detector and reduce
electronic noise, the detector and preamplifiers are cooled.
The detector PCB is mounted on a copper block housing
an ethanol cooling circuit, that also integrates a fan-like

structure surrounding the individual preamplifiers. The
ethanol is circulated by a Julabo CF40 cryo-compact cir-
culator with factory specified temperature range between
-40◦C and +150◦C and cooling capacity of 0.12 kW at
-30◦C. During normal operating conditions the detector
temperature is in the region of -5◦C to 0◦C.

Figure 4: Photograph of the rear of the spede detector
PCB mounted on the cooling structure. The preamplifiers
can be seen between the segments of the fan-like cooling
block.

2.2 Suppression of electron background

Conventionally, electron spectrometers have employed mag-
netic fields to transport electrons away from the vicinity of
the production target. Consequently, magnetic lenses [13]
or high-voltage barriers [4] have been re becausequired
to suppress the overwhelming δ-electron background pro-
duced in the collisions between fast, heavy ions and target
atoms. The fact that spede is operated with low-intensity
radioactive ion beams already reduces the δ-electron rate
compared to in-beam experiments with stable-ion beams
of higher intensity. Segmenting the detector into 24 pixels
further reduces the δ-electron rate per channel. In addi-
tion, the following measures have been utilised to reduce
the δ-electron background in spede.

2.2.1 Detection geometry

The spede detector is positioned upstream of the tar-
get because δ electrons are primarily forward focused and
the flux at backwards angles is lower by several orders of
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magnitude [14]. An additional benefit of this detection ge-
ometry is the reduction of kinematic broadening, which is
lowest when the trajectories of the electron-emitting par-
ticle and the electron are collinear.

2.2.2 Introduction of high voltage on the target

spede utilises a target ladder with four target positions,
interchangeable from outside of the vacuum chamber. The
majority of the δ-electron flux is concentrated below 5 keV
[14]. For this reason high voltages up to +5 kV may be ap-
plied to the target in use. The high voltage decelerates the
emitted electrons and reduces the number of low-energy
δ electrons reaching the spede detector. To ensure appli-
cation of the voltage only on the target in use, the target
ladder is made of insulating PEEK plastic, with metal in-
serts for mounting the targets and applying voltage. Con-
tact is made through a spring arm with the in-beam target
mounting frame, thus ensuring that the target integrity is
not compromised. The remaining target frames may ei-
ther be left floating or grounded through similar spring
arm contacts.

The electric field profile at the target was simulated
using the opera 3d simulation package [15]. These sim-
ulations were used in designing the target ladder to avoid
regions of high electric field density which might lead to
high-voltage discharges. All components in close proxim-
ity to the target were included in the simulation. Figure 5
shows the target ladder geometry overlaid with the simu-
lated electric field strength. The electric field profile was
also included in the Geant4 [16] simulations presented
later in this paper.

2.2.3 Absorber foil

An aluminised Mylar foil is positioned between the tar-
get and the spede detector to absorb low-energy elec-
trons which escape the target. Any material in the path
of the electrons affects the efficiency and effective resolu-
tion of the detector, thus, the absorber foil thickness is
chosen to balance requirements of both suppression and
resolution. The results presented in this paper were ob-
tained using a 12µm (1.68mg/cm2) Mylar foil with 0.5µm
(0.14mg/cm2) aluminium deposited on the surface.

In order to obtain additional shielding against external
noise, the aluminised Mylar foil is kept at ground poten-
tial. Moreover, the opaque nature of the foil in combi-
nation with a plastic ring covering the area between the
detector and foil acts as a shield against the possible flu-
orescence light emitted from certain target materials.

2.2.4 Suppression of random β-decay background

Background of random β-decay origin will be suppressed
by requiring a coincidence between the detected electrons
in the spede detector and the scattered particle observed

Figure 5: Target ladder structure overlaid with the electric
field lines in the target plane. In this simulation +5 kV
is applied on the in-beam target while the other target
frames are left floating. The first three of the equipotential
lines are marked with their respective values.

in the CD detector. After a coincidence condition is ap-
plied, β particles will be typically included only as random
correlations, thus the background of β-decay origin should
be suppressed significantly.

2.2.5 Effect of the high voltage and absorber foil on
spectral quality

The effects of the high voltage and the absorber foil are
shown individually in Figure 6. A -5 keV shift in the elec-
tron peak positions and no obvious change to the electron
resolution are evident in the spectrum with high voltage.
In the spectrum with absorber foil the electrons are shifted
towards lower energies and the resolution is degraded due
to straggling in the foil. This is more prominent for the
lower-energy electrons. Indicative values of the effects of
the high voltage and absorber foil at electron energies of
75 keV and 320 keV are presented in Table 1.

The effect of the background suppression methods on
the peak-to-total value (P/T) was investigated using a
133Ba source with a low-energy cut at 50 keV. The spec-
trum with +5 kV high voltage is of similar quality to the
unsuppressed (P/T of 0.58(5)), whereas the spectral qual-
ity is reduced for the case where the aluminised Mylar foil
is used (P/T of 0.41(5)).
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Figure 6: Electron energy spectra for 133Ba measured with
spede in various configurations. For energies higher than
100 keV the y-axis has been expanded by a factor of 30 for
visualisation purposes. The energy spectrum without sup-
pression is shown in panel a). Panel b) shows the energy
spectrum while applying a voltage of +5 kV on the target
and without absorber foil. Panel c) shows the energy spec-
trum measured with an aluminised Mylar absorber foil in
front of the detector (without voltage on the target). The
most prominent electron lines are labelled according to
the corresponding energy.

Table 1: Individual effects of the high voltage and alu-
minised Mylar absorber foil on the electron energy and
full-width at half-maximum (FWHM) of the peaks in
133Ba [17].

Energy FWHM Energy FWHM
[keV] [keV] [keV] [keV]

Literature 75.28(1) 320.03(1)
This work
Unsuppressed 75.4(1) 9.7(1) 320.2(1) 6.6(1)
+5 kV 70.0(1) 9.6(1) 315.2(1) 6.9(1)
Absorber foil 63.6(1) 12.9(1) 316.0(1) 7.7(1)

2.3 Electron detection efficiency

The relative detection efficiency of spede was determined
using open 133Ba and 207Bi calibration sources. The rel-
ative efficiency values were normalised to a simulated ef-
ficiency curve produced using Geant4. The measured ef-
ficiency and simulated efficiency curve are presented in
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Figure 7: Measured relative and simulated absolute de-
tection efficiencies of spede for a 500µm-thick detec-
tor. Filled diamonds and open circles denote data points
obtained with 133Ba (normalised to the 320 keV peak)
and 207Bi (normalised to the 482 keV peak) calibration
sources, respectively. The simulated efficiency for a detec-
tor of thickness 1000µm is shown for comparison.

Figure 7. The sources were mounted on the target ladder
and no voltage or absorber foil were used. The simulation
package has been developed within the nptool framework
[18] and will be presented in more detail elsewhere [19].
It contains the full Miniball spectrometer, the complete
geometry of spede, including the support structures, ab-
sorber foil and electric field produced by the high voltage
applied to the target. To allow for comparison between
the different set-ups the Miniball Coulomb-excitation tar-
get chamber[8] has also been included.

The detection efficiency remains relatively constant for
energies up to 400 keV and close to the expected value cal-
culated from geometrical constraints. At higher energies
the detection efficiency decreases as the number of punch-
through events and electrons not depositing their full en-
ergy in a single segment increases. For detection of higher-
energy electrons a thicker detector could be used. For com-
parison the simulated efficiency curve with a 1000µm de-
tector is also plotted in Figure 7. The efficiency in the
region of 1MeV is increased by a factor of 7, while the
efficiency below 400 keV remains largely unaffected. The
aluminised Mylar absorber foil used for the results pre-
sented in this paper reduces the efficiency below∼150 keV,
but does not have a significant effect at higher electron en-
ergies.

2.4 Combining with Miniball

spede was designed to be compatible with the existing
Miniball infrastructure at HIE-ISOLDE, CERN. spede in
the centre of Miniball spectrometer is shown in Figure 8.

A compact aluminium target chamber with 2.5mm
thick walls houses the spede detector, target ladder and
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the CD detector. The beam pipe and CD-detector
feedthroughs of the Miniball Coulomb-excitation target
chamber are connected to the downstream part of the
spede chamber, while the CD detector is mounted on
a purpose-built support. A beam pipe accommodating
the spede detector feedthroughs is connected upstream
of the target chamber. This beam pipe includes the sup-
port structure for the spede detector, the beam collimator
and the ethanol cooling circuit pipes (see Figure 1).

During operation the spede target ladder allows the
use of any one of the four targets without opening the tar-
get chamber. Access to the spede or CD detector can be
gained by removing the bellows (see Figure 8) and slid-
ing the target chamber on a rail system in the upstream
direction.

The design of the Miniball frame enables the placement
of the cluster Ge detectors at various angles and rotations.
This allows for the use of different target chambers and
ancillary detectors without compromising the γ-ray detec-
tion efficiency.

3 Performance of spede

3.1 Simultaneous γ-ray and conversion-electron
spectroscopy at HIE-ISOLDE

The integration of spede with the Miniball spectrometer
was tested using an implanted radioactive 191Hg source.
The decay chain 191Hg(t1/2 = 50min) → 191Au(2.2 h) →
191Pt (2.8 d) provided a high-statistics data set to perform
simultaneous γ-ray and conversion-electron (γe-)
spectroscopy. This is illustrated in panel a) of Figure 9,
where the total singles γ-ray energy spectrum obtained
with the aforementioned source is shown. Panel b) of Fig-
ure 9 shows the total singles electron energy spectrum and
electrons in coincidence with any γ ray. It should be noted
that the electron energy spectra include background aris-
ing from the β+ decay of 191Hg [20]. The γe- performance
is demonstrated in Figures 9 c) and d), where gates on the
γe- matrix are set on the 586 keV γ ray and the 116 keV
electron lines (corresponding to the K-electron line of the
194 keV transition in 191Pt), respectively.

3.2 In-beam testing of spede at JYFL-ACCLAB

The in-beam performance of spede has been investigated
in a Coulomb-excitation experiment employing the
82Kr(197Au,197Au*) reaction at 4.26MeV/u beam energy
in the Accelerator Laboratory of the University of
Jyväskylä (JYFL-ACCLAB), first reported in [12]. The
target was a self-supporting 1200µg/cm2 thick gold foil.
The beam from the K130 cyclotron was chopped to pro-
vide bunches of 200µs beam-on and 800µs beam-off to
replicate the typical time structure of the HIE-ISOLDE
beam. The performance of spede was tested up to 50 ×

106 pps impinging on the target. In typical running con-
ditions the beam intensity was ∼2× 106 pps, resulting in

Figure 8: spede combined with the Miniball spectrometer.
The target chamber support tables and one hemisphere
of the Ge-detector array have been removed for better
visualisation. Main parts and the beam from HIE-ISOLDE
are labelled.

an average counting rate of 1300Hz/channel in the spede
detector. Scattered particles were detected with an array
of six 1 cm2 PIN diodes described in [12].

Figure 10 shows the measured and simulated particle-
gated electron energy spectra. Both spectra are kinemat-
ically corrected for 197Au and were obtained using the
aluminised Mylar absorber foil and no high voltage on
the target. The simulated spectrum reproduces the main
structures in the measured spectrum and the ratio be-
tween the detected peaks. The complexity of the measured
background makes its accurate simulation unrealistic and
computationally demanding.

A K/L conversion ratio of 5.7(7) for the 279 keV
5

2

+
→

3

2

+
transition in 197Au was extracted from the

data shown in Figure 10 and using the efficiency pre-
sented in Figure 7. The value obtained is compared with
the K/L ratios calculated using the BrIcc conversion coef-
ficient calculator [22] for pure M1 and E2 transitions and
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with a mixed M1+E2 transition using the mixing ratio of
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δ=-0.39(2) [23]. The measured value is in excellent agree-
ment with the calculated value for a mixed transition.

Table 2: Comparison of the K/L conversion ratio for the

279 keV 5

2

+
→

3

2

+
transition in 197Au obtained with

spede to values calculated with BrIcc [22] and literature
[23].

M1 E2 M1+E2
(BrICC) (BrICC) (literature) This work

K/L ratio 6.05(12) 1.85(4) 5.63(13) 5.7(7)

4 Summary

spede has been built and commissioned at JYFL-ACCLAB
and at the HIE-ISOLDE facility, CERN. spede combines
a segmented Si detector for the measurement of inter-
nal conversion electrons directly from the target with the
Miniball spectrometer for the measurement of γ rays and
scattered particles. The off-line tests indicate that the
spectrometer works within the design criteria with a detec-
tion efficiency of the order of 8% and FWHM at 320 keV in
the region of 6-8 keV depending on the running conditions.
The first in-beam tests have shown the power of the spec-
trometer for the direct detection of conversion electrons
and the extraction of conversion coefficients. A compre-
hensive simulation package for the set-up was developed
using the nptool framework in Geant4 and can be used
to investigate the feasibility of planned experiments.

We would like to acknowledge Magdalena Zielińska
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7. M. Zielińska et al., European Physical Journal A (2016),
ISSN 1434601X, DOI 10.1140/epja/i2016-16099-8

8. N. Warr et al., European Physical Jour-
nal A 49(3), 1 (2013), ISSN 14346001, DOI

10.1140/epja/i2013-13040-9

9. A. Ostrowski et al., Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 480(2), 448 (2002),
ISSN 01689002, DOI 10.1016/S0168-9002(01)00954-8

10. J. Konki et al., EPJ Web of Conferences 63, 01019 (2013),
ISSN 2100-014X, DOI 10.1051/epjconf/20136301019

11. P. Papadakis et al., in Proceedings of the Conference
on Advances in Radioactive Isotope Science (ARIS2014)
(Journal of the Physical Society of Japan, 2015), Vol.
030023, pp. 4–7, DOI 10.7566/JPSCP.6.030023

12. D.M. Cox et al., Acta Physica Polonica B 48(3), 403
(2017), DOI 10.5506/APhysPolB.48.403

13. J. Kantele et al., Nuclear Inst. and Methods in Physics
130(2), 467 (1975)

14. U. Bechthold et al., Physical Review Letters
79(11), 2034 (1997), ISSN 0031-9007, DOI

10.1103/PhysRevLett.79.2034

15. Vector Fields ”OPERA Version 12” (2007),
www.vectorfields.com

16. S. Agostinelli et al., Nuclear instruments & methods in
physics research. Section A, Accelerators, spectrometers,
detectors and associated equipment 506(3), 250 (2003),
ISSN 01689002, DOI 10.1016/S0168-9002(03)01368-8

17. Y. Khazov, A. Rodionov, F.G. Kondev, Nuclear
Data Sheets 112, 855 (2009), ISSN 00903752, DOI

10.1016/j.nds.2009.06.002

18. A. Matta et al., Journal of Physics G: Nuclear and Par-
ticle Physics 43(4), 45113 (2016), ISSN 0954-3899, DOI

10.1088/0954-3899/43/4/045113

19. D.M. Cox, To Be Published (2017)
20. C.M. Baglin, Nuclear Data Sheets 110(2), 265 (2009),

ISSN 00903752, DOI 10.1016/j.nds.2009.01.001

21. A. Johansson et al., Nuclear Physics A98, 278 (1978)
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