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There are few behavioral effects as ubiquitous as the speed-accuracy tradeoff (SAT). From

insects to rodents to primates, the tendency for decision speed to covary with decision

accuracy seems an inescapable property of choice behavior. Recently, the SAT has received

renewed interest, as neuroscience approaches begin to uncover its neural underpinnings

and computational models are compelled to incorporate it as a necessary benchmark.

The present work provides a comprehensive overview of SAT. First, I trace its history as

a tractable behavioral phenomenon and the role it has played in shaping mathematical

descriptions of the decision process. Second, I present a “users guide” of SAT methodology,

including a critical review of common experimental manipulations and analysis techniques

and a treatment of the typical behavioral patterns that emerge when SAT is manipulated

directly. Finally, I review applications of this methodology in several domains.
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“. . . we face a very common problem in psychology: the exis-
tence of a tradeoff between dependent variables, in this case false
alarms and reaction time. The only sensible long-range strategy
is, in my opinion, to study the tradeoff. . . and to devise some
summary statistic to describe it.” - Luce, 1986, p. 56.

INTRODUCTION

Prima facie, the notion of speed-accuracy tradeoff (SAT) is pedes-
trian. Who has not encountered that a decision, made in haste,
often leads to err? Who has not felt the deleterious effects of
time pressure on ultimate outcomes? The concept seems so com-
monsensical as to deserve little interest—an obvious product of
nothing more than human limitations. Ironically, it is just this
pervasiveness that demands the SAT be considered—not only as a
phenomenon in and of itself—but also as a benchmark for mod-
els of the decision process. Common across task domains and in
creatures ranging from house-hunting ants (Franks et al., 2003)
and bumblebees (Chittka et al., 2003; for a review, see Marshall
et al., 2009) to humans (Wickelgren, 1977) and monkeys (Heitz
and Schall, 2012, 2013), the SAT is thus a topic of great concern.
Fortunately, there has been a renewed interest in SAT, particularly
in the neuroscience community. Using fMRI, EEG, and single-
unit recordings, never have we been closer to understanding, at
a fundamental level, how the brain takes in sensory information
and transforms it into a decision variable guiding choice. As a
ubiquitous phenomenon intimately tied to the decision process,
the SAT is integral.

HISTORICAL OVERVIEW

The idea that response time1 (RT) can be used to study the inner
workings of the mind is as old as psychology itself. In the mid
1800’s, Hermann von Helmholtz demonstrated that peripheral

1The term “response time” and “reaction time” are typically used interchange-
ably, and I will make no distinction here, but there is a slight semantic

nerve conduction velocity was finite and measureable—a revolu-
tionary conception for his time. The logic was simple, yet elegant.
Helmholtz created a preparation of frog legs with a portion of
nerve still attached; applying current to the nerve elicited mus-
cle contraction. He then noted the difference in the latency to
contraction when either a proximal or distal portion of the nerve
was stimulated. Since the distance between the stimulation points
was known, Helmholtz easily worked out the conduction velocity
(see Foster, 1870). Helmholtz’ logic was perhaps just as impor-
tant as his discovery: one can use the time of an overt movement
as a dependent measure, and by altering the antecedent condi-
tions, estimate the duration of intermediary components. Perhaps
one could use similar methodology to objectively measure the
component processes of the mind. This philosophy guided sev-
eral researchers in their exploration of the “velocity of thought,”
including Helmholtz’ colleague Wilhelm Wundt, in what would
be known as the first true psychology laboratory. Similar logic was
employed by Merkel (1885), and very notably, by Donders (1868)
in his study of processing stages using task comparisons. The
use of RT—one of the only non-introspective measures available,
became central.

That the accuracy of a response varies with the time taken to
produce it was probably already known, if implicitly. However,
such variation was of little interest, the field being dominated
at either extreme by psychophysics experiments—which empha-
size high accuracy without concern for RT—and reaction time
experiments, which examine one’s ability to produce predefined
responses to simple visual or auditory stimuli. Outside of this
asymptotic performance lay a nether-region of neither wholly

difference. “Reaction time” is often associated with the limits of ability, as
in making a fast, predetermined response to the onset of a visual stimulus,
whereas “response time” more generally describes “time to overt action.” See
(Luce, 1986).
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accurate nor wholly fast responding. Still, the fact that such
variability exists led some early researchers to address the speed-
accuracy relation empirically. The first demonstration that the
accuracy of an action varies with its speed was provided in 1899,
both in a dissertation by Woodworth (1899) and a contempora-
neous work by Martin and Müeller (1899), though these studies
focused on the speed of obligatory movements rather than choice
behavior 2 . The first demonstration of a relationship between
choice accuracy and decision time can be traced to 1911, when
Henmon (1911) presented subjects with a simple discrimination
task. Two lines were presented, each differing slightly in length,
and subjects were to determine which line was longer (or shorter)
and press the appropriate left or right button. In the first analysis
of its kind, Henmon “binned” the data by RT to examine the effect
of latency on accuracy. His data revealed an orderly relation, sug-
gesting they were not independent. A short time later, Henmon’s
observations were replicated and the relationship dubbed the
“speed-accuracy relation” for the first time in oft-neglected disser-
tation by Garrett (1922). The phenomenon received only sporadic
attention thereafter, for nearly three decades.

In the intervening years, work conducted on statistical
decision-making would ultimately provide a framework for
understanding the SAT, and also bring the phenomenon to cen-
ter stage. This work, carried out independently by Alan Turing 3,
Abraham Wald, and others, demonstrated that decision-making
under uncertainty can be bolstered through sequential sampling
of information—a suggestion not previously considered by the
extant literature in economics (Edwards, 1954). Consider a choice
between two competing hypotheses—say, whether or not a batch
of product contains sufficient defects to warrant rejection. At the
outset, one may already have some prior expectation regarding
which hypothesis is more likely. An updated posterior probability
can be computed by simply sampling information (e.g., units of
product) sequentially. The problem is that information is costly—
each sample takes some quanta of time and effort (Drugowitsch
et al., 2012). Therefore, it is in one’s best interest to sample as little
as possible to reach some specified compromise between confi-
dence and time spent sampling. Wald’s procedure, which became
known as the sequential probability ratio test (Wald, 1947), allows
one to approach a known (acceptable) error rate with a potentially
enormous savings in time and resources.

Turing and Wald’s application was a utilitarian approach to
economical decision-making, but it did not take long for others
to realize that the process may apply more generally to human
choice behavior. The first instance of this was provided in 1958
by Becker (1958). Participants viewed successive presentations
of cards, upon each of which was an imprinted letter. Cards
were drawn from one of two or more competing distributions,
described to subjects prior to each run. Viewers were asked to
sample as many cards as needed to determine which distribution
the cards were drawn from. Becker manipulated the difficulty of

2As the present work is focused on choice behavior, the movement speed-
accuracy tradeoff will not be considered. The reader is referred to (Hancock
and Newell, 1985; Meyer et al., 1990; Plamondon and Alimi, 1997).
3Turing’s effort was directed at breaking the Nazi enigma machine. For a
fascinating review, see (Gold and Shadlen, 2002).

the discrimination by altering the form of the parent distribu-
tions. For instance, subjects might need to determine if a sequence
of “P” and “Q” letters were sampled from a distribution with a
P:Q ratio of 2:1 or 1:1. Becker found that even in this abstract sit-
uation, humans produce data conforming to Wald’s predictions,
at least to a first approximation.

THE INTRODUCTION OF MATHEMATICAL DECISION MODELS

Meanwhile, others were working on formulating a mathemati-
cal relationship between decision time and accuracy. The first
attempts, provided by Audley (Audley and Jonckheere, 1956;
Audley, 1957, 1958), demonstrated that two-choice decisions
could be modeled as a stochastic process. Audley had been work-
ing with albino rats trained to push one of two buttons to earn
reward. At that time, stochastic models had seen success in pre-
dicting the form of the learning curve in terms of a gain in
accuracy over successive trials, but they did not accommodate
decision times. Nonetheless, decision times, and the RT distri-
butions they form, were thought to reflect the structure of the
choice process (Christie and Luce, 1956), and so were likely
an important component of a complete choice model. Audley
demonstrated that with some simple assumptions regarding the
form of the underlying RT distribution (in this case, exponen-
tial), one could simultaneously predict both choice accuracy and
decision time. However, the individual quanta in this situation
were single, punctate choices made by rats; the model was opaque
to the cognitive events carried out within any given trial. Audely
soon remedied this, in a model that would become known as the
Runs model (Audley, 1960); see also (LaBerge, 1962; Audley and
Pike, 1965). In a guarded conceptual leap, Audley assumed that
the choice process involves a series of “implicit responses” arising
from the presentation of a sensory signal. Though the definition
of “implicit responses” was left open to interpretation, it seems
closely related to what we might now call “perceptual accumula-
tion.” During a choice trial, observers obtain successive samples of
implicit responses, and some counting mechanism keeps track of
the number of consecutive runs favoring either of two potential
actions. Formulated mathematically, Audley demonstrated that
the model could account for choice behavior; notably, he fit the
model to Henmon’s data (Henmon, 1911) described earlier.

The above efforts came to a head in 1960, when Stone (1960)
produced a formal mathematical model of the decision process.
The model combined (1) the relation between RT and accuracy
rates as a stochastic process; (2) the mathematics and optimality
of the sequential probability ratio test; and (3) the presump-
tion of information accumulation over the course of perceptual
decision-making. The model, known as the random walk 4, made
very specific, empirically testable predictions about the means
and shapes of reaction time distributions, and how those dis-
tributions change with SAT. Figure 1 presents two depictions of
the random walk, adapted, respectively, from Fitts (1966) and

4The random walk process is by no means limited to psychology, but has
seen application in physics, chemistry, and economics. It was first proposed
by Pearson (1905), the same year that Albert Einsten published work on
the closely related, continuous-time stochastic process describing Brownian
motion, later to become known as the diffusion process.
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FIGURE 1 | Random-walk model of choice reaction time. (A) Each sample

can be considered evidence favoring one of two options, and at each step,

the observer updates an estimate of the posterior probability (here,

presented as an odds ratio) based on that evidence. A response is produced

at a threshold odds ratio. Reaction time is not explicit, but proportional to the

total number of samples. Adapted from Fitts (1966). (B) The closely related

diffusion model. Here, boundaries are associated with the correct or errant

response and the X-axis is real-time. As in (A) responses are produced when

activation reaches threshold, and the SAT is a function of the placement of

the threshold. Adapted from Ratcliff and Rouder (1998).

Ratcliff and Rouder (1998). During a trial, subjects sample per-
ceptual information, at each step computing a revised estimate
of the likelihood of either hypothesis being true. Responses are
produced when the observers’ posterior probability exceeds some
threshold odds ratio (Figure 1A). The same model is presented
in Figure 1B, except that the process carries out more clearly in
real time, and the response threshold is defined in an equivalent,
yet more abstract dimension. Figure 1B illustrates how sequential
sampling models implement SAT: when the decision threshold is
high (solid upper and lower lines), RT tends to be longer and
more likely correct, as noise in the process is allowed to average
out over time. When lowered (dashed lines), the process termi-
nates early (marked by a “T” in Figure 1B). This speeds RT, but
also increases the probability that an error will result due to noise
in the sampling process: note that the longest-latency correct
response would result in an error under low but not high thresh-
old. Moreover, the model makes very specific, empirically testable
predictions about the form of the resulting RT distributions, and
how they change with various manipulations. The random walk
model received immediate acclaim, and was extended and revised
almost immediately (Edwards, 1965; Laming, 1968).

The random walk model provided a rigorous and principled
treatment of SAT, but was not favored by all. In Ollman (1966)
proposed the first of what would become known as mixture mod-

els. Whereas sequential sampling models assume incremental evi-
dence accumulation, Ollman suggested a mixture of dichotomous
states: fast guesses and slow controlled decisions. The latency of
the guess process and controlled process was assumed constant;
SAT was achieved by simply changing the mixture. Note that this
predicts a linear accuracy-RT relationship anchored by a theo-
retical true guess RT (corresponding to chance level accuracy)
and a true controlled RT (corresponding to perfect accuracy).
Intermediate values are simply weighted averages of the two com-
ponent latencies. This fast guess model was tested by Yellott (1971).
Subjects performed a simple color discrimination task while SAT
was induced through response deadlines: arbitrary time limits sub-
jects must beat in order to produce a fully correct response (see

section SAT Manipulations). The fast guess model predicts that
both unknown quantities—the true guess and true controlled
RT—should be invariant over deadline conditions. Yellot devised
a method for estimating these latencies, and found remarkable
invariance. The guess and controlled RT was constant not only
across deadline conditions, but over subjects.

The idea that SAT results from a mixture of random guesses
is certainly attractive from a standpoint of simplicity. It should
not be controversial that subjects can, if they wish, produce a
pre-selected random guess in nearly any choice task. But, there
are problems with this proposal. The most obvious is the pre-
diction that mean error RT is faster than mean correct RT. This
must occur if errors are produced by guesses, which in turn are
always fast. While this is a common observation (Ollman, 1966;
Schouten and Bekker, 1967; Hale, 1969; Grice and Spiker, 1979),
it is certainly not the rule. Further, it is likely that Yellot’s color
choice task may have been so simple that subjects had to begin
guessing to meet the demands of the deadline manipulation. This
was in fact found to be the case. One year later, Swensson (1972a)
had subjects determine which of two rectangles, oriented at 45◦,
was longer. SAT was induced using a payoff matrix that favored
accurate or fast responding. Swensson conducted a regimented
trial-by-trial analysis, categorizing each as a likely guess or non-
guess response. When the discrimination was simple, Swensson
found data consistent with the fast guess model: subjects either
used a guessing strategy or a highly accurate controlled strategy.
A mixture also obtained when the discrimination was made more
difficult, except for one critical detail. When the analysis was lim-
ited to non-guess trials, accuracy rate continued to vary with RT.
Swensson proposed an alternative, known as the deadline model 5.
Like the fast guess, subjects are assumed to mix pure guesses with
correct responses, but whether or not a guess is to be made is not
decided prior to the trial. Instead, subjects maintain an internal

5The deadline model is usually attributed to Swensson (1972a), but it was in
fact proposed earlier, both by Nickerson (1969) as well as an alternative to his
own fast guess model by Yellott (1971).
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timer; SAT manipulations set a limit on this timer. A response is
produced either when sufficient information has been gleaned as
to make a correct response, or when the deadline is reached. While
intuitively appealing, the deadline model has seen little success.
For one thing, one might better term the model the slow guess, as
it predicts error RTs that are later than correct RTs—a prediction
not borne out by Swensson’s own data and numerous other stud-
ies (but see Estes and Wessel, 1966; Pike, 1968; Link and Tindall,
1971; Audley, 1973; Pfefferbaum et al., 1983; Ditterich, 2006a;
Heitz et al., 2010). Perhaps more problematic for the deadline
model—indeed all mixture models—is the observation that error
RT is sometimes faster and sometimes slower than correct RT
(Link and Tindall, 1971; Swensson, 1972a; Luce, 1986). Mixtures
models are not flexible enough to predict both. Other efforts have
rendered mixture models untenable as a sole explanation for SAT
(Reed, 1973; Ruthruff, 1996; Wagenmakers et al., 2008; but see
Dutilh et al., 2011; Schneider and Anderson, 2012; Donkin et al.,
2013).

For several reasons, sequential sampling has emerged as the
dominant decision model framework. For one, they naturally
account for choice behavior under SAT without appeal to a
mixture of two states, and with some assumptions, can predict
either fast or slow error RT (Laming, 1968; Ratcliff and Rouder,
1998). Another is precision: they provide a quantitative account
of mean correct and error RT, accuracy rate, the shapes of cor-
rect and error RT distributions, and how each of these change
with experimental manipulations such as SAT, response bias, and
the strength of sensory evidence. Third, they make testable pre-
dictions. For instance, when sensory evidence remains constant,
there exists a unique, optimal decision threshold that maximizes
reward rate (RR) (Gold and Shadlen, 2002; Bogacz et al., 2006),
and humans closely match this threshold even when optimality
changes between blocks of trials (Simen et al., 2009; Bogacz et al.,
2010a; Balci et al., 2011). Likewise, these models can be shown to
account for high-level behaviors such as visual fixations and pur-
chasing decisions (Krajbich et al., 2010, 2012; Milosavljevic et al.,
2010; Towal et al., 2013). Fourth, there is mounting evidence that
something akin to sequential sampling occurs in the brain, as I
will discuss later.

There exist several sequential-sampling models that embrace
these strengths, notably, the Drift-Diffusion (Ratcliff, 1978;
Busemeyer and Townsend, 1993; Ratcliff and Smith, 2004),
Race/Accumulator (Pike, 1968; Vickers and Smith, 1985;
Smith and Vickers, 1988; Logan, 2002), Leaky-Competing
Accumulator (Usher and McClelland, 2001), LATER (Carpenter
and Williams, 1995; Reddi and Carpenter, 2000), and Linear
Ballistic Accumulator (Brown and Heathcote, 2005, 2008) among
others (cf. Cisek et al., 2009; Drugowitsch and Pouget, 2012;
Thura et al., 2012; Thura and Cisek, 2014). Though a full dis-
cussion is beyond the scope of this article [the reader may
refer to Bogacz et al. (2006) and Ratcliff and Smith (2004)],
it should be noted that nearly all assume SAT is a function of
the distance (or “excursion,” Churchland et al., 2008) a decision
variable must travel from a start point to a threshold, some-
times called response caution (Forstmann et al., 2008). In many,
SAT is implemented by a change in decision threshold alone
(Figure 1). This idea has been challenged, and several efforts

now consider SAT to be a multifaceted phenomenon including
changes in, for example, sensory gain (Ditterich, 2006b; Standage
et al., 2011, 2013; Heitz and Schall, 2013) along with decision
threshold.

SUMMARY

The SAT has long been a phenomenon of interest in behavioral
science. From early on, the covariation between response speed
and accuracy was seen not as a nuisance, but a signature of the
decision process itself. Consequently, experimental investigations
of SAT progressed largely in parallel with mathematical models of
the decision process. This work is ongoing, but a consensus has
emerged: agents make choices based on a sequential analysis of
sensory evidence. As decades of research make clear, this decision
process is adaptable: actions are dictated not only by the nature
of perceptual input but also environmental constraints, inter-
nal goals, and biases. An embodiment of this flexibility, the SAT
arises due to the inherent contradiction between response speed
and decision accuracy. Faster responses entail less accumulated
evidence, and hence less informed decisions. Sequential sam-
pling models provide an intuitive framework for understanding
SAT. Observers set a decision criterion—an amount of evidence
required to commit to a choice—based on current task demands
and internal goals. This begs the question: how can we know what

decision criteria subjects employ? It would seem that without
this knowledge, mean RTs and accuracy rates conflate experimen-
tal factors with strategic effects employed by the observer. The
solution to this problem is to bring decision criterion6 under
experimenter control. As explained below, this not only avoids
ambiguity, but also quantifies precisely how accuracy trades off
with latency.

SAT METHODOLOGY: EXPERIMENTAL MANIPULATIONS

AND ANALYSIS TECHNIQUES

A common theme in the above is the manipulation of sub-
jects’ decision criteria through experimenter influence. These SAT

experiments quantify how accuracy covaries with RT over the
range of decision criteria subjects might use. In contrast, group
means obtained at a single criterion provide only a snapshot
of performance that conflates decision strategy with the nature
of the task (e.g., its difficulty). In other words, with decision
criteria free to vary, many different group means could obtain,
from very fast RT and chance accuracy to very slow RT and
asymptotic accuracy. The problem is further exacerbated if the
experimental conditions under comparison also encourage dif-
ferent SAT settings, making group means difficult to interpret
and conclusions ambiguous (Wickelgren, 1977; Lohman, 1989).
In this way, SAT manipulations avoid problems shared by non-

SAT experiments, echoed in the quote that opened this work.
Furthermore, deriving the pattern of performance over a vari-
ety of decision criteria, SAT experiments offer a window into the

6I use the terms SAT setting, SAT criterion, and decision criterion equiva-
lently to refer to one’s momentary willingness to trade response speed for
accuracy. It is a single point along an accuracy-latency performance func-
tion (Wickelgren, 1977; Lohman, 1989). In the context of sequential sampling
models, it is often referred to as decision threshold.
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decision process itself. An empirical example will drive home the
point.

Heitz and Engle (2007) addressed the possibility that indi-
viduals rated high or low on a measure of working memory
capacity exhibit differences in processing efficiency during low-
level visual (non-memory) tasks. Specifically, they proposed that
those with low working memory process sensory evidence more
slowly than those with high working memory capacity. To test
this, high and low working memory subjects performed the
Eriksen flanker task (Eriksen and Eriksen, 1974; Gratton et al.,
1988). Subjects reported the identity of a central letter (H or S,
mapped to key presses on different hands), each flanked on either
side with response-congruent or response-incongruent stimuli.
Subjects typically respond more quickly and with higher accuracy
to congruent (e.g., HHHHH) than incongruent (e.g., HHSHH)
strings. Heitz and Engle manipulated SAT through the use of
response deadlines ranging from 200 to 700 ms. By implicating
rate of perceptual accumulation, they predicted that asymptotic
performance would be equivalent. That is, if given sufficient time,
both groups should perform equally. This is particularly suited for
SAT methodology, as obtaining group means at a single criterion
would not address the question.

The data in Figure 2A depict accuracy rate conditionalized on
RT 7 (known as a conditional accuracy function—a topic I will
return to). The data are fit by a function known as an expo-

nential approach to a limit 8 , as is common (Wickelgren, 1977;
McElree and Dosher, 1989; Öztekin and McElree, 2010), to obtain
numerical estimates of intercept (the processing time needed to
make above-chance, informed decisions), rate (gain in accuracy

7Data are collapsed over Experiments 1 and 2 of (Heitz and Engle, 2007). For
fitting, initial RT-accuracy bins with chance-level responding were eliminated.
The conclusions remain unaltered. See original publication for details.
8The exponential approach to a limit takes the form: Acc = λ

[

1 − e−γ (T−δ)
]

where Acc is some measure of accuracy rate (proportion correct or d-prime), λ
is asymptotic performance, γ the rate, δ the x-axis intercept, and T is RT. The
use of an exponential approach to a limit has been criticized (Ratcliff, 2006)
on the grounds that it is atheoretical and not necessitated by process models
such as the drift-diffusion. Others might consider this a strength.

with RT), and asymptote (peak accuracy). The critical pattern
concerns the difference between high and low working memory
groups on incompatible trials (dashed lines). It is observed that at
very fast RT, both groups are equally fast and at respond at about
chance level. Asymptotic accuracy also appears equivalent, sug-
gesting that the two groups perform equally when given sufficient
time. What distinguishes the groups is the rate of gain in accu-
racy with RT, which the authors interpreted as evidence that the
groups did in fact differ in processing efficiency. The relationship
is perhaps more straightforward when the negatively accelerated
function is linearized using a log-odds transformation, also a
common practice (Figure 2B). It is clear that the slope of the
function relating accuracy and RT is greater for the high than
low working memory group. This conclusion—quite different
than the authors had expected—was made possible though SAT
manipulations9. In sum, bringing decision criteria under experi-
menter control provides a detailed picture of the decision process,
avoids ambiguity that may arise when SAT is not controlled,
and facilitates more specific hypotheses. Numerous experimental
methods accomplish this, each with strengths and weaknesses.

SAT MANIPULATIONS10

Verbal instructions

In the vast majority of behavioral studies, subjects are directed to
maintain both high accuracy and fast RTs. This is problematic, as
the two constraints are contradictory. As pointed out humorously
by Edwards (1961): “These instructions are internally inconsis-
tent. A computing machine would reject as insoluble a problem
presented with such instructions” (p. 276). It is with this in
mind that Howell and Kreidler carried out the first true SAT
experiment (Howell and Kreidler, 1963). In a task similar to the
venerable Hick paradigm (Hick, 1952), different groups of par-
ticipants were asked to favor fast, accurate, or fast and accurate

9For a similar application of SAT methodology to memory phenomena, see
(McElree and Dosher, 1989; Kumar et al., 2008; Öztekin and McElree, 2010).
10Several of the below SAT methodologies were previously reviewed by
Wickelgren (1977).

FIGURE 2 | Data from Heitz and Engle (2007) Experiments 1 and 2.

(A) Data were fit by an exponential approach to a limit. The critical

pattern concerns the incompatible condition (dashed lines). The groups

do not differ in intercept or in asymptote, but do differ in rate. (B) The

same data in (A) linearized using a log-odds transformation and fit with a

log-linear regression.
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responding. In their own words, this required “. . . that S estab-
lish a “trade-off” between two dimensions” (p. 41). For obvious
reasons, instructions remain the most common SAT manipula-
tion: they are simple to implement, require little training, and
yield large effect sizes.

Though popular, verbal instructions are not ideal in several
respects. First, instructions are qualitative. It is unlikely that indi-
viduals adopt similar response criteria both within and between
emphasis conditions (Lohman, 1989), which serves to both
diminish effect sizes and increase experimental error (Edwards,
1961). Moreover, without a quantitative method, the potential
for regression to the mean is high. Subjects may modify behav-
ior initially, but over the course of trials in a block, settle into
some less distinct mode. In fact, there is a tendency for con-
trolled RT distributions to skew toward an individual’s natural
mean RT (Schouten and Bekker, 1967). Second, the number of
qualitatively different emphasis conditions subjects can achieve
is limited; any more than three seems difficult. This is certainly
adequate for gross comparisons (e.g., Hale, 1969; Osman et al.,
2000; Forstmann et al., 2008; Ivanoff et al., 2008), but may be
inadequate for describing the accuracy-latency function math-
ematically, particularly if decision criteria are not homogenous
over subjects (McClelland, 1979). Finally, and particularly impor-
tant for future work, instructions are decidedly not available in
non-human subject populations.

Payoffs. To combat the ambiguity of instructions, Fitts (1966)
designed a payoff matrix to differentially reward correct deci-
sions and penalize errors. Fitts defined four response categories,
based on whether the response was correct and whether the RT
met an arbitrary “criterion time.” As shown in Table 1, subjects
were awarded +1.0 point for fast and correct responses, and
penalized −1.0 point for slow and inaccurate responses. The SAT
emphasis conditions were distinguished by the penalty incurred
for correct but slow or incorrect but fast responding. Under
accuracy emphasis, there was a higher penalty associated with
errors, whereas under speed emphasis, the penalty was greater for
slow responding. This scheme worked quite well; payoff matri-
ces induced significant covariation in RT and accuracy rate even
in the absence of verbal instructions. Others have since used simi-
lar methods to manipulate SAT (Pachella and Pew, 1968; Swanson
and Briggs, 1969; Lyons and Briggs, 1971; Swensson and Edwards,
1971; Gehring et al., 1993).

Payoffs have at least two advantages over verbal instructions.
First, the quantitative nature of the rewards and penalties allow
for a larger number of emphasis conditions. Secondly, verbal
instructions become unnecessary; observers learn contingencies
over the course of the experiment or in practice blocks, making

Table 1 | Payoff matrices used by Fitts (1966) to induce SAT.

Payoff Correct Correct Wrong Wrong

condition and fast and slow and fast and slow

Pretest +1 −0.2 −0.2 −1

Speed +1 −0.5 −0.1 −1

Accuracy +1 −0.1 −0.5 −1

this method viable for use with non-human populations. On the
other hand, the payoff scheme requires one to define a “criterion
time” that defines whether or not a particular response is con-
sidered fast or slow. Ideally, the criterion time is determined
subject-by-subject using a data-driven method, such as some
percentile of a subjects’ RT distribution during the same task
without time constraints. Whether arbitrary or subject-specific,
the choice of the criterion time separating “fast” and “slow” RT
is an important consideration, as improper values render the
method ineffective. That said, some early studies have seen suc-
cess using a constant, arbitrary criterion time for all subjects
(Fitts, 1966; Ollman, 1966; Pachella and Pew, 1968). It is also
worth noting that without additional instructions or cuing events,
switching between emphasis conditions will not be immediate.

Pure payoffs. Avoiding the problem of arbitrary criterion times,
Swensson designed a method making rewards and penalties lin-
early related to RT (Swensson and Edwards, 1971). Correct
responses are rewarded [D − k(RT)] and errors penalized
[−k(RT)]. Parameter k specifies the relative gain or loss with
changes in RT, while D defines the relative gain due to cor-
rect responding. When D is small, rewards and penalties are
based entirely on RT; when large, the reward associated with cor-
rect responding outweighs loss due to long latency. This regime,
known as “pure payoffs,” has seen little use (Swensson and
Edwards, 1971; Swensson, 1972a,b), but is in principle superior to
a standard payoff structure. Unfortunately, it shares one weakness
with the payoff matrix: learning the reward contingencies takes
time, and subjects will be unable to switch between conditions
immediately without ancillary cuing signals.

Deadlines. Pachella introduced a simplification of the payoff
procedure described above. He demonstrated that SAT can be
induced using only the criterion times that define “fast” and
“slow” responses without any associated payoff matrix (Pachella
and Pew, 1968; Pachella and Fisher, 1969). As is typical, a sin-
gle deadline is in effect throughout a block of trials; choice
latencies that do not beat the deadline are met with some
tone or visual feedback to indicate the response was not fast
enough11. Practice trials preceding each block provide an acclima-
tion period. Numerous classic and contemporary works use this
simple, highly effective manipulation (Pachella and Pew, 1968;
Pachella and Fisher, 1969; Link and Tindall, 1971; Yellott, 1971;
Green and Luce, 1973; Pike et al., 1974; Jennings et al., 1976;
Ratcliff and Rouder, 2000; Diederich and Busemeyer, 2006; Heitz
and Engle, 2007; Yamaguchi et al., 2013).

There are several considerations that warrant discussion. The
first is the number of deadline conditions, which depends on both

11How to treat “missed deadline” trials is an important issue. On one hand, it
can be argued that missed deadline trials are qualitatively different from made
deadline trials (e.g., subjects failed to adopt the appropriate decision crite-
rion), and so might be eliminated. On the other hand, this leads to artificially
truncated RT distributions and artifactual effects on mean RT and accuracy
rate. The most conservative approach is to compute mean RT and accuracy
rate for each condition as if deadlines did not exist (i.e., categorically accurate
responses count as correct even when deadlines were not met). In practice,
overall conclusions are robust to this choice.
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the desired resolution as well as willingness to obtain increasingly
more observations per subject. While as few as three are sufficient
to mathematically describe the tradeoff function (McClelland,
1979), as many as 5–8 are not uncommon (Schouten and Bekker,
1967; Yellott, 1971; Jennings et al., 1976; Heitz and Engle, 2007).
In regards to selecting particular deadline values, it is impor-
tant to have an idea of both the mean and variance of subjects’
RT during an unconstrained version of the same task. One
then selects N deadlines that more than span this range. Note
that spanning too large a range increases experimental complex-
ity with diminishing returns. Deadlines that are too fast will
encourage guessing, and deadlines that are too long will have
little to no effect. Another concern is the order of the deadline
blocks. If all subjects are presented with the same order, prac-
tice effects become confounded with SAT effects. It is desirable
to present deadlines in random or pseudo-random order, ideally
with multiple repetitions to account for gains in performance over
time.

Deadline tracking. An even more principled method for
manipulating SAT uses an adaptive tracking method coupled
with a deadline procedure. Rinkenauer et al. (2004) targeted
particular accuracy rates (97.5, 82.0, 66.0%) instead of RT
per se. Accuracy rate was computed in successive blocks of
trials, and deadline values increased or decreased (in 30 ms
steps) accordingly. This data-driven method has the advan-
tage of naturally accounting for practice effects, attentiveness,
fatigue, etc. that may alter behavior throughout an exper-
iment. However, because accuracy rates must be computed
over sets of trials, there is considerable overhead in converg-
ing to a desired performance level. Furthermore, if practice
effects are large, substantial changes in the underlying RT dis-
tributions may occur despite holding average accuracy rate
constant.

Response-to-stimulus interval (RSI). In the absence of explicit
SAT manipulations, subjects are thought to choose decision cri-
teria that maximize potential reward, whether that be monetary
or otherwise (Edwards, 1965; Gold and Shadlen, 2002). One’s
RR is simply the proportion of correct responses divided by
the average length of a trial. Several factors contribute to the
average length of a trial (and hence RR), including decision
time, non-decision related (e.g., sensory) delays, and the inter-
val between one’s response and the beginning of the following
trial (the response-to-stimulus interval, RSI). Recent theoretical
work suggests that altering RSI should provide a means to implic-
itly alter one’s SAT criteria (Bogacz et al., 2006). This makes
intuitive sense: when RSI is long and the pace of the task is
slow, the available number of decision opportunities is likely
to be fewer than when RSI is short and the pace is fast. In
this case, the optimal RR is attained through slow, highly accu-
rate decision-making. Conversely, when RSI is short, the opti-
mal RR is achieved by emitting decisions more quickly, even
if many of those decisions are incorrect. This has firm empiri-
cal support: RSI manipulations lead to SAT in much the same
way as conventional time limitations (Simen et al., 2009), and
mathematical decision models localize the effect to decision

threshold (Simen et al., 2006; Bogacz et al., 2010a; Balci et al.,
2011)12.

The use of RSI to manipulate SAT has several advantages. First,
it is divorced from any explicit time limitations and is clearly a
voluntary, strategic adaptation. Second, RSI is formalized mathe-
matically in decision models and makes contact with a theoretical
literature on RR optimization. Third, RSI may be ideal for use
with non-human populations. On the other hand, RSI manipula-
tions do not take effect immediately, as observers cannot optimize
decision criteria instantaneously (Simen et al., 2009; Balci et al.,
2011). Even the most sensitive subjects may require as many as 20
trials before performance stabilizes, and not all subjects produce
an effect (Bogacz et al., 2010a). Furthermore, the assumption that
RSI operates on subjects’ inherent motivation to maximize RR
seems to require experimental designs that are time-limited rather
than trial-limited. In practice, this point may be moot as subjects
appear to remain sensitive to RSI even in fixed trial length blocks
(Simen, personal communication, 4/3/2014).

Response signals. The last two methods, response signals and RT

Titration are motivated by different goals. Whereas the meth-
ods above attempt to alter subjects’ cognitive state, the following
attempt to bring RT under experimental control while keeping
SAT criteria constant. The response signal method13 was first
developed in 1973, as a direct test of the fast guess model (Reed,
1973). The procedure effectively prevents fast guesses by allowing
subjects to respond only when cued; in this case, the disappear-
ance of visual stimuli served as the signal. Even with fast guesses
eliminated, Reed observed that accuracy rate covaried with RT,
rendering the fast guess model untenable.

The strength of this method lies in the unpredictable nature
of the upcoming trial. The duration of the stimulus-to-cue dura-
tion cannot be anticipated, ensuring that each trial is approached
with equivalent cognitive states—exactly the opposite intention
as instructions, deadlines, etc. In this case, the accuracy-latency
relationship is less likely to involve strategic changes in deci-
sion criteria but rather results from the quantity of informa-
tion accumulated before encountering the cue to respond. Early
cues truncate processing and force a response based on partial
information.

There are two weaknesses to this approach. First, for long cue
delays, subjects may withhold their response when they would
otherwise have emitted a choice. In sequential sampling terms,
responses are obligated not by threshold crossing but by external
influence, questioning its relevance to the normal choice process.
(Even the deadline method allows the choice process to terminate

12Interestingly, human subjects seem to perform sub-optimally, with accuracy
rates slightly too high and and mean latencies slightly too long to maximize RR
(Simen et al., 2009; Bogacz et al., 2010a). Why this is so is not fully understood,
but it is worth noting that humans can learn to become optimal with sufficient
practice (Balci et al., 2011).
13There is actually an earlier example. In 1967, Schouten and Bekker pre-
sented subjects with a simple choice task and cued them to respond on the
last of three acoustic “pips” (but not earlier). Critically, the duration of the
stimulus-to-cue interval was blocked, such that subjects would adopt differ-
ent SAT settings. In this sense it is similar to the deadline manipulation, except
that early responses are not allowed.
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normally on most trials.) Related to this point, the choice process
has been altered such that one cannot be sure exactly what SAT
criterion observers are using. The method simply ensures that,
on average, observers use the same criterion at the beginning of
each trial, or alternatively, that the criterion does not vary in any
controlled way. The last method obviates this concern.

RT titration. RT Titration (Meyer et al., 1988) seeks to hold con-
stant observers’ SAT criteria trial-to-trial while ensuring subjects
begin each trial as if it were a normal, no-signal, free RT task.
The procedure is straightforward: subjects make choices when-
ever they wish, unless a response signal is encountered, at which
time a response is obligated. Because many trials include no
response signal, behavior on each trial is governed by the same
sequential sampling process in operation during non-SAT tasks.
Meanwhile, the influence of processing time on accuracy and the
contribution of partial information can be gauged by those trials
including a response signal. In many ways, RT Titration is supe-
rior to the response signal method, except that subjects require
training in order to produce responses swiftly after encountering
the relatively more rare response signal.

Methods that hold decision criteria constant (response sig-
nals and RT Titration) are fundamentally different from those
that force criteria to change (instructions, deadlines, etc.). Must
the form of the accuracy-latency relationship also be different?
One study to test this compared the deadline and response signal
methods in the same subjects during the same task (Dambacher
and Hübner, 2013). Interestingly, there was surprising agreement
between the two, despite a tendency for lower overall perfor-
mance in the response signal method. How can there be so much
agreement between such disparate methodologies? This can be
explained by the constancy of the perceptual input. Whether
perceptual accumulation terminates naturally due to threshold
crossing or is truncated artificially by experimenter influence,
the stimulus information driving the process remained constant.
What does differ—and this may partially explain the discrepancy
between the methods—is that the predictable deadline procedure
allows for proactive adjustments, such as the type observed in the
baseline neural firing rates in monkeys (Heitz and Schall, 2012).
Additionally, the response signal method likely involves extra cog-
nitive demand as observers must also perform signal detection.

Selecting the best SAT manipulation. All of the above method-
ologies are effective, but which is most appropriate? The answer is
guided by at least three considerations: (1) should RT be explicitly
controlled; (2) should decision criteria vary between conditions;
and if so (3) must adjustments be immediate? A guide is presented
in Table 2, but is non-exhaustive. For instance, verbal instructions
might be combined with deadlines to ensure at least minimal
control of mean RT (e.g., Forstmann et al., 2008), making it
an instance of “explicit” RT control. Likewise, the response sig-
nal method will allow decision criteria to vary if presented in a
blocked format (Schouten and Bekker, 1967).

ANALYSIS OF SPEED-ACCURACY TRADEOFF DATA

There are several methods for depicting the SAT; here I deal
with the three most popular: the speed-accuracy tradeoff function

Table 2 | Summary of SAT methodologies.

RT control Decision criteria Adjustment time Method

Indirect Altered Fast Verbal instructions

Indirect Altered Slow RSI

Explicit Altered Fast Deadlines

Explicit Altered Slow Payoffs, Pure

payoffs, Deadline

tracking

Explicit Invariant – Response signals,

RT Titration

(SATF), the conditional accuracy function (CAF), and the quantile-

probability plot (QPP). To facilitate the discussion, I created a
simulated SAT experiment employing three response deadlines at
225, 325, and 425 ms. The manipulation was assumed effective,
with mean accuracy rates increasing linearly at 50, 70, and 90%,
respectively. RT distributions for each condition were generated
by drawing 10,000 observations randomly from an ex-Gaussian
(van Zandt, 2000) distribution (σ = 20 ms, τ = 30 ms) such that
approximately 25% of all RTs fell later than the RT deadline in
each condition, but these “missed deadlines” were not removed.
The mean RT for error trials was set to be slightly (5 ms) faster
than correct trials.

SATF

The SATF plots mean RT and accuracy rate for each SAT condi-
tion separately (Figure 3A). It reflects the efficacy of the experi-
mental manipulation and quantifies how accuracy trades off with
RT, on average. The SATF is robust to the variability of the com-
ponent distributions: the extent to which conditions overlap has
no effect, nor is it influenced by the direction of mean error RT.
However, it is clear that there is considerable variation within
each condition not captured by the SATF. For instance, observed
RTs of ∼250 ms obtain in both the shortest and middle dead-
lines. Are these responses qualitatively different? Restated, the
question is whether or not the large-scale difference between SAT
conditions (the macro-SAT) is due to the same factor as smaller-
scale, within-condition variability (the micro-SAT; Pachella, 1974;
Thomas, 1974; Wood and Jennings, 1976; Wickelgren, 1977;
Grice and Spiker, 1979; Vickers et al., 1985). Perhaps the differ-
ence in between- and within-condition variability is only one of
magnitude; the macro-SAT due to large changes in decision cri-
teria and micro-SAT due to intrinsic variability and trial-to-trial
adjustments (Ridderinkhof, 2002; Jentzsch and Leuthold, 2006).

CAF

If this were the case, it makes more sense to plot accuracy rate
conditionalized on observed RT disregarding deadline condition
altogether. All RT data are categorized into equal-observation
quantiles, and accuracy rate is computed separately for each bin
(Figure 3B). Though this provides a more detailed description of
how accuracy trades off with RT, this overall CAF does not address
whether similar latencies collected under different deadline con-
ditions are psychologically equivalent. This may be accomplished
by computing CAFs individually for each deadline condition
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FIGURE 3 | Comparison of the SATF, overall CAF, and individual CAFs in

the same simulated dataset. (A) The SATF is simply the mean RT and

accuracy rate for each SAT condition Here, they were 225, 325, and 425 ms

response deadlines. The manipulation was effective by definition, yielding

accuracy rates of 50, 70, and 90%, respectively. Each condition was

constructed by drawing N = 10, 000 observations randomly from an

ex-Gaussian distribution with parameters indicated in figure inset. Solid

histograms depict correct trials, open histograms error trials. (B) The same

data as (A) but aggregated disregarding SAT condition and plotted as a CAF. (C)

Same data as (A,B) but CAFs computed separately for each deadline condition.

(Figure 3C). If the micro- and macro-SAT have the same source,
the SATF, CAF, and individual CAFs should be overlapping (but
see Grice and Spiker, 1979).

This can and does occur—two examples are presented in
Figure 4—but it is perhaps more common to find that they dis-
agree. The reason for this becomes apparent when two parameters
are varied—the extent of overlap between the RT distributions
and the direction of mean error RT. To demonstrate, I repeated
the simulation described above while manipulating both the vari-
ability (and tail) of the RT distributions and the direction of mean
error RT, being faster, equal, or slower than mean correct RT
(Wood and Jennings, 1976). The results are presented in Figure 5.
In the top row (Figures 5A–C), the standard deviation of the dis-
tributions is kept small, so as to include little overlap between the
SAT conditions. In this unrealistic situation, the overall CAF is
a fair representation of the SATF, but the individual CAFs may
be decreasing (A), flat (B), or increasing (C) depending on the
direction of mean error RT. It is straightforward to understand
why: when error RTs are slower than correct RTs, early quantile
bins necessarily contain more correct than error responses (A). If
mean RTs are equal (B), each bin will on average contain the same
number of errant and error-free trials. Finally, when mean error
RT is faster than correct (C), early bins will tend to be less accu-
rate, and later bins more accurate. The pattern is exaggerated in
the more realistic situation of extensive overlap between RT dis-
tributions (Figures 5D–F). In this case, neither the overall CAF
nor individual CAFs approximate the SATF. It would seem that
the CAFs are unpredictable and dominated by the simple direc-
tion of mean error RT. This is true, but beside the point. While
all sequential sampling models predict an increasing SATF, the
form of the micro-SAT differs. For instance, the original random
walk model (Stone, 1960) predicts flat CAFs, since correct and
error RT are equivalent (Pachella, 1974). In contrast, some accu-
mulator models (Vickers et al., 1985) and the random walk with
collapsing bounds (where threshold decreases over time) predict
decreasing or inverted “U” shape CAF (Pike, 1968). Increasing

CAFs are consistent with several models, including the fast guess
(Pachella, 1974), variable criterion model (Grice et al., 1977),
some versions of the random walk (Laming, 1968; Vickers et al.,
1985), and others.

Quantile probability plots

Combining aspects of both the SATF and CAF is the quantile

probability plot (Audley and Pike, 1965; see also Ratcliff and
Tuerlinckx, 2002). The SATF and CAF describe changes in accu-
racy rate with RT, but do not depict distributional characteristics,
aspects that are particularly important in evaluating the fit of
mathematical decision models (Audley and Pike, 1965; Pike,
1968). The drift-diffusion model, for instance, makes quantitative
predictions regarding the shape of correct and error RT distri-
butions; the QPP describes this information succinctly. For each
condition, RT quantiles are calculated separately for correct and
error trials, commonly at the 10, 30, 50, 70, and 90th percentiles.
The RT corresponding to these quantiles are then plotted against
response probability for each condition. For instance, if the accu-
racy rate for a particular condition was 80%, the RT quantiles for
correct trials would be plotted at 0.8, and corresponding error tri-
als at 1.0 − 0.8 = 0.2. Under most circumstances, points to the
left of 0.5 represent error trials and those to the right of 0.5, cor-
rect trials (but see Simen et al., 2009). A typical QPP computed
on SAT data from a single (non-human primate) subject (Heitz
and Schall, 2012) is shown in Figure 6A. Several characteristics
are apparent. First, both accuracy rate and RT tend to increase
from a Speed emphasis condition to an Accuracy emphasis con-
dition, giving the QPP a “U” shape. This convexity is diagnostic:
in sequential sampling models such as the drift-diffusion, increas-
ing decision bounds lead to a slowing of RT with an increase in
accuracy rate. In contrast, a concave QPP indicates that accuracy
rate is improving while RT becomes faster, a common occurrence
when signal quality is manipulated (Ratcliff and Smith, 2010).
Second, error RT tends to be longer than correct RT. The differ-
ence is small in the Speed and Neutral conditions (note the one
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FIGURE 4 | Two empirical examples when the CAF—both the overall

CAF and individual CAFs overlap with the SATF. (A) (Schouten and

Bekker, 1967) forced subjects to respond to respond at target RTs during

a simple two-choice response time experiment. They found that the

individual CAFs overlapped significantly; the accuracy rate associated with

a given RT was invariant with respect to the forced response time

condition. The overall CAF and SATF are approximated by the black ogive

running through individual points. Data were traced using graphics

software from the original work. Note that error rate (rather than

accuracy rate) is plotted on the y-axis. (B) (Heitz and Engle, 2007)

presented subjects with a two choice response compatibility experiment

under 6 response deadlines. These data, replotted from their

incompatible condition, clearly indicate gross agreement between the

SATF (black), overall CAF (red), and individual CAFs (colored lines). Based

on this agreement, these authors used the overall CAF as their primary

measure to retain time resolution.

FIGURE 5 | Dependence of the CAF on component RT variance and

direction of mean vs. correct RT. (A–C) With small RT variability,

distributions exhibit little overlap, leading the overall CAF (red lines) to be a

fair representation of the SATF with better resolution in time. The form of the

individual CAFs (blue) are dictated by the direction of correct and error RT,

exhibiting a downward trend for slow errors (A) a flat line with equal mean

correct and error RT (B) and an upward trend for fast errors (C). (D–F) The

mismatch between SATF, overall CAF, and individual CAFs is exaggerated

with more reasonable parameters. When RT distributions significantly

overlap, the overall CAF no longer reflects the SATF.

point in the Neutral condition not following this trend), but quite
large in the Accuracy condition. Third, the spread of the RT dis-
tributions increase with SAT stress, as might be expected given
the large changes in mean RT. Fourth, the distribution of error

RTs appears roughly equivalent to correct RTs in the Speed and
Neutral conditions, but noticeably larger for error trials in the
Accuracy condition, particularly in the tail. The QPP provides a
wealth of information absent in the SATF and CAF, yet they are
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FIGURE 6 | Quantile-probability plots. (A) The QPP calculated from a

single non-human primate during an SAT task. Open points to the left of 0.5

correspond to errors, closed points to the right of 0.5 are correct trials. Each

vertically oriented set of 5 points mark the RT quantiles described in the text.

Lines connect quantiles between SAT conditions (red = Accuracy stress,

black = Neutral, and green = Speed stress). (B) The QPP calculated from the

same simulated dataset presented in Figure 3. The individual-condition RT

distributions (Figure 3C) are reflected in the quantiles of the QPP.

related. Figure 6B displays this relation using the same simulated
data as that of Figure 3.

Selecting the best analysis technique

There is no one best depiction of SAT, as each of the
methods described above present different information, but
there are guidelines. The SATF is the most common and
straightforward approach, assuming only that the experimen-
tal design included some type of SAT manipulation. The
QPP provides further detail, but requires a more sizeable
dataset: estimation of RT quantiles becomes unreliable when
trial counts are low, and this can be particularly problematic
when errors are rare. The QPP has the additional bene-
fit of being closely related to mathematical decision mod-
els, but less clearly depicts the rate of gain in accuracy
with RT.

Overall CAFs, computed across an entire dataset, are only
appropriate in specific situations. First, in the context of non-
SAT experiments, the CAF might be computed to evaluate
subjects’ natural tendency to trade speed for accuracy (Lappin
and Disch, 1972a,b) and is indeed the only available option.
Second, when the CAF and SATF are overlapping, the for-
mer leads to the same conclusion as the latter while providing
slightly more resolution on the RT axis (Figure 4). Individual-
condition CAFs are useful in assessing the direction of error
RT on a fine scale, but are rarely used as a sole dependent
measure.

Summary

The use of SAT methodology continues to offer insight into
the decision process, and how that process is altered strategically.
The above provide numerous routes for obtaining and depict-
ing the SAT. Unfortunately, SAT experiments are costly relative
to non-SAT experiments, most requiring several times the num-
ber of observations. Is this gain in precision really worth the
investment? In what follows, I briefly review domains outside of
cognitive psychology where this has proven true.

APPLICATIONS OF SAT METHODOLOGY

NEURAL ACTIVITY UNDER SAT

A fundamental question in cognitive neuroscience concerns how
the brain adapts to bring about strategic changes in decision
criteria. The SAT is pervasive, and behavioral changes often large;
certainly brain activity must manifest a signature of SAT. The
answer to this question offers insight into the neural basis of an
elementary cognitive operation, and also bears on the viability of
mathematical decision models.

The sequential sampling framework described earlier has
recently graduated from an abstract cognitive model to an
assumed neural reality—a viable method the brain may use
to carry out perceptual decision-making. Evidence supporting
this claim derives from several sources, including human fMRI
(Heekeren et al., 2004) and EEG (Ratcliff et al., 2009; O’Connell
et al., 2012; van Vugt et al., 2012; Kelly and O’Connell, 2013),
but by far the most convincing stems from single-neuron record-
ings in non-human primates. In the typical paradigm, monkeys
view a display of static or dynamic stimuli that requires a per-
ceptual discrimination and subsequent choice between alternative
actions. Their decision is communicated through an eye move-
ment or button press, and juice reward is delivered when the
response is correct. Strikingly, activity in frontal eye field (Hanes
and Schall, 1996; Kim and Shadlen, 1999; Woodman et al., 2008;
Ding and Gold, 2012), lateral intraparietal area (Roitman and
Shadlen, 2002; Gold and Shadlen, 2007), and superior collicu-
lus (Horwitz and Newsome, 1999; Ratcliff et al., 2007) exhibits
patterns closely resembling the sequential sampling process. Most
germane is the fact that neural activity grows over time dur-
ing the deliberation period and terminates at a fixed threshold
at the moment an overt decision is produced. In accordance
with the model, much of the variability in RT can be accounted
for by the duration of the firing rate excursion—the time taken
to ramp from a baseline to a fixed threshold. Further lending
credence, computational (Ditterich, 2006a; Purcell et al., 2010,
2012; Zandbelt et al., 2014) and neural network models (Lo and
Wang, 2006; Wong et al., 2007; Beck et al., 2008; Wang, 2008;
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Zhang and Bogacz, 2010; Drugowitsch et al., 2012) inspired by
the sequential sampling process capture both behavior and neu-
rophysiology while respecting biological constraints. The neural
activity associated with SAT is thus a topic of great concern, and
has been examined using several techniques.

fMRI

A number of studies have used fMRI to examine neural activity
during SAT manipulations. Though an fMRI approach to SAT
suffers in several respects (Stark and Squire, 2001; Logothetis,
2008; Bogacz et al., 2010b), it is notable that all agree on at
least one conclusion: SAT manipulations affect more than deci-
sion threshold. In fact, the most consistent finding is that relative
to accuracy emphasis, placing subjects under speed stress leads
to an increase in the BOLD response during baseline intervals
(Forstmann et al., 2008; Ivanoff et al., 2008; van Veen et al.,
2008; Bogacz et al., 2010b). This would seem to be interpretable
within the sequential sampling framework by positing that base-
line shifts are functionally identical to threshold shifts—either
ultimately affects the amount of information accumulated prior
to decision14. More interesting is the observation that more than
one factor changes under SAT; at least one fMRI study has impli-
cated changes in sensory processing with SAT (Ho et al., 2012).
Further complicating the story, SAT manipulations appear to
affect BOLD in region-specific ways (Vallesi et al., 2012), some-
times in opposing directions (Blumen et al., 2011). This calls into
question the generality of the process: does sensory integration
occur simultaneously and interactively amongst brain regions, or
is there independence among sites of integration (Zhang, 2012)?

EEG

Unlike fMRI, EEG does not suffer from temporal blurring, but
does not offer opportunity to definitively localize brain regions.
Despite this, EEG components accurately track attention and
error monitoring (Woodman and Luck, 1999; Heitz et al., 2010;
Godlove et al., 2011), the chronometry of action preparation
(Gratton et al., 1988), and the temporal evolution of the deci-
sion process (O’Connell et al., 2012; Kelly and O’Connell, 2013;
van Vugt et al., 2014). In one early study, Gehring et al. (1993)
examined the error-related negativity (ERN) under SAT using
a deadline procedure. The ERN is a fronto-central negativity
that appears in the moments surrounding error commission
(Nieuwenhuis et al., 2001) and is though to reflect the error mon-
itoring process. When accuracy was emphasized, the magnitude
of the ERN was greater than under speed stress, when errors mat-
tered less. This finding suggests that in addition to altering the
decision process, SAT affects post-decision processing as well.

Several other studies sought to identify the processing stage
locus of SAT: does speed stress affect early sensory processing
or later decision and motor processing? Unfortunately, this issue
remains unresolved. The first attempt to address this—in fact the
first study to record neural activity under SAT—used the P3 com-
ponent during a line length discrimination task under speed or
accuracy emphasis (Pfefferbaum et al., 1983). The latency of the
P3, thought to mark the completion of stimulus processing, was

14It is worth mentioning that the brain entails no such equivalence.

earlier under speed than accuracy stress, suggesting that early per-
ceptual processing was indeed facilitated. The next attempts used
the lateralized readiness potential (LRP), a component that tracks
the evolution of motor preparation. Two studies using the LRP
have concluded that SAT manipulations do not affect sensory pro-
cessing (Osman et al., 2000; van der Lubbe et al., 2001; see also
Wenzlaff et al., 2011), while a third demonstrated that it affects
both early and late processing stages (Rinkenauer et al., 2004).

Each of the above studies examined the average EEG compo-
nent time-locked to some event of interest, but there is much
more information in the raw signal than is immediately apparent.
Understanding this, at least one study has examined the effect of
SAT on the EEG frequency spectra (Pastötter et al., 2012). Using
a two-choice discrimination task, subjects were cued trial-by-trial
to emphasize speed or accuracy. They found that, during the base-
line interval in which SAT emphasis was cued, the EEG tended
to oscillate more in the lower frequency bands (4–25 Hz) under
accuracy emphasis than speed emphasis (see also van Vugt et al.,
2012; Heitz and Schall, 2013).

Single-unit neurophysiology

To date, there has been only one single-unit recording study
employing SAT manipulations (Heitz and Schall, 2012). Monkeys
were trained to perform saccade visual search under Accuracy,
Neutral, or Speed emphasis, cued by the color of a fixation point.
Meanwhile, neural activity was recorded from the frontal eye field,
a key region in the planning and execution of eye movements.
The results were diverse but can be described succinctly: SAT
cues affected several stages of information processing, and speed
stress generally amplifies neural activity rather than attenuate
it. This was most evident for baseline neural activity (increas-
ing under Speed stress during the pre-trial interval) and in the
sensitivity of neurons to visual stimulation (responding more
vigorously under Speed stress). This indicates that SAT empha-
sis affects perceptual processing, a suggestion that has recently
gained support (Standage et al., 2011; Ho et al., 2012; Thura
et al., 2012; Dambacher and Hübner, 2014; Rae et al., 2014).
Surprisingly, neural threshold—the level of activity reached at
saccade decision—was greater for speed than accuracy empha-
sis, opposite the assumption of sequential sampling models. In
further analyses, it was shown that SAT affects much more than
the firing rates of neurons, including the extent to which sin-
gle neurons were coupled with their surrounding neural network
(spike-field coherence), as well as the sensitivity of that network
(Heitz and Schall, 2013).

Summary

The coupling of SAT methodology and neuroscience techniques
has the potential to offer real insight into the neural mechanisms
supporting decision. The consensus emerging suggests that SAT
is a multifaceted phenomenon, influencing several components
of the decision process and accompanied by distinct changes in
brain activity. It is interesting to suppose that external changes
in brain function—due to drugs, pathology, and senescence—
might lead to distinct declines in cognitive performance. SAT
methodology will be particularly useful in pinpointing the locus
of the deficit. The next section reviews this modest, but promising
literature.
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SAT WITH DRUGS AND PATHOLOGY

Cognitive impairments often accompany drug use, disease, injury,
and pathology. For instance, individuals with schizophrenia and
certain types of brain injuries exhibit impulsive, perseverative
behavior on measures such as the Wisconsin Card Sort and anti-
saccade tasks (Guitton et al., 1985; Fukushima et al., 1988; Kane
and Engle, 2002; Thakkar et al., 2011; Cutsuridis et al., 2014).
Likewise, monkeys permitted to self administer cocaine over long
periods of time demonstrate increased impulsivity and reduced
ability to switch between task sets (Liu et al., 2008, 2009). In
contrast, aging is associated with lower performance and longer
latencies (Salthouse, 2012), some of which is thought to be a
“general slowing” of cognition (Kail, 1991). Do these populations
simply differ in decision criteria, or has the information process-
ing system been affected, and if so, how? A handful of studies have
employed SAT methodology to address these questions.

Drugs

There have been few studies of SAT under the influence of con-
trolled substances. The most extensively tested is the effect of
alcohol. SAT was manipulated using instructions (Tiplady et al.,
2001) or response deadlines (Jennings et al., 1976; Rundell and
Williams, 1979) while subjects were given graded doses of alco-
hol and asked to perform auditory or visual discrimination
tasks. In each case, alcohol reduced the slope of the SATF in
a dose-dependent manner. As was the case of high and low
working memory capacity described earlier (Figure 2), this sug-
gests a reduction in the rate of information processing. In a
more recent study, subjects performed dot motion discrimination
under placebo, moderate dose, or high dose of alcohol. No SAT
manipulation was included. Application of the drift-diffusion
model localized the effects of alcohol to two components: drift
rate and non-decision time, suggesting that perceptual accumu-
lation was both degraded and delayed with increased intoxication
(van Ravenzwaaij et al., 2012).

In other work, monkeys administered graded doses of the
NMDA antagonist ketamine demonstrated both slower and more
accurate performance during visual search, indicating that deci-
sion criteria may have been altered (Shen et al., 2010). Finally, a
few studies have assessed the effects of stimulants on informa-
tion processing, but results are inconclusive. In one, low doses
of nicotine administered to non-smokers was found to benefit
information processing in the absence of any SAT (Le Houezec
et al., 1994). In another, the dopamine agonist bromocriptine was
found to have no effect (Winkel et al., 2012) while other work
suggests the dopamine reuptake inhibitor methylphenidate alters
decision criteria but does not benefit information processing
(Carlson et al., 1991).

Pathology and age

Research dealing with patient populations suggests a deficit in
the information processing system itself rather than non-optimal
decision criteria. In schizophrenics for instance, at least one mod-
eling study suggests that relative to controls, patients suffer from
increased sensory noise (Cutsuridis et al., 2014) and one explicit
SAT study provides anecdotal support (Schweitzer and Lee, 1992).
Similar conclusions are reached for Parkinson’s Disease patients

(Wylie et al., 2009). Interestingly, the situation is quite differ-
ent for one patient group of particular interest: attention-deficit
hyperactivity-disorder (ADHD). Relative to controls, ADHD sub-
jects exhibit SATFs that are shifted, but not different in slope
(Sergeant and Scholten, 1985a,b) suggesting that the rate of
information processing is equivalent. Recent work suggests that
ADHD patients instead have a relative inflexibility in optimiz-
ing decision criteria (Mulder et al., 2010; but see Metin et al.,
2013).

There is a well-characterized decline in cognitive function-
ing with age, but exactly what component of the decision
process is altered remains unclear. On one hand, older adults
tend to be more considered and cautious in their respond-
ing (Forstmann et al., 2011), suggesting a tendency to use
higher decision criteria than their younger counterparts. Indeed,
modeling studies suggest that older adults fail to set deci-
sion criteria optimally, often preferring overall accurate perfor-
mance at the cost of speed (Phillips and Rabbit, 1995; Ratcliff
et al., 2004; Starns and Ratcliff, 2010, 2012). Empirical stud-
ies using SAT methodology corroborate this, but also provide
compelling evidence for an impairment in information pro-
cessing (Salthouse, 1979; Madden and Allen, 1991; Hertzog
et al., 1993; Kumar et al., 2008) see also (Myerson et al.,
2007).

Summary

Though the cognitive impairments accompanying drug use,
pathology, and age are well characterized, the underlying basis
remains elusive. Traditional experimental approaches cannot dis-
sociate performance changes due to strategic effects (e.g., prefer-
ence for fast than accurate decisions) from those due to infor-
mation processing per se (e.g., compromised perceptual sam-
pling). By placing SAT criteria under experimental control, the
true nature of the deficit becomes clear. Further research will
be enlightening, and may be the key to developing targeted
interventions.

SAT IN NON-HUMAN ORGANISMS

The present work has primarily dealt with human behavior; in
stark contrast, this final section reviews a handful of studies
assessing SAT in non-human populations (monkeys, rodents, and
insects). This short discussion has two motivations. First, I wish
to promote the use of SAT methodology in populations amenable
to single-unit recordings. Neuroscience approaches continue to
elucidate the decision process with unparalleled detail, and single-
unit recordings are arguably the most definitive. This effort has
been limited by the absence of methods for controlling decision
criteria in non-human populations; here I show it is possible.
Second, I wish to illustrate that the SAT is truly universal. Unlike
humans and monkeys (and probably rodents), social insects also
exhibit SAT, but in a very different way. Specifically, the decision
to be made is one involving a colony, rather than a single member.
Likewise, whereas many individual neurons contribute to a single
decision in higher species, many individual entities contribute to a
group decision in insect colonies. Whether or not these phenom-
ena are comparable remains to be seen, but important parallels
exist.
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MONKEYS

There has been only one study using experimenter-induced SAT
in monkeys (Heitz and Schall, 2012). Monkeys performed sac-
cade visual search and were induced to respond at three levels
of SAT emphasis: speed, neutral, and accuracy. Conditions were
signaled by the color of a fixation point and presented in blocks
of 10–20 trials. Emphasis conditions were defined by differential
reward and punishment (time-out) contingencies, and monkeys
were trained until they adapted behavior immediately upon pre-
sentation of a new emphasis condition. In several ways, the SAT
in monkeys is identical to that in humans: the SATF is increas-
ing, and the behavior is well fit by sequential sampling models
with changes in decision threshold between emphasis condi-
tions. There are slight differences, however. Whereas humans
most commonly exhibit fast errors during visual search, mon-
keys tend to commit slow errors, leading to a decreasing (rather
than increasing) CAF. Interestingly, this occurs even in tasks
that do not include SAT manipulations, such as standard form
visual search (Heitz et al., 2010) and the venerable random dot
motion paradigm (Roitman and Shadlen, 2002; Ditterich, 2006a;
Churchland et al., 2008). The origin of this disparity is not
understood, but has not been systematically studied.

RODENTS

Evidence for SAT in rodent models is mixed. Using olfactory
discrimination, one study has shown a lack of any relation-
ship between accuracy rate and decision time, even when odor
mixtures are highly similar (Uchida and Mainen, 2003; see also
Zariwala et al., 2013; but see Abraham et al., 2004). However, a
different conclusion emerges when the stimulus-sampling period
is placed under experimenter control. One such study used an
analog of the response signal method. During an olfactory dis-
crimination task, mice were required to continue sniffing until
an auditory buzzer signaled the availability of reward (Rinberg
et al., 2006). The resulting SATFs were undeniably similar to that
of humans. Moreover, the slope of the accuracy-latency relation-
ship was altered by task difficulty: when odors were highly similar,
the rate of gain of accuracy with RT was much lower than for
highly dissimilar, and therefore easier, discriminations (see also
Brunton et al., 2013).

INSECTS

There is some evidence for SAT in bumblebees trained to perform
a type of visual search task: bees are rewarded with sucrose for
choosing to land on a target “flower” presented amongst distrac-
tors. Commonly, the flowers are distinguishable through color,
but other times through scent. Like humans, bees produce linear
speed-accuracy relationships (Chittka et al., 2003; Kulahci et al.,
2008; Riveros and Gronenberg, 2012). Those that decide more
slowly tend to be more accurate than those that respond quickly.
Also like humans, changing task parameters can lead to shifts of
the accuracy-latency function. For instance, when errant choices
are met with punishment (quinine solution), individual bees slow
down and increase accuracy relative to conditions without penalty
(Chittka et al., 2003). Other manipulations that lead to SAT in
bees include difficulty of discrimination (Dyer and Chittka, 2004;
Skorupski et al., 2006; Riveros and Gronenberg, 2012) and the

introduction of environmental stressors such as predation risk
(Ings and Chittka, 2008).

Like many social insect colonies, bees choose nesting cites
based on quorum sensing (Seeley and Visscher, 2004). Briefly,
scout bees examine potential locations for hives and recruit oth-
ers; the colony as a whole “decides” to migrate to the nest
when a quorum threshold (QT) has been reached (Passino et al.,
2008). It is interesting to note the parallel between the QT and
the decision threshold described by sequential sampling mod-
els. Under a lower QT, fewer bees contribute to the choice of
nesting cite increasing the potential for err. A computational
model of bee quorum sensing confirms that changing the QT
(the number of bees needed to commit to the new hive) imple-
ments SAT in an ecologically valid way (Passino and Seeley,
2006).

I am not aware of any empirical study testing this assertion
in bees, but it is certainly true for ants. Like bees, ants that have
found a potential nesting cite recruit others until a QT is reached.
At threshold, the colony switches from individual exploration into
a mode of “social carrying” in which ants pick up and carry other
ants to the new cite. The SAT becomes evident when the QT is
examined under different conditions. For instance, ant colonies
lower their QT when placed in a harsh environment necessi-
tating migration (Franks et al., 2003, 2009), relative to a calm
environment. Similarly, QT is lowered when nests are destroyed,
leading to emergency migration (Dornhaus et al., 2004); see also
(Marshall et al., 2006). Interestingly, this reduction in QT has
the consequences expected with SAT—faster, but less discerning
migration decisions.

SUMMARY

The SAT is a truly universal phenomenon. Monkeys and
rodents can be trained to vary decision criteria on cue, and
exhibit behavior similar to humans. Future studies employ-
ing SAT methodology with these populations will provide
critical insight into the decision process. There are parallels,
too, with social insect colonies, and this has not gone unno-
ticed. These ecologically valid studies speak to the mechanisms
of emergent behavior through the interaction of individual
entities.

CONCLUSION

The SAT has been a topic of great concern for over a cen-
tury. Throughout its history and still today, the SAT remains
an integral component of empirical, theoretical, and mathe-
matical explorations of the decision process. The growing pop-
ularity of SAT in the neuroscience community is particularly
exciting. The last decade has witnessed incredible advances in
our understanding of the neural basis of choice, and neural
investigations of SAT are now gaining momentum. This work
promises to detail the choice process—not just in humans but
non-humans as well—and will find utility in understanding
and treating common cognitive deficits. Clearly, there is much
work to be done. To facilitate this, and to bring together dis-
parate literatures and disciplines, the present work reviewed
the history, methodology, physiology, and behavior associated
with SAT.
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