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Abstract We studied the time course of material categori-
zation in natural images relative to superordinate and basic-
level object categorization, using a backward-masking par-
adigm. We manipulated several low-level features of the
images—including luminance, contrast, and color—to as-
sess their potential contributions. The results showed that
the speed of material categorization was roughly compara-
ble to the speed of basic-level object categorization, but
slower than that of superordinate object categorization.
The performance seemed to be crucially mediated by low-
level factors, with color leading to a solid increase in per-
formance for material categorization. At longer presentation
durations, material categorization was less accurate than
both types of object categorization. Taken together, our
results show that material categorization can be as fast as
basic-level object categorization, but is less accurate.

Keywords Categorization . Natural image . Scene
recognition

Material recognition is an important part of our daily life,
but so far little work has methodologically investigated this
issue (exceptions include Adelson, 2001, and Hiramatsu,
Goda, & Komatsu, 2011). The material properties of objects
provide cues as to object identity and are necessary for
action planning (Buckingham, Cant, & Goodale, 2009).
The importance of material recognition and perception in
daily life highlights the necessity for fast and accurate
processing of object material properties.

Sharan (2009) suggested that the recognition of material
categories in real-world pictures was remarkably fast and
accurate. She tested material detection in a rapid serial visual
presentation (RSVP) paradigm using images obtained from
the Flickr.com material image database (Sharan, Rosenholtz,
& Adelson, 2009). The results indicated that observers were
able to perform this task well, even with stimulus presentation
durations as short as 40 ms. She also investigated rapid
material detection in a two-alternative forced choice masking
experiment. A sequence of five stimuli—one target or distrac-
tor image, and four masking images—were presented to the
observers, who were asked to respond to a target material
category. Material images that did not belong to the target
category were presented as distractors, and images used for
the backward masking were chosen from the same database as
the target images. The backward-mask images were manipu-
lated using the Portilla–Simoncelli texture algorithm (Portilla
& Simoncelli, 2000), so as to match their low-level image
statistics to the test stimuli. Targets were presented 50% of the
time, and the results showed that observers were able to
correctly detect material target categories in 83% of the trials
with a stimulus presentation time of 40 ms. For longer pre-
sentation times (80 or 120 ms), a significant increase in
accuracy was reported.

Although observers were quite accurate for presentation
times as short as 40 ms in Sharan’s (2009) experiments, it is
problematic to evaluate absolute performance in these visual
tasks as being objectively “slow” or “fast”. Such evaluations
would need to be relative to a baseline comparison. Since
object categorization provides a stable and objective base-
line for RSVP task performance, we chose to use it as a
comparison for material categorization performance.

In contrast to Sharan (2009), we aimed to directly compare
the full time course of material categorization with that of
object categorization in a backward-masking paradigm. Other
alternatives have been proposed: For example, Adelson,
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Sharan, and Rosenholtz (2011) used objects from two distinct
categories that were also made of different materials. In this
way, the same stimuli could be classified in two different
ways. On the one hand, this approach is, in principle, very
elegant and avoids the problem of having to somehow equate
two different image sets. On the other hand, it is prone to
mutual interference betweenmaterial and object cues, and also
faces the problem that the difficulty of both tasks depends on
the particular set of stimuli chosen.

Since the classification and categorization of objects in
natural scenes has been extensively studied, we consider it a
natural benchmark for fast visual categorization. Rapid detec-
tion of objects in natural scenes (Bacon-Mace, Mace, Fabre-
Thorpe, & Thorpe, 2005; Delorme, Richard, & Fabre-Thorpe,
2000; Fabre-Thorpe, Delorme, Marlot, & Thorpe, 2001;
Kirchner & Thorpe, 2006; Thorpe, Fize, & Marlot, 1996;
VanRullen& Thorpe, 2001a) and natural-scene understanding
and categorization (Greene &Oliva, 2009; Joubert, Rousselet,
Fize, & Fabre-Thorpe, 2007; Renninger & Malik, 2004;
Rousselet, Joubert, & Fabre-Thorpe, 2005) have been studied
under a wide range of conditions. The remarkable speed of
processing in these tasks has been confirmed by electrophys-
iological measurements. The detection of an animal within a
natural scene can be completed within 150 ms (Thorpe et al.,
1996). Moreover, not only animals, but also artificial objects
such as vehicles, can be processed within this time frame
(VanRullen & Thorpe, 2001a, 2001b).

We selected four different superordinate object categories for
our object categorization task (Exp. 1a): animals, people, build-
ings, and means of transport. In a second experiment (Exp. 1b),
we used four different basic object categories: horses, cows,
goats, and rabbits. Althoughwe predicted that the superordinate
categories would be an appropriate domain for comparison, we
also wanted to test whether basic-level categorization might be
a more adequate comparison to the materials.

Since object categorization is known to depend on low-
level features—such as contrast or color—we tested categori-
zation performance on both the original version of the images
and a version that was normalized with respect to luminance
and contrast. We also ran the experiment using grayscale
images in order to assess the role of color as a potentially
informative cue in these particular categorization tasks.

Experiment 1

Experiment 1a

Method

Observers A group of 18 naive observers took part in the
study (14 females, four males). Their mean age was 22.9
years, and ages ranged from 20 to 26 years. All of the

observers had normal or corrected-to-normal vision and
participated in all four sessions of the study, but in none of
the preliminary experiments.

Stimuli Initially, we used the Flickr material image database
(Sharan et al., 2009) that had been used by Sharan (2009)
and Wolfe and Myers (2010). But since we aimed to test a
larger range of stimulus presentation durations and only
close-up images, we started to create our own larger image
database of material images. Preliminary results that we
obtained on the images from the Flickr material database
were fully in line with the findings presented here.

A total of 640 images were used in the study, half of them
showing objects and half of them showing material surfaces.
Object images representing the four categories (animals, peo-
ple, buildings, and means of transport) were taken from the
commercially available COREL database. Each single cate-
gory included 80 images. We constructed a new data set for
the material images. The pictures were taken under varying
indoor and outdoor illumination conditions using a Nikon
D70 camera (Nikon, Tokyo, Japan) and belonged to the four
categories wood, stone, metal, and fabric. Again, each cate-
gory consisted of 80 images. Up to 37 images that were not
100% correctly validated were used in some of the experi-
ments by mistake. These were discarded from all analyses
later on, which did not have an effect on the significance of
any of the results. In the case of the object images, the target
object was always embedded in a natural context. In the case
of the material images, only a material surface without any
context or object information was represented. The images are
available online at www.allpsych.uni-giessen.de/MID.

A normalized set of all of the images was created in
which the mean luminance was equated and the contrast
(pixel-wise standard deviation of luminance) was adjusted
so as to yield comparable detection rates across categories
(see Figs. 1 and 2). The normalization procedure reduced
the contrast of the material images by 6.3% on average,
whereas the contrast of object images was reduced by
27.3% on average. Example images are shown in Fig. 1.

Experimental setup The experiments were run in a dimly lit
room. Stimuli were shown on a Samsung SyncMaster
2230R7 22-in. monitor with a refresh rate of 120 Hz. The
observers were seated approximately 100 cm in front of the
screen; the images had a spatial resolution of 512×768
pixels, corresponding to 8.23º×12.39º of visual angle.

Preliminary experiments: Validation experiment A prelimi-
nary validation study was conducted in order to select
images that could be consistently assigned to their respec-
tive categories. The classifications were performed separate-
ly for superordinate object and material images. Each image
(in the original version) was displayed on the screen for an
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unlimited viewing time, and four observers were asked to
assign each image to one of the given categories. The
images were meant to be well discriminable. However,
observers were given the option to choose the “I don’t
know” response instead of picking one of the four catego-
ries, if an image looked too ambiguous. A total of 489
material images were tested (115 wood, 125 stone, 128
metal, and 121 fabric) in three different sessions. Of these,
378 images were consistently rated correctly (104 wood, 80
stone, 84 metal, and 110 fabric). That is, approximately 77%
of all images were classified correctly.

Preliminary experiments: Contrast detection thresholds The
aim of this preliminary experiment was to determine the
contrast values that would produce the same detection rates
for each of the eight image categories. For this purpose,
another four observers were asked to detect the presentation
of the images in between two different masks. The contrasts
were manipulated over a range of eight fixed conditions,
representing 10%–80% of the average contrast in the orig-
inal image database. The mean luminance of the images was
set to the same level as in the normalization procedure, and
the images were presented for 8 ms. Masks were generated

Fig. 1 Example images for the four different material categories, and
image statistics for the original material images. The top half of each
image shows the image in its original version, and the bottom half
shows the image in its normalized version. Color frames (online only)
indicate the color codes for the distribution of the original material
images in CIE space. The large colored crosses represent the mean and
standard deviation of each category’s distribution in the CIE space. The

different categories are also indicated by different symbols, as follows:
Open squares represent wood; open circles, stone; crosses, metal;
asterisks, fabric. The horizontal lines within the mean luminance
boxplots (center right panel) indicate the mean luminance after nor-
malization. The diamonds in the standard deviation plot indicate the
average contrasts of the single categories after normalization
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online by superimposing polygons with colors randomly
sampled from the whole image database. The task was
repeated in five sessions, in order to obtain 50 trials for each
condition. The 50% threshold values were derived from
psychometric functions calculated for each category sepa-
rately. To create the normalized image sets, the images for
each category were set to the contrast value that defined the
50% detection threshold in this experiment.

Procedure Each of the four combinations of task (material
vs. object categorization) and image type (normalized vs.

original) was tested in a separate session. The order of the
sessions was balanced between observers, and eight differ-
ent stimulus presentation times were used, ranging from 8 to
67 ms. Images were centrally displayed in front of a uni-
formly gray background (see Fig. 3). The images were
followed by an online-generated mask (as described
above), and the four response categories were subsequently
presented in the four corners of the screen. Observers were
asked to give their responses by pressing the corresponding
button on a standard response pad. A training session con-
sisting of 20 trials with a 1-s image presentation time was

Fig. 2 Example images for the four different object categories, and
image statistics for the original object images. The top row shows the
images in their original versions, and the second row shows the images
in their normalized versions. Color frames (online only) indicate the
color codes for the distribution of the original material images in CIE
space. The large colored crosses represent the mean and standard
deviation of each category’s distribution in the CIE space. The different

categories are also indicated by different symbols, as follows: Open
squares represent buildings; open circles, people; crosses, animals;
asterisks, means of transport. The horizontal lines within the mean
luminance boxplots (center right panel) indicate the mean luminance
after normalization. The diamonds in the standard deviation plot indi-
cate the average contrasts of the single categories after normalization
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run first. The images included in the training session were
not included in the experimental run.

Data analysis Psychometric functions were calculated for
each participant and each experimental condition separately
using psignifit version 2.5.6 (http://bootstrap-software.org/
psignifit/; Wichmann & Hill, 2001). The functions had the
following form:

y x; a; b; g; λð Þ ¼ g þ 1 �g �λð Þfðx; a; bÞ; ð1Þ

where ψ stands for the cumulative Gaussian function with
mean α and standard deviation β. The parameters γ and 1

define the lower and upper asymptotes, with γ fixed at the
25% chance level. Two parameters were derived from each fit
and used for further analysis. The mean parameter αwas taken
as an index for the speed of categorization, corresponding
to the presentation time at which performance reached a
threshold level of 62.5% correct, given that the upper
asymptote was at 100%. The upper-asymptote parameter
1 was used as an overall index for the accuracy of cate-
gorization, corresponding to the performance reached at an
infinitely long presentation duration. In practice, it was
close to the performance for the longest presentation dura-
tion that we used, 68 ms.

Results and discussion

Two questions were examined in this experiment: First,
whether material categorization could be as fast as superor-
dinate object categorization, and second, whether the two
tasks would yield the same asymptotic level of accuracy.

We found that superordinate object categorization was
faster than material categorization. The threshold level of

performance indicated by the mean parameter α in the
object task was reached after 16 ms, whereas in the material
task it took 26 ms. Normalization affected the object images
to a greater extent than the material images. The normaliza-
tion led to a substantial decrease in speed for the object task,
as the time needed to obtain a threshold level of perfor-
mance increased to 25 ms for those stimuli, while the speed
of processing did not change much in the material task after
normalization (29 ms). Consequently, observers were equal-
ly fast in categorizing the normalized object and material
images. However, object categorization was more accurate
than material categorization, independent of normalization:
The maximum accuracy for the 68-ms presentation time was
above 98% correct for object images, independent of nor-
malization. In the material task, on the other hand, only
84%-correct performance was reached for the original, and
80% for the normalized, material images. These results are
illustrated in Figs. 4 and 5.

Two 2×2 repeated measures analyses of variance
(ANOVAs; Task × Image Type) on the mean parameters and
on the upper-asymptote parameters were conducted. The anal-
ysis of the mean parameters showed a main effect of the Task
factor, F(1, 17) = 15.940, p = .001, ηp

2= .484, as well as a
significant effect of the Image Type factor, F(1, 17) = 25.399,
p < .001, ηp

2 = .599, and a significant interaction between the
two, F(1, 17) = 6.945, p < .05, ηp

2 = .290. The effect was
further analyzed by two dependent t tests for each image type
separately. Here we found a significant difference only in the
case of the original images, t(17) = 7.103, p < .001, while in
the case of the normalized images, the effect did not reach
significance.

The analogous 2×2 repeated measures ANOVA (Task ×
Image Type) for the upper-asymptote parameters revealed a
significant main effect of task, F(1, 17) = 94.099, p < .001,

Fig. 3 Schematic procedure of one trial. A fixation dot was shown on
a gray background for 1 s before the presentation of the stimulus. Eight
different stimulus durations were tested (8, 17, 25, 33, 42, 50, 58, and

67 ms). The stimulus image was followed by a mask for 0.5 s. After
one more second, the four response alternatives were presented on the
screen, and the observer was asked to make a response
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ηp
2 = .847. No significant effect for image type and no

interaction were found.
This raises the question of whether these results could be

generalized to other object categories, especially at a level of
abstraction that might be more comparable to the material
categories at hand. Thus, we conducted a second experiment
in which we explored the categorization of four different
animal categories.

Experiment 1b

According to Rosch, Mervis, Gray, Johnson, and Boyes-
Braem (1976), object categories can be defined at three
different levels of abstraction: the basic level (dog), the
superordinate level (animal), and the subordinate level
(poodle). Rosch et al. found a reaction time advantage for
verifying that an object belonged to a basic-level target

category, as compared to the superordinate and subordinate
levels. Later on, Grill-Spector and Kanwisher (2005)
found that object detection and basic object categorization
required the same amount of processing time. This con-
trasted with subordinate categorization, which required
longer reaction times in order to produce the same amount
of accuracy. The authors showed in a second experiment
that correct object detection and basic-level categorization
were interdependent.

However, several subsequent studies have challenged
this view (for reviews of the whole topic, see Fabre-
Thorpe, 2011; Mack & Palmeri, 2011). Mace, Joubert,
Nespoulous, and Fabre-Thorpe (2009) reported increased
reaction times in a go/no-go task if the target represented a
basic-level category rather than a superordinate category.
Thus, varying the level of abstraction in the objects should
result in a variation of task difficulty.

Fig. 4 Superordinate object categorization versus material categoriza-
tion. The left panel shows the data for the original-image condition,
whereas the right panel shows the data for the normalized-image
condition. The two curves in each plot represent the averages of the
psychometric functions fitted on the data of each single observer,

where lighter symbols (red online) show data from the object condi-
tion, and black symbols indicate the data from the material image
condition. Diamonds represent the respective mean percentage-correct
data for each time point measured in the experiment

Fig. 5 In both panels, the results for the object task can be found on
the y-axis, whereas the results for the material task can be found on the
x-axis. The left panel shows the estimated means of the psychometric
curves, indicating the speed of categorization. The right panel shows
the estimated upper asymptotes, indicating the accuracy of

categorization. Each data point represents one participant, with the
filled circles representing the original image condition and the open
circles the normalized image condition. The black unity lines indicate
equal values for both tasks
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The four object categories (animals, people, buildings,
and means of transport) used in Experiment 1a had depicted
different superordinate categories, but crucially, the material
images had a smaller between-category variability than did
the object images used in that experiment, even though they
should have constituted quite favorable examples. The ob-
ject and material images also corresponded to different
spatial scales (close-up material images vs. objects embed-
ded in scenes). Adelson et al. (2011) suggested that a dif-
ference in spatial scale might play an important role,

indicating that close-up images of materials are more ade-
quate. This is in line with Sharan (2009), who showed that
close-up images of materials produced higher accuracies
than did those in which the material had to be identified
within diverse objects.

Thus, to test whether the advantage of object categoriza-
tion over material categorization would hold for different
levels of object task difficulty, we chose four basic catego-
ries (horses, cows, goats, and rabbits) from the superordi-
nate category “animals” for comparison to the material task

Fig. 6 Example images for the four different animal categories, and
image statistics for the original animal images. The top row shows the
images in their original versions, and the second row shows the images
in their normalized versions. Color frames (online only) indicate the
color codes for the distribution of the original material images in CIE
space. The large colored crosses represent the mean and standard
deviation of each category’s distribution in the CIE space. The different

categories are also indicated by different symbols, as follows: Open
squares represent cows; open circles, horses; crosses, goats; asterisks,
rabbits. The horizontal lines within the mean luminance boxplots
(center right panel) indicate the mean luminance after normalization.
The diamonds in the standard deviation plot indicate the average
contrasts of the single categories after normalization
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in Experiment 1b. According to the results reported above,
we would predict that performance would be less accurate in
the animal categorization task than in the superordinate
object categorization task. Moreover, it was of particular
interest whether performance in the much harder animal
categorization task would then be comparable to the perfor-
mance in the material categorization task, or whether we
would still find an advantage of our basic-level object cat-
egories over the materials.

Method

The setup and the procedure used in this experiment were
the same as those in Experiment 1a. To achieve 50% con-
trast detection levels for normalization, the same contrast
detection experiment that we described above was run using
the animal and material images. Normalization was under-
taken given the same mean luminance value as in
Experiment 1a and the contrast levels derived from the
contrast detection experiment run for Experiment 1b.

Observers A group of 18 new subjects (all female)
participated in the experiment. Their mean age was 22
years, and ages ranged from 18 to 30 years. All of the
observers had normal or corrected-to-normal vision.
Again, all of the observers took part in four sessions,
one for each of the four combinations of task (material
vs. animal categorization) and image type (normalized
vs. original), but none took part in the preliminary
experiment.

Stimuli We collected 320 animal images from the Internet,
representing the four categories horses, cows, rabbits, and

goats. The whole animal was represented in the image, and
the background was kept relatively similar in all samples.
Example images can be found in Fig. 6. We also cre-
ated a second normalized set of the images, using the
same procedure as described before. In Fig. 6, normal-
ized images and image statistics for the different animal
categories can be seen.

Results and discussion

The results revealed that observers were equally fast in
categorizing material and basic-level object images. This
finding emerged independent of normalization. In both
tasks, a threshold level of performance was reached after
25 ms. The contrast normalization, which equally affected
both image types, led to minor delays of about 7 ms. In
terms of accuracy, basic-level object categorization was
significantly better than material categorization. This effect
was also independent of normalization. Performance in the
animal task reached an asymptote of about 90% correct,
which was 2% higher than the asymptote in the material
task for the original images, and 11% higher than the as-
ymptote for the normalized images. These data are shown in
Figs. 7 and 8.

The same kinds of analysis were conducted as in
Experiment 1a. A 2×2 repeated measures analysis on the
mean parameters revealed no main effect of task and no
significant interaction, but a main effect of image type did
emerge, F(1, 17) = 15.413, p < .001, ηp

2 = .476. Performing
the same ANOVA on the upper-asymptote parameters
revealed a main effect of task, F(1, 17) = 13.240, p < .05,
ηp

2 = .438, but no main effect of image type and no
interaction.

Fig. 7 Basic-level object categorization versus material classification.
The left panel shows the original-image data, whereas the right panel
shows the normalized-image data. Lines represent the averages of the
psychometric functions fitted on the data of each single observer in the

different conditions. Lighter symbols (blue online) show data from the
animal condition, while black symbols indicate the data from the
material image condition. Diamonds represent the respective mean
percentage-correct data for each time point measured in the experiment
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We also replicated the well-known advantage of superor-
dinate object categorization over basic-level object catego-
rization: Superordinate object categorization was not only
significantly faster, but also significantly more accurate than
basic-level object categorization (see Fig. 9). On average,
the threshold level of performance was reached about 8–9
ms earlier for superordinate than for basic-level objects. The
accuracy for basic-level object categorization was also low-
er by about 9% in the normalized and 7% in the original
images than the accuracy for superordinate object
categorization.

These results were reflected in two 2×2 mixed design
ANOVAs (Task × Image Type) on the mean and upper-
asymptote parameters. In both analyses, a main effect of task

was found, F(1, 34) = 45.793, p < .001, ηp
2 = .574; F(1,

34) = 19.390, p < .001, ηp
2 = .363. Besides, a main effect for

the factor image type was found for the mean parameters, F(1,
34) = 85.595, p < .001, ηp

2 = .716, but not for the upper-
asymptote parameters. No interactions occurred.

Experiment 1b showed that the extent to which the
ability to categorize material categories differs from the
ability to categorize objects crucially depends on the
selected comparison level. If the task required a basic-
level classification of the object images, object and
material categorization were equally fast. Independent
of the objects’ abstraction level, accuracy was always
significantly higher for categorizing objects compared to
materials.

Fig. 9 Both panels show the results for the object task on the x-axis
and the results for the animal task on the y-axis. The left panel shows
the estimated means of the psychometric curves, and the right panel
shows the estimated upper asymptotes. Filled circles indicate data

points for the original image conditions, and open circles indicate data
points for the normalized image conditions. Each data point represents
one participant. The black lines indicate equal values for both tasks

Fig. 8 In both panels, results for the animal task can be found on the y-
axis, whereas the x-axis shows the results for the material task. The left
panel shows the estimated means of the psychometric curves, and the
right panel shows the estimated upper asymptotes. Each data point

represents one participant. Filled circles show data for the original
image conditions, and open circles show data for the normalized image
conditions. The black lines indicate equal values for both tasks
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In agreement with our hypothesis, performance was
worse in the basic-level object categorization task than in
the superordinate object categorization task. Superordinate
categorization was roughly 10 ms faster and 10% more
accurate than basic object categorization.

Experiment 2

Since low-level cues seem to play an important role for the
categorization task, we chose to examine the influence of
color on categorization. In principle, mean chromaticity alone,
as indexed by the average CIE xy coordinates of the images
(see Figs. 1, 2, and 6), could be potentially useful for classi-
fying the images into the different categories. A linear dis-
criminant analysis, implemented using the classify function of
MATLAB (The MathWorks, Natick, MA, USA), performed
better than the 25% chance level for classifying object images
(47%), material images (38%), and animal images (35%).

The role of color in natural-scene processing and object
detection has been assessed by a number of studies before.
Whereas color cues were shown to contribute to enhanced
recognition memory of objects in natural scenes (Gegenfurtner
& Rieger, 2000; Wichmann, Sharpe, & Gegenfurtner, 2002),
Delorme et al. (2000) showed that color cues played a rather
minor role in a go/no-go object detection task. In a scene-naming
and verification task, however, Oliva and Schyns (2000) found a
reaction time advantage for color diagnostic scenes.

Therefore, we set out to test the contribution of color to
our categorization tasks (material vs. object vs. animal cat-
egorization) more directly, by repeating the experiments
with grayscale images. Once again, we created normalized
versions of the grayscale pictures. According to the litera-
ture, no large effects of color information would be expected
for the superordinate object and basic-level animal tasks
(Delorme et al., 2000). However, color seems to be relative-
ly diagnostic for at least some of the materials, and it could
play a role in material categorization.

Method

The experiment was run with the same procedure and under
the same conditions as described for Experiments 1a and 1b.

Observers A total of 18 new observers participated in the
experiment (14 females, four males). Their ages ranged from
19 to 32 years, with a mean age of 24.3 years. All of the
observers had normal or corrected-to-normal vision. The sub-
jects participated in all six sessions of the experiment, one for
each of the six combinations of task (material vs. animal vs.
object categorization) and image type (normalized vs. origi-
nal), but in none of the previious experiments.

Stimuli The stimuli were created by converting the images
to grayscale. This was done by calculating a weighted sum
of the RGB components of each pixel, with the weights
chosen by the relative luminance of the three monitor phos-
phors. In order to normalize the images, we ran the same
contrast detection experiment described before using the
grayscale images.

Results and discussion

In this experiment, we dealt with the role of color in the
categorization of the different image classes. We directly
compared the results of the color experiments with the
results of the grayscale experiment for every single task.
Performance did not reach a level of accuracy in each
condition to allow us to successfully fit the data for each
single observer. Therefore, we analyzed only the average
percentage-correct data across observers. In addition, we
calculated comparisons between the color and grayscale
conditions at a fixed presentation time of 68 ms.

Color improved performance in all three tasks. Crucially,
color led to 7% better performance with the original material
images and to 17% better performance with the normalized
material images. We found an improvement for color in the
superordinate and basic-level object tasks as well, but it
depended on image normalization; significance was reached
for the normalized images, while only a trend emerged for
the original animal images. These results are shown in
Fig. 10.

Three 2×2 mixed-design ANOVAs (Color×Image Type)
were calculated for each task, and the data were transformed
for statistical analyses, using the arcsine of the square root to
correct for violations of variance homogeneity in some
conditions.

Fig. 10 Mean accuracy results for all color and grayscale conditions
are shown for each task and each image type separately. Asterisks
indicate significant differences between the indicated conditions
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Each ANOVA revealed significant effects of both color
[material task, F(1, 52) = 26.486, p < .001, ηp

2 = .337; animal
task, F(1, 34) = 15.951, p < .001, ηp

2 = .319; object task, F(1,
34) = 21.942, p < .001, ηp

2 = .392] and image type [material
task, F(1, 52) = 75.366, p < .001, ηp

2 = .592; animal task, F(1,
34) = 178.972, p < .001, ηp

2 = .840; object task, F(1, 34) =
358.268, p < .001, ηp

2 = .913], as well as a significant interac-
tion between the two factors [material task, F(1, 52) = 16.360,
p < .001, ηp

2 = .239; animal task, F(1, 34) = 21.354, p < .001,
ηp

2 = .386; object task, F(1, 34) = 35.235, p < .001, ηp
2 = .509].

Subsequent independent t tests for each image type showed a
significant effect of color for the original image condition only
in the material task, t(52) = 2.747, p < .05. For the normalized
images, a significant effect of color was found in all tasks
[material task, t(52) = 6.289, p < .001; animal task, t(34) =
6.00, p < .001; object task, t(34) = 8.44, p < .001].

At an intermediate presentation times of 68 ms, material
categorization accuracy in the grayscale condition was sub-
stantially less than in the object task, independently of
normalization. While superordinate object categorization
was still close to perfect even when color information was
discarded (92% in the normalized condition, 98% in the
original condition), basic-level animal categorization was
less good (74% in the normalized condition, 85% in the
original condition), but still much better than material cate-
gorization (64% in the normalized condition, 80% in the
original condition).

This was confirmed by means of a 3×2 repeated measures
ANOVA. We compared accuracies between the three tasks
(material vs. animal vs. superordinate objects) and the two
image types (normalized vs. original) in the grayscale condi-
tion only. Overall, a picture similar to that in the color con-
ditions was revealed. We found significant effects of task, F(2,
34) = 38.323, p < .001, ηp

2 = .693, and image type, F(1, 17) =
62.948, p < .001, ηp

2 = .787, as well as a significant interac-
tion, F(2, 34) = 5.529, p < .05, ηp

2 = .245. Here, we only report
subsequent t tests for the comparisons between the material
task and the object tasks, as these were ofmajor interest for the
scope of this study. Paired-sample t tests showed significant
differences between the basic-level animal task and the
material task for original images, t(17) = 2.124, p < .05,
as well as for normalized images, t(17) = 2.563, p < .05.
The same pattern of results was found for the comparisons
between superordinate objects and materials [original
images, t(17) = 7.500, p < .001; normalized images, t(17) =
6.912, p < .001].

Overall, these results show that observers actually use the
color information that is available for material categoriza-
tion. We found some evidence that color also aids
superordinate- and basic-level object categorization, but
these results were less clear-cut, since they depended on
the image normalization process. Thus, color seems to con-
tribute to material categorization to a greater extent, but it

does not fully explain the differences between the three
tasks at intermediate presentation times.

General discussion

In the present study, we explored the time course of material
categorization relative to superordinate- and basic-level ob-
ject categorization. Specifically, we investigated the speed
and accuracy of material categorization as compared to
object categorization for very fast presentation times. Our
results showed that perceptual material categorization can
be processed in the same time range as object categoriza-
tion, but that it is less accurate. Even under quite favorable
conditions (i.e., close-up pictures of visually rather dissim-
ilar material categories), material categorization is still more
difficult than object discrimination is under quite unfavor-
able conditions, when basic-level categorization has to be
performed for visually similar objects embedded in rather
uninformative scenes.

The speed of categorization

At first glance, our results may seem unsurprising. In agree-
ment with Sharan (2009), material classification is fast, in the
sense that an above-chance level of performance is reached
even with very short presentation durations of 30 ms or less.
Performance in the material categorization task is lower than
in a classic object categorization task, for which extremely fast
processing was found (Bacon-Mace et al., 2005; Delorme,
Richard, & Fabre-Thorpe, 2000, 2010; Fabre-Thorpe et al.,
2001; Thorpe et al., 1996; VanRullen & Thorpe, 2001a). This
dichotomy could be due to differences in the visual stimuli, as
images of objects typically have higher contrast than images
of material textures. Therefore, although equating the contrast
led to a correlated change in the speed of processing, this was
mainly caused by a decline in performance for the object
images when their contrast was reduced (see also Mace,
Thorpe, & Fabre-Thorpe, 2005). In the real world, object
and material texture contrasts vary, so these classifications
would normally be processed at different speeds. Since our
data were dependent on the interaction between luminance
and contrast, it is quite likely that basic image statistics might
be used for these classifications.

Two different perceptual mechanisms seemed to be at work
in our tasks. At the very shortest presentation durations, per-
formance for all stimuli was very dependent on low-level
image factors. Therefore, we think that this regime reflects
the activity of very early visual processing. Performance here
mainly depended on the (dis)similarity of the stimuli. The later
stage, at around 50 ms, was nearly independent of low-level
image statistics, and probably reflects higher-level visual
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processing. The differences that arose here were presumably
due to specialized processing for objects and materials.

Influence of low-level image statistics on categorization

The idea that low-level image features can guide perfor-
mance in ultra-rapid object or scene recognition had previ-
ously been implied. Bar (2003) suggested that low spatial
frequencies—representing global information about shape
in natural images—can activate high-level representations
sufficient for an “initial guess” about the identity of a
relevant object. This view was supported, for instance, by
the findings of Torralba and Oliva (2003), who showed that
second-order image statistics are a reliable cue for discrim-
inating manmade from natural scenes, or even for the de-
tection of objects like animals or vehicles within a scene.

This low-level classifier has not been tested for material
images before, but, on the basis of computational studies, a
number of important features for both texture analysis and
synthesis—for example, Portilla and Simoncelli (2000)—as
well as for material image classification—for example, Liu,
Sharan, Adelson, and Rosenholtz (2010)—have been identi-
fied. Low-level image statistics have also been found to be
able to capture some of the subjective qualities of certain
material properties, for example gloss (Motoyoshi, Nishida,
Sharan, & Adelson, 2007). It is intriguing to ask which of
these image statistics may contribute to the fast recognition of
material images.

Here, we conducted an experiment assessing the role of
color as a low-level cue for categorization in our images.
Whereas color has previously been shown to play rather a
minor role in object categorization (Delorme et al., 2000), we
believed that it would have a greater influence on material
categorization, due to its relative diagnosticity for single ma-
terial classes. As predicted, we found that color was more
important for materials than for objects. Regardless of the
task, the effect of color on categorization performance proved
to be stronger for normalized images, which suggests that
once the information provided by luminance is reduced, the
information conveyed by chromaticity becomes unmasked
and can be accessed by observers. This is in line with previous
findings showing that accuracies significantly decreased in a
material categorization task (Sharan, 2009), as well as in a
go/no-go animal detection task (Mace et al., 2005) when other
important low-level factors were degraded in an image.

The accuracy of categorization

While fast categorization is likely due to low-level image
statistics, a major difference between object and material
image categorization performance is apparent at slightly
longer presentation durations. At the longest durations used
here, we found marked differences in accuracy between the

three tasks. Most importantly, material classification was
less accurate than the superordinate- and basic-level catego-
rization tasks. This was somewhat unexpected, because we
selected material images that would be perfectly classified
with much longer presentations. Most likely, different com-
putations are used at a higher level of visual processing.

Neuronal correlates

Our results fit nicely with the recent fMRI findings of
Hiramatsu et al. (2011), who investigated how information
about material categories is progressively assembled along
the ventral stream. They showed that differences in the relevant
image statistics between material categories were associated
with differences in neural activation in early visual areas. In
contrast, perceptual dissimilarities between materials showed
only high correlations with the activation in higher visual areas.

Summary

In summary, we have shown that material categorization can
be similarly fast as object categorization, but is less accurate.
We replicated the advantage of superordinate object catego-
rization over basic-level object categorization (Mace et al.,
2009) and demonstrated that material classification was
more similar to basic-level than to superordinate object
categorization. The speed of categorization under these
ultra-short presentation times was crucially mediated by
our normalization procedure. This suggested that perfor-
mance at this stage was mainly driven by low-level image
properties, such as luminance and contrast. In an additional
experiment, we examined the effect of color on task perfor-
mance and found that color was more important for material
categorization than for object categorization. The accuracy
of categorization was barely affected by normalization, sug-
gesting that different processes were at work. Superordinate
and basic-level object categorization were both more accu-
rate than material categorization, independent of normaliza-
tion. Thus, it can be assumed that computations at higher
visual processing stages are involved here, which are more
time-consuming in material than in object categorization.
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