The Speed of Learning in Noisy Games: Partial Reinforcement

and the Sustainability of Cooperation
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In an experiment, players’ ability to learn to cooperate in the repeated prisoner’s
dilemma was substantially diminished when the payoffs were noisy, even though
players could monitor one another’s past actions perfectly. In contrast, in one-time
play against a succession of opponents, noisy payoffs increased cooperation, by
slowing the rate at which cooperation decays. These observations are consistent
with the robust observation from the psychology literature that partial reinforce-
ment (adding randomness to the link between an action and its consequences while
holding expected payoffs constant) slows learning. This effect is magnified in the
repeated game: when others are slow to learn to cooperate, the benefits of coop-
eration are reduced, which further hampers cooperation. These results show that a
small change in the payoff environment, which changes the speed of individual
learning, can have a large effect on collective behavior. And they show that there
may be interesting comparative dynamics that can be derived from careful attention
to the fact that at least some economic behavior is learned from experience. (JEL

C71, C72, C73, D83)

Just as the hypothesis that prices are at
equilibrium can be used to generate fruitful
comparative statics predictions, the observa-
tion that some kinds of behavior are learned
from experience has the potential to generate
predictions about comparative dynamics. It is
therefore useful to ask in what kind of eco-
nomic environments we should expect learn-
ing to occur quickly, or slowly, and how
changes in the speed of learning might affect
the behavior that emerges in complex strate-
gic environments such as repeated games. We
will focus here on learned cooperation (and
learned noncooperation).

Theories of reinforcement learning in strate-
gic environments, which recently have gained
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attention in economics,' suggest that players’
ability to learn to cooperate will be hampered
if the payoffs they earn are noisy, even when
they can noiselessly monitor each other’s ac-
tions. This is related to the observation, long
known in the psychology literature, that par-
tial reinforcement of actions slows learning,
especially early learning, i.e., when subjects
are inexperienced (see, e.g., Solomon Wein-
stock, 1958, and, for a review, see Donald Rob-
bins, 1971).

In the psychology literature, an action is said
to be “partially reinforced” if it is rewarded only
some of the time, in contrast to actions that are
rewarded every time they are taken, which are
said to be fully (or “continuously”) reinforced.
An early general conclusion from this literature
was that learning “proceeds somewhat more
rapidly and reaches a higher final training level
under continuous reinforcement than under par-
tial reinforcement” (William Jenkins and Julian
Stanley, 1950).2 That is, variance in how often

! See, e.g., Roth and Ido Erev (1995); Erev and Roth
(1998); Drew Fudenberg and David Levine (1998); John
Duffy and Nick Feltovich (1999); Feltovich (2000).

2 Although they also noted that, “With prolonged train-
ing partially reinforced groups may approach the same level
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an action is rewarded slows learning.> So the
distinction between partial and full reinforce-
ment is a potentially important one for econom-
ics, since few economic decisions in natural
environments yield deterministic outcomes.

We will compare games having deterministic
payoffs with games having probabilistic pay-
offs with the same expected value. The “par-
tial reinforcement learning” hypothesis is that
whatever learned behavior we see in the deter-
ministic games will develop more slowly in the
probabilistic games.

We will see that a small change in the payoff
environment, which induces a change in the
speed of individual learning, can have a large
impact on whether mutual cooperation is
learned. This in turn will raise some questions
about how to model the payoffs in economic
environments in which learning is likely to be
an important influence on behavior.

It has been customary to model the payoffs in
games as expected payoffs of one sort or an-
other, at least since the axiomatization of ex-
pected utility by John von Neumann and Oskar
Morgenstern (1944).* The results of the present
paper will suggest that, since variance in early
experience can change early behavior, it may
not always be innocuous to model payoffs as
expectations, even when the income stream will
consist of many small payoffs. Variance may

of proficiency ...~ as fully reinforced groups of subjects. In
Stanley’s (1950) experiment, total reinforcement was kept
constant when comparing various partial and full reinforce-
ment conditions, by having correspondingly more periods
when reinforcement was random. In the experiments re-
ported here, we keep the expected payoff constant by having
larger prizes when there is a smaller probability of reward.

3 Of course, the change from full to partial reinforcement
changes not only the variance in how often an action is
rewarded, but also the variance in how much an action is
rewarded. See Erev et al. (1999) for a reinforcement learn-
ing model that models variance in payoffs as a determinant
of learning speed.

4 Expected payoffs are also used in biological models of
evolutionary games. In these models, payoffs are not in
utility, but expectations reflect the assumption that variance
in payoffs will be smoothed by large numbers of interac-
tions. Note also that while reinforcement models of learning
take as input realized payoffs, other kinds of learning mod-
els such as fictitious play can be implemented largely in
terms of expected payoff (although in their dependence on
realized payoffs to form expectations they have much sim-
ilarity with reinforcement models). See, e.g., Fudenberg and
Levine (1998); Feltovich (2000); Colin Camerer and Teck
Ho (1999).
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change behavior in a way that cannot be ex-
plained by the more conventional approach of
assuming that risk may simply change the rel-
ative desirability of different outcomes (risk
aversion).’

The hypothesis that partial reinforcement
slows learning in games has different conse-
quences for different kinds of games. When
players have dominant strategies, as in the pris-
oner’s dilemma, it suggests that, as in individual
choice tasks, the path of play will simply
change more slowly as variance in the fre-
quency of rewards is increased. That is, a player
who has a dominant strategy has an opportunity
to learn to play it regardless of what other
players are (simultaneously) learning, so the
player faces an environment similar to the indi-
vidual choice tasks that make up the bulk of the
psychology literature on learning.°

Specifically, players in deterministic prison-
er’s dilemma games in which players are re-
matched with different players each period are
observed to cooperate less as they gain experi-
ence (see, e.g., Russell Cooper et al., 1996). So
the prediction of the partial reinforcement hy-
pothesis is that players will learn to play their
dominant strategy more slowly in games with
noisy payoffs than in games with deterministic
payoffs, i.e., they will learn not to cooperate,
but more slowly than in the deterministic game.

But in more complex strategic environments,
like the repeated prisoner’s dilemma, defection
is no longer a dominant strategy, and what a
player learns from early experience of a game
depends on what actions other players are
choosing. The issues are clearest if the same
pair of players will play for a fixed number of
periods, known to both of them at the outset.
We say a given pair of players plays the
“n-period supergame” generated by a one-period
game matrix if they each simultaneously make
their choices in each of n periods, learning after
each period the other player’s choice the previ-

° Indeed, in our one-period-game condition with proba-
bilistic payoffs, the fact that the payoffs are binary lotteries
(Roth and Michael Malouf, 1979) implies that expected
utility maximizers whose utilities are linear in the small
payoffs in the deterministic condition (cf. Matthew Rabin,
2000) would have exactly the same expected utility from
corresponding outcomes in both the probabilistic and deter-
ministic conditions.

6 See, e.g., Wayne Lee (1971) for an overview of indi-
vidual learning in probability matching.
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ous period, and each receives the sum of the n
payments that are generated by the pairwise
choices. When there are still future periods to
play, each player can reward or punish the other
for past actions, by cooperating or defecting in the
future. Thus, there are rewards for (conditional)
mutual cooperation, but these diminish as the game
nears the end, and in the last period the incentives
are the same as in the one-period game.’

A number of experiments have observed that
players learn to reciprocate cooperative behav-
ior as they gain experience with the repeated
game. For example, Reinhard Selten and Rolf
Stoecker (1986), James Andreoni and John
Miller (1993), and Esther Hauk and Rosemarie
Nagel (2001) observe that when people play
n-period prisoner’s dilemma supergames multi-
ple times, against different players, they often
learn to cooperate in the early periods of the
supergame, but cooperation breaks down near
the end of the supergame.® So if other players
are slow to learn to cooperate, then the rewards
of cooperation will be fewer, which will further
make cooperation difficult to learn. In particu-
lar, the learning hypothesis suggests that in two
n-period prisoner’s dilemma supergames with
identical expected payoffs, cooperation in the
early periods may be harder to achieve in the
supergame with more variability in how often

7 For this reason, there is no cooperation at equilibrium
in the simplest model of complete information repeated play
with a fixed deadline, but see, e.g., David Kreps et al. (1982)
for finite repeated games with incomplete information, and
Roth and J. Keith Murnighan (1978) for repeated games
with probabilistic termination, both of which are consistent
with some cooperation at equilibrium.

8 Because cooperation tends to break down when it is not
reciprocated, cooperation is much more difficult to maintain
if actions are noisy, i.e., if there is random error either in
choosing actions or in monitoring others’ actions. (See, e.g.,
Robert Axelrod and Douglas Dion, 1988; Jonathan Bendor,
1987; Bendor, 1993; Edward Green and Robert Porter,
1984; Per Molander, 1985; Miller, 1996; Barbara Sainty,
1999.) That is, if actions are noisy, a player does not know
whether another player’s defection was an error or an in-
tended choice, and strategies involving reciprocation (e.g.,
“tit for tat”) can break down. The thrust of this literature on
noisy actions is that the path to cooperation, which may not
be too difficult in repeated games in which players can
noiselessly monitor one another’s behavior, is seriously
complicated when actions are noisy. In this context, our
results can be interpreted as showing that, since learning is
slower when payoff variance increases, cooperation in re-
peated games is even more fragile to noise than has been
thought, with noisy payoffs being an issue even when ac-
tions are unaffected by noise.
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cooperation is rewarded, even when players can
perfectly monitor one another’s choices.

To test these hypotheses, we report an experi-
ment with the prisoner’s dilemma, which allowed
subjects to gain experience either with the nonre-
peated game (in which players were rematched
with new partners after every play of the game), or
the repeated supergame (in which players played
with the same partner for ten periods) in games
that, holding the expected payoff fixed, either had
deterministic payoffs (full reinforcement) or prob-
abilistic payoffs (partial reinforcement).

Of course, another difference between the
deterministic and probabilistic conditions is that
they have different information sets, and hence
give the players different sets of strategies
(since in the probabilistic condition players can
condition their behavior on the outcome of the
lotteries as well as upon past choices). So, as a
control, partially for the repeated game condition,
we also consider games played under a third,
“deterministic-plus-sunspots” condition, in which
payoffs are deterministic, but participants also re-
ceive information about the outcome of the two
binary lotteries (“sunspots”), which do not
themselves influence the payoffs, but have the
same distribution as the lotteries in the proba-
bilistic condition. That is, the deterministic-plus-
sunspots condition has the same payoffs as the
deterministic condition, and the same information
sets (and hence the same strategy sets) as the
probabilistic condition. So it enables us to test if
the difference between the deterministic and prob-
abilistic conditions is due to slower learning due to
increased variance (the learning hypothesis), or
due to players’ ability to condition on the outcome
of the lotteries (the “strategic hypothesis”).

To summarize, we examine a 2 X 3 experi-
mental design, (one-time or repeated play) X
(deterministic, deterministic with sunspots, or
probabilistic payoffs). We expect from the re-
sults of prior experiments that in the determin-
istic nonrepeated games, players will learn to
cooperate less over time, and in the determinis-
tic repeated game, players will learn to cooper-
ate more over time in the early periods of each
supergame. The hypothesis that partial rein-
forcement slows learning therefore implies
that, in games with probabilistic payoffs,
having the same expected payoffs but more
variance, players will learn more slowly. So
the random payoffs should elicit more coop-
eration in the nonrepeated game, and less
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FIGURE 1. FEEDBACK SCREEN SEEN BY PARTICIPANTS BEFORE EACH DECISION
(In the deterministic condition of the repeated game experiment)

cooperation in the early periods of the re-
peated game than the comparable games with
deterministic payoff.

If, instead, the difference between the deter-
ministic and probabilistic conditions is primar-
ily due to the difference in their information sets
and strategy spaces, we would expect behavior
in the deterministic-plus-sunspots condition to
resemble more closely the probabilistic condi-
tion. If however, the difference is primarily due
to slow learning associated with the random
payoffs, we would expect that behavior in the
deterministic-plus-sunspots condition will more
closely resemble the deterministic condition.

The results we report below confirm the pre-
dictions of the learning hypothesis, and further
suggest that the effect may be more dramatic.
We will see that in the repeated game, in which
cooperation needs to be learned, increased vari-
ance may slow learning to the point that coop-
eration is hardly learned at all. Thus the play of
two repeated games with the same expected
payoffs may be affected quite profoundly by the
variance of the random variable that counts how
often the actions are rewarded.

I. The Experiments

The experiments were programmed in z-Tree
(Urs Fischbacher, 1999). In each condition of
both the nonrepeated game and of the repeated
game experiments, the players’ payoffs in each

period were represented to them by the matrix
on the left side of Figure 1. (Figure 1 shows the
screen that participants saw in the deterministic
payoff condition of the repeated game experi-
ment.) In the nonrepeated game experiment,
participants saw only the left side of this screen.

In our experimental conditions for one-time
play, subjects played prisoner’s dilemma games
against different partners for 200 periods with
either deterministic, probabilistic, or determin-
istic payoffs with sunspots.

In our experimental conditions for repeated
play, subjects played 20 ten-period prisoner’s
dilemma supergames with different partners,
with perfect (noiseless) monitoring of one an-
other’s actions. Because players learn one an-
other’s choices after each period, there is no
obstacle to reciprocation.

A. The Nonrepeated Game Experiment

One hundred and seventy-two participants, in
13 sessions of 10 to 20 participants played 200
one-period prisoner’s dilemma games.’? Pairings
were anonymous (players sat at visually iso-
lated computer terminals), and after each pe-

9 The participants were not told the number of periods
they would play. Players earned a show-up fee of $15 plus
their accumulated earnings in the games they played.
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riod players were rematched with another
partner. Players were assigned to one of the
three experimental conditions (deterministic,
probabilistic, or deterministic payoffs with
sunspots). We ran five sessions in the deter-
ministic condition (10, 10, 10, 18, 18 partic-
ipants), five sessions in the probabilistic
condition (10, 10, 10, 20, 20 participants),
and three sessions in deterministic payoffs
with sunspots (12, 12, 12 participants).'% !

In the probabilistic condition, the numbers
in Figure 1 indicated the probability that each
player would win a fixed amount of money
($1) in each period. For example, if in a period
of the game the two players both cooperated,
they would each immediately participate in a
lottery that gave them a 10.5-percent chance
of winning $1, and an 89.5-percent chance of
winning zero for that period. Their earnings
in the experiment would be the sum of their
earnings over the 200 periods in which they
participated.

In the deterministic condition, in contrast,
each player was credited each period with the
number of cents in the matrix, i.e., with the
expected value of the corresponding action in
the probabilistic treatment. For example, in a
period in which both players cooperated, each
would be credited with $1 X 0.105 = $0.105,
and their payoffs for the experiment would be
the sum of their payoffs in each period.

Thus, the expected payoffs of the players for
a given pair of actions was identical in both
treatments. Furthermore, because each player
participated in 200 periods of play, the variance
in expected payoffs between treatments would
be small if players’ actions were the same in
both conditions of the experiment.'? After each

'9Tn the deterministic payoffs-with-sunspots condition,
subjects were told that their payoffs did not depend on the
lotteries, which were related to another condition of the
same experiment. The lottery distributions were explained
as in the probabilistic condition.

"' We ran three sessions in the deterministic and the
probabilistic condition in Israel and two sessions in the
United States. The three sessions of the deterministic pay-
offs-with-sunspots condition were run in Israel. Since no
difference was found as a function of place, we averaged
across the different places.

'2 For example, if all players cooperated in every period,
in the deterministic condition each would receive 200 X
$0.105 = $21, while in the probabilistic condition they
would receive a mean payoff of $21 with a standard devi-
ation of 4.3.
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period, the players were informed of their
action, the action the other player had taken,
and their own payoffs. In the probabilistic
condition, the payoffs would all be either 1.00
or 0.00, depending on the outcome of each
player’s (independent) lottery for the period.
In the deterministic condition with sunspots,
participants were paid as in the deterministic
condition, and also saw the results of the two
lotteries.

Results.—Figure 2 shows the proportion of
cooperation as a function of the period and the
experimental condition (deterministic, probabi-
listic, or deterministic with sunspots), averaging
across the sessions. The proportion of coopera-
tion was computed by averaging the choice of
cooperation (C) responses for every period
across individuals and across sessions.

The results of the deterministic and the prob-
abilistic conditions are as expected, and the
results of the deterministic-with-sunspots con-
dition closely track those of the deterministic
condition. When players received deterministic
payoffs they learned faster to defect—to play
the dominant strategy—than when they re-
ceived a random payoff. As can be seen in
Figure 2, in the first period the rate of cooper-
ation in the conditions was similar. Throughout
most of the experiment and almost until the end,
the rate of cooperation in the probabilistic con-
dition was higher than the rate of cooperation in
the deterministic condition. Pairwise #-tests for
independent samples on mean proportions of
cooperation for blocks of 20 periods revealed a
significant difference between the deterministic
and the probabilistic condition in all blocks
from the first to the ninth block (p < 0.05).
After 180 periods in both conditions, the rate of
cooperation was similar and was close to 10
percent. Note that in the deterministic condition
it took participants only 20 trials to reach this
level of cooperation, while in the probabilistic
condition it took them 180 trials. Pairwise
t-tests for independent samples on mean pro-
portions of cooperation for blocks of 20 pe-
riods revealed no difference in all blocks
between the deterministic and the determinis-
tic-with-sunspots conditions.

The results for the nonrepeated prisoner’s di-
lemma thus closely resemble the results reported
in the psychology literature concerning learning
in individual choice tasks. In the probabilistic
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FIGURE 2. PROPORTION OF COOPERATION AS A FUNCTION OF THE PERIOD AND THE
EXPERIMENTAL CONDITION
(Deterministic, probabilistic, or deterministic with sunspots)

payoff (partial reinforcement) condition, the
learned behavior is much like the learned be-
havior in the deterministic payoff condition, but
the learning is slower. And since the players are
learning not to cooperate, there is more cooper-
ation in the probabilistic condition, i.e., learning
is slower, so the rate of cooperation diminishes
more slowly.

The fact that the behavior in the deterministic-
with-sunspots condition resembles the behav-
ior in the deterministic condition supports the
claim that the slower decline in the amount of
cooperation is due to the noise in the payoffs
and not to the change it induces in the infor-
mation sets.

We turn next to the more complicated strate-
gic situation of the repeated game.

B. The Repeated Game Experiment

One hundred and ninety-eight participants,
in 11 sessions of 14 to 22 participants, played
20 consecutive prisoner’s dilemma super-
games with 10 periods in each supergame.'?

13 The participants were not told the number of super-
games they were going to play, but they knew that each

Pairings were anonymous (players sat at visu-
ally isolated computer terminals), and after each
game players were rematched with another part-
ner. Players were assigned to one of the three
experimental conditions (deterministic, proba-
bilistic, or deterministic payoffs with sunspots).
We ran four sessions in the deterministic con-
dition, three sessions in the probabilistic condi-
tion, and four sessions in the deterministic payoffs
with sunspots.'* !> The payoff matrices were the

supergame would last ten periods. Participants earned a
showup fee of $15 plus their accumulated earnings in the 20
repeated games.

4 The assignment of the participants to the deter-
ministic or the probabilistic condition was random. The
deterministic-with-sunspots condition was run later as a
control condition.

!5 The extra, initial session for the deterministic condi-
tion was to verify that we had chosen a game that would
reproduce the cooperative behavior observed by earlier in-
vestigators in the deterministic condition. With this in mind,
we chose a payoff matrix comparable to those earlier inves-
tigators: using the indices of cooperation proposed by Ana-
tol Rapoport and Albert Chammah (1965), for our matrix
they are r1 = (0.105-0.075)/(0.175-0.005) = 0.18 and r2 =
(0.105-0.005)/(0.175-0.005) = 0.59. These indices were
close to the ones in Selten and Stoecker (1986) where r1 =
0.26 and r2 = 0.56 and in Andreoni and Miller (1993)
where r1 = 0.25 and 12 = 0.58.
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same as the ones given to the participants in the
nonrepeated game. In each condition, the play-
ers’ payoffs in each period were represented to
them by the matrix on the left side of Figure 1.
After each period the players were informed
of both their own and the other player’s payoff
and actions. In the deterministic condition with
sunspots, participants also saw the results of the
two binary lotteries, each of which could yield
either 1 or 0 with probability equal to the payoff
in the appropriate cell of the payoff matrix.'®
Figure 1 shows a feedback screen from the
deterministic condition. Each player always saw
what action the other player had taken in the
previous period, as well as the payoffs received.
In the probabilistic condition the display was
the same, with exactly the same payoff matrix.
On the right-hand side of the screen the payoffs
in the probabilistic condition would all be either
1.00 or 0.00, depending on the outcome of each
player’s (independent) lottery for the period.

Results—The results of the probabilistic con-
dition are dramatically different from the deter-
ministic conditions. When players received
deterministic payoffs, either with or without
sunspots, our results reproduce those of Selten
and Stoecker (1986), Andreoni and Miller
(1993), and Hauk and Nagel (2001). Players
learn in the first few supergames to cooperate
early in the game and to defect in the periods
near the end. But in the random payment con-
dition, even though players receive the same
expected payoffs, and even though they can
observe each other’s actions, they do not
achieve substantial levels of cooperation even
after gaining experience with the repeated
game.

Figure 3 shows the proportion of cooperation
as a function of the period in the supergame for
each session of the three experimental condi-
tions, averaging the proportion of cooperation
across five consecutive supergames. That is, one
of the lines in the graph represents supergames
1-5, another supergames 6-10, a third super-
games 11-15, and a fourth supergames 16-20.
The proportion of cooperation was computed by

'° The instructions regarding the sunspots events were as
in the nonrepeated game condition.
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averaging the choice of cooperation (C) re-
sponses for every period across individuals and
five repeated games. There are two more lines:
one represents the rate of cooperation in the
very first supergame and the other represents the
rate of cooperation in the last supergame.

To understand the figures, look first at the
line representing the first five supergames in the
deterministic session at the far left of Figure 3,
with n = 22 subjects being matched to one
another. In that session, the proportion of coop-
eration in the first period of the ten-period su-
pergame climbed from around 0.7 for the first
five supergames, to well over 0.9 for the last
five supergames (represented by the triangles).
The same pattern of results can be seen in the
deterministic condition with sunspots.

But, while the players were learning to coop-
erate in period 1, they were also learning to stop
cooperating by period 10: the proportion of
cooperative choices declined in that session
from about 0.15 in period 10 of the first five
supergames, to about 0.05 in the last period of
the final five supergames.

The left side of Figure 4 shows the change in
cooperation in period 1, from the first to the last
supergame, for the three experimental condi-
tions. We found that in the deterministic condi-
tion the rate of cooperation in period 1 of the
first supergame was 0.61 and it increased to
0.93 in the last supergame (#(146) = 4.62, p <
0.001)."” A significant increase (from 0.61 to
0.92) was also found for the deterministic con-
dition with sunspots (#(142) = 4.38, p < 0.001).
The two deterministic lines are almost identical,
while the line representing the probabilistic
condition is both lower and flatter.'®

The right side represents the change in coop-
eration in period 10. In the deterministic

'7 We analyzed it using Statsoft, STATISTICA 7®.

" In the very first period of the first supergame, the
probabilities of cooperation for the different sessions in the
deterministic condition were 0.68, 0.72, 0.5, 0.5; and for the
different sessions in the probabilistic condition were 0.27,
0.43, 0.5. Although the mean cooperation in the very first
period was higher (0.61) for the deterministic than for the
probabilistic (0.4) condition, if we look at deterministic
sessions with the same level of cooperation as the probabi-
listic session (0.5), the difference between the conditions
remains, and no learning is observed in the probabilistic
condition.
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FIGURE 3. PROPORTION OF COOPERATION IN EACH SESSION AS A FUNCTION OF THE PERIOD IN A TEN-PERIOD PRISONER’S
DILEMMA SUPERGAME

Notes: Each line represents a group of five consecutive supergames, for the different experimental conditions, deterministic
payoffs (Detl—4), probabilistic payoffs (Probl-3), and deterministic with sunspots (Detl-4+). (Experimental sessions are
presented separately to show that the phenomena are observed robustly, in every session, not just in aggregate.)
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condition, cooperation dropped from 0.22 to
0.07 (#(146) = 2.59, p < 0.01). A significant
drop in cooperation from 0.26 to 0.04 was also
found for the deterministic payoff condition
with sunspots (#(142) = 3.69, p < 0.002).

That is, in the deterministic conditions, as
players gained experience with the supergame
they learned both to cooperate early and to
defect late. This pattern was evident already
in the early supergames, but it became much
more pronounced with experience, with over
90 percent cooperation at the start of the last
supergames, continuing at a high rate through
the first few periods, and dropping sharply
by periods 7 or 8, to end with almost no
cooperation at all by period 10 of the last
supergames.

The situation was dramatically different in
the condition of the experiment with probabilis-
tic payoffs. As Figures 3 and 4 show, in the
probabilistic condition there is much less learn-
ing to cooperate in the early periods from one
supergame to the next (and slower learning not
to cooperate in the late periods already in the
first supergame, although the level of late coop-
eration ends up about the same in the last su-

pergame).'® There was no significant change in
cooperation in the first period, from the first to
the last supergame (0.4 to 0.48). A significant
drop in cooperation from 0.4 in the first to 0.1 in
the last supergame was found in period 10
(#(102) = 3.53, p < 0.001). Within a supergame
there is more cooperation at period 1 than at
period 10. And the total level of cooperation
never rises above 60 percent, i.e., there is no
more cooperation in early periods of the last
supergames with random payoffs than there is
in the first supergames with deterministic
payoffs.

To get a clearer look at how the probabilistic
payoff condition differed from the deterministic
condition, we analyzed the extent to which par-
ticipants conditioned their behavior on the out-
come of their lottery, as well as on their
partner’s behavior. Table 1 shows the results.

In the probabilistic condition, conditional on

' Figures 3 and 4 show that even in the first probabilistic
supergame the decline in cooperation from period 1 to
period 10 is less than in the deterministic conditions, and so
the cooperation in period 10 in the probabilistic condition
starts at a higher level than in the deterministic condition.
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TABLE 1

Deterministic
Condition Probabilistic ~ with sunspots
P{c, . 1|(c, & oc, & +)} 0.83 0.87
P{c,1|(c, & oc, & =)} 0.68 0.85
P{c,.1l(c, & od, & +)} 0.57 0.125
Plc, . 1|(c, & od, & —)} 0.34 0.21
Pld,, ||, & oc, & +)} 0.71 0.79
P{d,, \|(d, & oc, & —)} 0.68 0.74
Pl{d,, \|d, & od, & +)} 0.91 0.94
P{d,, \|d, & od, & —)} 0.84 0.93

Notes: Probability of cooperation or defection at time 7 + 1
(¢,4, = cooperation, d,,, = defection) given that the
participant cooperated or defected at time 7 (¢, = participant
cooperated, d, = participant defected) and won the lottery
(+), compared to the case in which he or she lost the lottery
(—) for a given choice of the partner (oc = partner coop-
erates, od = partner defects).

both players having cooperated in period ¢, a
negative outcome of a player’s lottery reduces
his chance of cooperation to 0.68 (from 0.83,
1(46) = 3.81 p < 0.001). And, even if the other
player failed to cooperate at period ¢, a player
who cooperated himself and (nevertheless) won
his lottery has a 0.57 chance of cooperating,
compared to only 0.34 had he lost his lottery.”®
So the effect of the noise in the payoffs—the
outcome of the lottery—on a player’s choice of
action for the next period is smaller than the
effect of whether the other player cooperated or
defected at the last period. But the outcome of
the lottery nevertheless affects players’ deci-
sions and, as we have seen, this effect is suffi-
cient to reduce substantially the joint learning to
cooperate that goes on in the deterministic
condition.

A different pattern of results emerged for the
deterministic-with-sunspots condition. In this
condition, participants did not condition their
response on the outcome of the random events.
Conditional on both players having cooperated
in period ¢, a negative outcome of a player’s
random event did not reduce the probability of
cooperation. As expected, participants do con-
dition their behavior on the other player’s be-
havior. Conditional on having cooperated in the

2% We are aggregating here across supergames and, more
importantly, periods within a supergame. As Figure 3 makes
clear, probabilities of cooperation are also dependent on the
period in the supergame.
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previous trial and winning the lottery, if the
other player cooperated in the previous trial
compared to if he defected, the probability of
cooperation increased from 0.125 to 0.87
®(7) = 6.67, p < 0.001).

This analysis indicates that while the infor-
mation sets in the probabilistic and the deter-
ministic-with-sunspots conditions are the
same, participants in the sunspot treatment
did not condition their behavior on the results
of the random events.

To summarize the observations of the re-
peated games:

e In both the deterministic and probabilistic
treatments, and starting from the first super-
game, there is more cooperation in period 1
of the ten-period supergame than in period
10.

e In the deterministic condition and in the
deterministic-with-sunspots condition, play-
ers learn with experience with the ten-period
supergame to cooperate more in the early
periods and to cooperate less in the late pe-
riods, reproducing the results of Selten and
Stoecker (1986), Andreoni and Miller (1993),
and Hauk and Nagel (2001).

e In the otherwise identical probabilistic condi-
tion, there is much less learning from one
repeated game to the next. The “payoff noise”
in that condition interferes with learning to
cooperate; players condition their actions not
only on the action of the other player, but also
on the outcome of their lottery.

The apparent lack of learning (or very slow
learning) to cooperate in the probabilistic con-
dition of the repeated game, particularly when
taken together with the opposite result of more
cooperation in the nonrepeated games, adds
strong support to the hypothesis that partial
reinforcement slows learning.?'

2! One additional alternative hypothesis that we consid-
ered is preferences for fairness (inequality aversion). That
is, suppose that the loss of cooperation in the repeated
probabilistic game (although not in the nonrepeated game)
is due not to learning, but because, unlike in the determin-
istic payoff condition, mutual cooperation does not always
yield equal payoffs, since a player may lose the lottery while
the other player wins. To test for this possibility we ana-
lyzed the probability of cooperation at time 7 + 1, given that
the player cooperated at time 7, lost the lottery, and the
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II. Conclusions

As economists start to consider how to em-
ploy robust results from psychology in models
of economic behavior, we may need occasion-
ally to reexamine some of the most basic ele-
ments of economic models. In this paper we
consider some of the limitations of representing
payoffs as expected values or utilities, or related
formulations. This is a subject that has been
studied extensively in recent years from the
point of view of static choice among lotteries
(see, e.g., Daniel Kahneman and Amos Tver-
sky, 1979, or Rabin, 2000). Here we study it
from the point of view of dynamic decisions in
strategic environments.

That is, economists have been accustomed to
thinking of variance as changing the desirability
of lotteries, through risk aversion, but here we
think of variance as changing the speed at which
players learn about the strategic environment.
The difference between the two approaches is
clear when we compare our results for repeated
versus nonrepeated play. If increased variance
(partial reinforcement) were making coopera-
tion less desirable, we would see less coopera-
tion when payoffs are probabilistic, for both
repeated and nonrepeated play. But, instead, the
prediction that variance in the frequency of re-
inforcement slows learning correctly predicts
that, when payoffs are probabilistic, we will see
more cooperation in the nonrepeated game (in
which players in the deterministic condition
learn not to cooperate), and /ess cooperation in
the repeated game (in which players in the de-
terministic condition learn to cooperate).

Like utility maximization or alternative mod-
els of static preferences, learning models are
simple approximations of complex behavior: no
simple model will capture all the behavior we
observe, but simple models can serve as useful
approximations for important aspects of learn-

player’s partner cooperated at time ¢ and won the lottery,
compared to the case in which both of them won the lottery.
The fairness hypothesis suggests a much higher probability
of cooperation after both players win. The probability of
cooperation after only the other player won was 0.79, while
the probability of cooperation after both won was 0.81. So
payoff difference between the players, given the same ac-
tions, had no effect on the probability of cooperation.
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ing, particularly those missed by static models
of behavior.

Learning models are, loosely speaking, di-
vided into two kinds, those that focus on learn-
ing facts (and updating beliefs about those
facts), and those that focus on learning actions
(or strategies and procedures). We have focused
here on reinforcement learning models, which
have quite old roots in the psychology literature,
and which model the learning of actions.

The results of the repeated deterministic con-
ditions suggest that participants learn contin-
gent strategies, involving reciprocation, and not
simple actions. In the more modern psychology
literature, reinforcement learning is sometimes
modeled as the algorithm through which people
learn to employ more complex cognitive strat-
egies (see, e.g., John Anderson, 1990; Erev and
Barron, 2005).?*> These are very boundedly ra-
tional models of learning, and our results shed
some light on bounded rationality. Some mod-
els of boundedly rational learning, such as fic-
titious play, model agents as making more
limited calculations of the same sort as perfectly
rational players. Since players have exactly the
same information in both our probabilistic and
deterministic (with sunspots) conditions (and
thus can perform exactly the same calculations
in both conditions), our results strongly support
the contention of reinforcement learning models
that the rewards a player experiences are critical
to the observed differences between the proba-
bilistic and deterministic conditions.

Since many strategic interactions do not have
deterministic payoffs, our results suggest it may
not always be innocuous to model payoffs in
strategic environments as expected payoffs,
even when there will be many interactions. Be-
cause early experience may influence subse-
quent behavior, the effect of the noise need not
be averaged away by repetition.

Note again that the learning that goes on in
strategic, economic environments is not a sim-
ple extension of the study of individual learn-
ing. In games, what is learned by a player early
in the game depends on how others are behav-
ing, and hence on what they are learning, and so

22 In the economics literature, rule learning is an exam-
ple of modeling more complex strategies (e.g., Dale Stahl,
1999, 2000).
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the game provides a feedback loop between
what players learn and what there is to learn.
Therefore it is not surprising that the speed of
learning can be so important, and that factors
that have a small effect on the speed of individ-
ual learning can have a large effect on the whole
path of play in strategic games.

One reason that learning has often played a
secondary role in economic theory is that econ-
omists often consider markets and games after
they have been running for a long time, so that
early learning can be thought of as having given
way to stable, equilibrium play. But as we’ve
seen here, the nature of that long-term stable
behavior may depend on the initial learning
environment. And, when we study markets that
may have all new entrants, such as those that
economists are increasingly being asked to play
a role in designing, or markets that may have a
steady stream of new entrants, it seems likely
that the study of learning will become increas-
ingly important.”> Newly designed markets
won’t have any experienced players, and so
their performance may depend critically on
what they make it easy and fast and safe for
participants to learn.
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