THE SPHERICAL BUILDING AND REGULAR SEMISIMPLE ELEMENTS

G.I. Lehrer

Abstract

Let G be a connected reductive algebraic group defined over a finite field k. The finite group $G(k)$ of k-rational points of G acts on the spherical building $B(G)$, a polyhedron which is functorially associated with G. We identify the subspace of points of $B(G)$ fixed by a regular semisimple element s of $G(k)$ topologically as a subspace of a sphere (apartment) in $B(G)$ which depends on an element of the Weyl group which is determined by s. Applications include the derivation of the values of certain characters of $G(k)$ at s by means of Lefschetz theory. The characters considered arise from the action of $G(k)$ on the cohomology of equivariant sheaves over $B(G)$.

Let k be the finite field \mathbb{F}_{q} of q elements and G a connected reductive group defined over k. In [2] there was constructed a certain topological space $B(G)$ (the construction in [2] applied for an arbitrary field k) which is associated with G functorially. The (metric) space $B(G)$ is a union of spheres $B(S)$ as S runs over the maximal k-split tori of G, and has a "rational subspace" which may be roughly thought of as the space of one parameter subgroups of G, suitably topologized. In [2] the construction was applied to the derivation of a character formula for the group $G(k)$ of rational points $G(k)$ acting on the homology of $B(G)$; this formula follows from the identification of the fixed-point set

Received 25 January 1983.
of $g \in G(k)$ on $B(G)$, via Lefschetz theory.
In the present work we prove a general result concerning the fixed point set $B(G)^{s}$ of a regular semisimple element $s \in G(k)$ acting on $B(G)$. This relates $B(G)^{s}$ to the set of points of an,"apartment" $B(S)$ (S a maximal split torus) which are fixed by an element w_{s} of the Weyl group of G which corresponds to s (see $\S 2$ below). As an application, we use Lef'schetz theory applied to certain subspaces $B_{J}(G)$ (J a subset of the set Π of simple roots) of $B(G)$ to deduce the values of certain principal series characters of $G(k)$ at s. One consequence of this is that in the split case, we have $1_{P_{J}}^{G(k)}(s)=1_{W_{J}}^{W}\left(w_{s}\right) \quad(J \subset \Pi)$. This result is of course not new. Lusztig has proved vastly more general results ([8], [9], [10]) giving the values of all irreducible unipotent characters of G on regular semisimple elements for most groups G and the result has been dealt with explicitly (by different methods) by Deligne and Lusztig [4, §§7, 8], Kawanaka [7] and Surowski [12]. However it seems useful to put it into the present geometric context, at least partly because similar results can be obtained for any representation of $G(k)$ which is realized on the cohomology of an equivariant sheaf over $B(G)$ (see §6 below).

Section 1 is devoted to the recollection of the main properties of $B(G)$ and Section 2 to the statement and proof of the main theorem. In Section 3 we introduce certain closed subspaces $B_{J}(G)$ of $B(G)$ and give them a simplicial structure. In Section 4 the homology of the spaces $B_{J}(G)$ is computed simplicially, and in Section 5 the characters of $G(k)$ on the homology groups is studied via the fixed point theory of Section 2. Finally, in Section 6, we discuss some special cases, and give a general formulation for $G(k)$-equivariant sheaves over $B(G)$.

1. The spherical building $B(G)$ of a reductive k-group

Let G be a reductive k-group (k any field). For any maximal k-split torus S of $G, B(S)$ is defined as the sphere whose points are the rays (half-lines) of $Y(S) \otimes \mathbb{R}\left(Y(S)=\operatorname{Hom}\left(G_{m}, S\right), G_{m}\right.$ being the
multiplicative group of \bar{k}). To every point b of $B(S)$ we associate a parabolic k-subgroup $P(b)=P_{G}(b)$ of G as in $[2, \S 1]: P(b)$ is the unique parabolic k-subgroup of G which contains S and which corresponds to the region of $Y(S) \otimes \mathbf{R}$ in which b lies (these regions are the simplexes of the Coxeter complex in the semisimple case).

If B_{1} is the disjoint union of the spheres $B(S)$ (over all maximal k-split tori S of G) then we define an equivalence relation on B_{1} by $b \sim c$ if $c=a d g . b$ for some $g \in P(b)(k)$. The building $B(G)$ is then defined as
(1.1) $\quad B(G)=B_{1}(G) / \sim$.

Clearly $G(k)$ acts on $B(G)$. Some of its principal properties are as follows (these may be found in [2]). Let S be a maximal k-split torus of G.
(1.2) The projection $B_{1}(G) \rightarrow B(G)=B_{1}(G) / \sim$ restricts to an injection of $B(S)$ into $B(G)$.
(1.3) The point $b(\in B(G))$ is in $B(S)$ if and only if $S \subset P(b)$.
(1.4) The isotropy group of b in $G(k)$ is $P(b)(k)$.
(1.5) Let s be a semisimple element of $G(k)$. Then $B\left(Z_{G}(s)^{0}\right)$ is the fixed point set $B(G)^{s}$ of s acting on $B(G)$.

Suppose now that k is a finite field (say $k=\mathbb{F}_{q}$ as in the introduction). Then (cf. Lusztig [10]) associated with the k-structure of G, we have a Frobenius endomorphism $F: G \rightarrow G$ which satisfies
(1.6) $G(k)=G^{F}=\{g \in G \mid F(g)=g\}$;
(1.7) an algebraic subset $H \leq G$ is defined over k if and only if $F(H)=H$;
(1.8) for any k-subgroup H of G we have $H(k)=H^{F}$.

2. Fixed points of regular semisimple elements

Let s be a regular semisimple element of $G(k)$. Then s lies in a
unique maximal torus T, which is defined over k since $T=Z_{G}(s) \quad$ (of. $[1, \S \S 10.3,10.5])$.
(2.1) LEMMA. Let T be the maximal torus of G which contains the regular semisimple element $s \in G(k)$. The fixed-point set $B(G)^{s}$ of s acting on $B(G)$ is $B\left(T_{d}\right)$ where T_{d} is the maximal k-split subtorus of T.

Proof. From (1.5) we have that $B(G)^{s}=B\left(Z_{G}(s)^{0}\right)$. But $Z_{G}(s)^{0}=T$, whence $B(G)^{s}=B(T) . \operatorname{From}[2$, Lemma (7.1) (i)] and [1, §1.4] we have that $B(T)=B\left(T_{d}\right)$, whence the result.

The above result applies when k is any field. Henceforth, we take $k=\mathbb{F}_{q}$.
(2.2) LEMMA. A k-torus R of G is k-split if and only if F acts on R by taking elements to their qth power.

Proof. R is split precisely when there is a k-isomorphism $\phi: R \rightarrow D$ where D is a group of diagonal matrices. The Frobenius map on D is given by taking q th powers. Since ϕ is a k-morphism, it commutes with Frobenius ("transports the k-structure"), whence F is also the q-power map on R. Conversely, if F consists of taking q th powers, F acts on $Y(R)$ as multiplication by q. Hence $Y(R)=Y(R)_{k}$, whence R is split [1, §1.3].
(2.2.1) COROLLARY. For any k-torus R of G, the split part R_{d} of R is given by $R_{d}=\left\{r \in R \mid F(r)=r^{q}\right\}$.

We now fix the following notation:
S a maximal k-split torus of G;
\bar{S} a maximal k-torus of G containing S (so $(\bar{S})_{d}=S$);
$W=N_{G}(\bar{S}) / \bar{S}$ (the Weyl group of G with respect to \bar{S});
$k^{W}=N_{G}(S) / Z_{G}(S) ;$
$\dot{\omega}$ is a representative in $N_{G}(\bar{S})$ for $w \in W$.

We give a proof of the following result of Springer and Steinberg [13, II.1.2] for the reader's convenience as well as for the purpose of establishing notation.
(2.3) LEMMA. The $G(k)=G^{F}$-conjugacy classes of F-stable maximal tori of G are in bijective correspondence with the F-classes of W, where F-equivalence is defined by $\omega_{1} \sim_{F} w_{2}$ if $w_{2}=v w_{1} F(v)^{-1}$, some $v \in W$.

Proof. Let S_{1} be any F-stable maximal torus in G. Then $S_{1}=g \bar{S} g^{-1}$, some $g \in G ;$ since S_{1} and \bar{S} are F-stable, we have $F(g) \bar{S} F(g)^{-1}=g \bar{S} g^{-1}$ whence $g^{-1} F(g)=\dot{w} \in N(\bar{S})$. It is easily checked that replacing g by $g n \quad(g \in N(\bar{S}))$ or S_{1} by a F^{F}-conjugate has the effect of replacing w by an F-equivalent element of W.

Now suppose that s is a regular semisimple element of $G(k)$ and that T is the unique maximal torus of G such that $s \in T$. Then T is F-stable (see above) and so by (2.3), T corresponds to an element $\omega \in W$, which is determined to within F-conjugacy. Replacing s by a $G(k)$-conjugate clearly gives the same F-class. We have shown:
(2.4) PROPOSITION. To each $G(k)$-conjugacy class of regular semisimple elements of $G(k)$ there corresponds a wique F-conjugacy class in W.
(2.5) THEOREM. Let s be a regular semisimple element of $G(k)$ and let c_{s} be the corresponding (cf. (2.4)) F-class in W. Then the fixedpoint set $B(G)^{S}$ is $G(k)$-conjugate to $B\left(Z_{S}\left(w_{s}\right)\right)$ for some element $w_{s} \in c_{s}$, where $Z_{S}\left(w_{s}\right)=\left\{t \in S \mid \dot{\omega}_{s}=\dot{w}_{s} t\right\}$ and S is the maximal $k-s p l i t$ torus of G fixed above.

Proof. If T is the unique maximal torus of G which contains s, and $T=g \bar{S} g^{-1}$, then $g^{-1} F(g)=\dot{w}$ and $w \in c_{s}$ (see (2.3)).

Now $B(G)^{s}=B\left(T_{d}\right)$ by (2.1), and since T_{d} is k-split, there is an element x of $G(k)$ such that ${ }^{x_{T}} \subset S$ (all maximal k-split tori are $G(k)$-conjugate by $[1, \S 4.21])$. But $B(G)^{x s x^{-1}}=a d x . B(G)^{s}$ for any $x \in G(k)$, whence replacing s (and therefore T) by a $G(k)$-conjugate replaces $B(G)^{s}$ by a $G(k)$-conjugate and fixes the F-class c_{s}. Thus we may assume that $T_{d} \subset S$.

After this reduction, we have that \bar{S} and T are both maximal k-tori in $Z_{G}\left(T_{d}\right)$, which is a connected reductive k-subgroup of $G[1$, (2.15) (d)]. Thus there is an element $z \in Z_{G}\left(T_{d}\right)$ such that $T=z \bar{S} z^{-1}$ and the element $w_{s} \in W$ defined by $\dot{w}_{s}=z^{-1} F(z)$ is in the F-class c_{s} of W.

Moreover since z centralizes T_{d}, so does $F(z)$ and hence so does $\dot{w}_{s}=z^{-1} F(z)$. Thus $T_{d} \leq Z_{S}\left(\omega_{s}\right)$. Conversely, suppose that $x \in S$ is fixed by w_{s}. Then $z^{-1} F(z) x F(z)^{-1} z=x$, whence $z x z^{-1}=F(z) x F(z)^{-1}$. Taking q th powers of both sides, we see that

$$
\left(z x z^{-1}\right)^{q}=F(z) x^{q} F(z)^{-1}=F\left(z x z^{-1}\right)
$$

since by (2.2) we have that $x^{q}=F(x)$.
But $z x z^{-1} \in z S z^{-1} \subset z \bar{S} z^{-1}=T$. It follows from (2.2.1) (since $\left.F\left(z x z^{-1}\right)=\left(z x z^{-1}\right)^{q}\right)$, that $z x z^{-1}$ is in the split part of T, that is $z x z^{-1} \in T_{d}$. Since z centralizes T_{d}, it follows that $x \in T_{d}$ and so $z_{S}\left(\omega_{s}\right) \leq T_{d}$. Hence $z_{S}\left(\omega_{s}\right)=T_{d}$ and the theorem is proved.
(2.6) COROLLARY. Suppose G is k-split and that s is a regular semisimple semisimple element of $G(k)$. Then $B(G)^{s}$ is $G(k)$-conjugate to $B(S)^{w_{s}}$, for any element $w_{s} \in c_{s}$, where c_{s} is the conjugacy class of W corresponding to s.

Proof. In this case $S=\bar{S}$ and F acts trivially on W. Thus the F-conjugacy classes of W are simply the conjugacy classes and the statement follows directly from (2.5).

We conclude this section with the following characterization of $B\left(z_{S}(w)\right)$, for $w \in W$.
(2.7) PROPOSITION. Let $w \in W$. A point b of $B(S)$ is in $B\left(Z_{S}(w)\right)$ if and only if $\dot{\omega} \in P(b)$.

Proof. Write $S^{\prime}=Z_{S}(w)$. This is a k-split torus of $G[1, \S 1.6]$ and from [2, Lemma (1.2) (ii)] we have that $b \in \mathcal{B}\left(S^{\prime}\right)$ implies that $P(b) \supset Z_{G}\left(S^{\prime}\right)$, so that $\dot{w} \in P(b)$.

Conversely, suppose that $b \in B(S)$ and $\dot{w} \in P(b)$. Then
$S \cap \operatorname{Rad} P(b)$ centralizes \dot{w} and from [2, Lemma (1.2) (ii)] we have $b \in B(S \cap \operatorname{Rad} P(b))$. Since $S \cap \operatorname{Rad} P(b) \subset Z_{G}(\dot{w})$, we have $b \in B\left(S \cap Z_{G}(\dot{w})\right)=B\left(Z_{S}(\dot{w})\right)$ as required.

3. The subspaces B_{J}

Let K be an algebraic closure of k; we write Φ, Φ^{+}, Π for the set of roots, positive roots and simple roots of G determined by \bar{S} and a Borel subgroup $B \supset \bar{S}$ (B may be assumed to be a k-group). The corresponding Weyl group is $W=W(\bar{S}, G)$. Following Borel and Tits [2, §5], the corresponding data for the k-structure will be denoted $k^{\Phi}=\Phi(S, G), k^{\Phi^{+}}, k^{\Pi}$ and k^{W}.

The following facts will be of importance later.
(3.1) The parabolic k-subgroups of G which contain B are the $k_{J}{ }_{J}$ for the various subsets $J \subset{ }_{k} \Pi \quad[1, \S 5.12]$.
(3.2) The parabolic k-subgroups of G which contain S are $\left\{\left.\begin{array}{l}w_{k} \\ P_{J}\end{array} \right\rvert\, J \subset{ }_{k} \Pi, w \in k^{W}\right\}$. Moreover ${ }_{k}^{w} P_{J}={ }_{k}^{w^{\prime}} P_{J}$, if and only if $J=J^{\prime}$ and ${ }^{w^{\prime}} W_{J}={ }^{\prime}{ }^{\prime} W_{J}$ (here ${ }_{k}^{w_{J}}=w\left({ }_{k} P_{J}\right) w^{-1}$, and so on).

This follows from $[1, \S \S 5.9$ and 5.15].
(3.3) For any subset $J \subset{ }_{k} \Pi$, there is a unique F-invariant subset $\bar{J} \subset \Pi$ such that ${ }_{k} P_{J}=P_{\bar{J}}$.

Since $k_{J} P_{J}$ contains B, clearly ${ }_{k} P_{J}=P_{J}$ for some $\bar{J} \subset \Delta$. Moreover, since ${ }_{k} P_{J}$ is defined over k, it is F-invariant, whence it follows that W_{J} is F-invariant. But F maps $I I$ to itself, whence $E(\bar{J})=\bar{J} \quad$ [13, II.14].

For each subset $J \subset{ }_{k} \Pi$ we define a $G(k)$-invariant subspace $B_{J}(G)$ as follows.
(3.4) DEFINITION.
(i) $B_{J}(G)=\left\{b \in B(G) \mid P(b) \geq g\left({ }_{k} P_{J}\right) g^{-1}\right.$ for some $\left.g \in G(k)\right\}$.
(ii) For any reductive k-subgroup $H \leq G$, define $B_{J}(H)=B(H) \cap B_{J}(G)$.

Theorem (2.5) may be restated for B_{J} as follows.
(3.5) PROPOSITION. Let s be a regular semisimple element in $G(k)$, with corresponding F-conjugacy class c_{s} in W. There exists $w_{s} \in c_{s}$ such that

$$
B_{J}(G)^{S}=B_{J}(G) \cap B\left(z_{S}\left(w_{S}\right)\right)
$$

To investigate the topological nature of $B_{J}(G)$ and $B_{J}(S)$ we introduce the following finite simplicial complexes.
$\Delta_{J}=\Delta_{J}(G, k)$ is the subcomplex of the combinatorial building (see $[2,86])$ consisting of the following simplexes:
 some $g \in G(k)\}$.

Analogously, we introduce the subcomplex Γ_{J} of the Coxeter complex Γ of k^{W} as follows.
(3.7) $\Gamma_{J}=\left\{_{k}{ }_{L} \omega \mid L \supset J, w \epsilon_{k}^{W}\right\}$.
(3.8) PROPOSITION. If G is semisimple, then there is a $G(k)$ equivariant homeomorphism $\tau:\left|\Delta_{J}(G)\right| \rightarrow B_{J}(G)$ satisfying
(i) for $b \in\left|\Delta_{J}(G)\right|, P(\tau(b))$ is the parabolic subgroup corresponding to the simplex of Δ_{J} containing b in its interior;
(ii) if S is a maximal k-split torus and $\Delta_{J}(S)$ is the subcomplex of, $\Delta_{J}(G)$ whose simplexes correspond to the parabolic k-subgroups containing S, then τ restricted to $\left|\Delta_{J}(S)\right|$ is a triangulation of $B_{J}(S)$.

The proof consists of the observation that the map τ of [2, Proposition (6.1)] takes $\left|\Delta_{J}\right|$ to B_{J} and $\left|\Delta_{J}(S)\right|$ to $B_{J}(S)$.

In addition we have
(3.9) PROPOSITION. Let G^{\prime} be the derived group of G, and let d be the k-rank of the connected centre of G. Then $B_{J}(G)$ may be identified in a $G(k)$-equivariant way with the d-fold suspension of $B_{J}\left(G^{\prime}\right)$. This identification maps $B_{J}(S) \quad(S$ a maximal k-split torus of $G)$ to the d-fold suspension of $B_{J}\left(S^{\prime}\right)$, where S^{\prime} is a maximal k-split torus of G^{\prime}, which is contained in $S\left(S^{\prime}=S \cap G^{\prime}\right)$.

The proof is an immediate consequence of the proof of (7.1) and (7.2) in [2].

Combining (3.9) and (3.8), we obtain
(3.10) COROLLARY. (i) $B_{J}(G)$ is homeomorphic in a $G(k)$-equivariant way with the d-fold suspension of $\left|\Delta_{J}\right|$.
(ii) $B_{J}(S)$ is homeomorphic in a $k^{\text {W-equivariant }}$ way to the d-fold suspension of $\left|\Gamma_{J}\right|$.
4. The simplicial complexes Γ_{J} and Δ_{J}

Although similar results are fairly well known (see, for example,
[16]), we include the proof of the following result for completeness. The proof follows ideas of Solomon [12] who treated the case $J=\emptyset$.
(4.1) PROPOSITION. Suppose $\left|{ }_{k} \Pi-J\right|>1$. Then the complex Γ_{J} has rational homology given by

$$
H_{i}\left(\Gamma_{J}\right)= \begin{cases}Q & (i=0), \\ 0 & \left(0<i<\left.\right|_{k} \Pi-J-1 \mid\right), \\ \left|Y_{J}\right|, & i=\left.\right|_{k} \Pi-J-1 \mid\end{cases}
$$

where $Y_{J}=\left\{w \epsilon_{k} W \mid w^{-1}(J) \subset_{k^{\Phi}}, w^{-1}\left({ }_{k} \Pi-J\right) \subset_{k} \Phi^{-}\right\}$.
We use the following elementary result, which may be found in Solomon [12].
(4.1.1) LEMMA. Let K be a simplicial complex and L, L_{1}, \ldots, L_{n} be subcomplexes such that
(i) $K=L \cup L_{1} \cup \ldots \cup L_{n}$,
(ii) L_{i} has the homology of a point (each i),
(iii) $L \cap L_{i}$ has the homology of a point (each i),

$$
\text { (iv) } L_{i} \cap L_{j} \subset L \quad \text { if } \quad i \neq j
$$

Then $H_{*}(K) \cong H_{*}(L)$.
In the proof of (4.1) we shall use the following notation: for any simplex σ, we denote by $[\sigma]$ the complex consisting of σ together with its faces; a chamber of a simplicial complex K is a simplex of maximal dimension; for any subset $L \subset \subset_{k} \Pi, X_{L}$ denotes the set of shortest right coset representatives of $k^{W} L$ in k^{W}, that is, $X_{L}=\left\{\omega \in W \mid w^{-1}(L) \subset{ }_{k} \Phi^{+}\right\}$. Clearly X_{J} is a disjoint union: $X_{J}=\underset{L \sim J}{\dot{U}} Y_{L}$.

For any simplex $\sigma \in \Gamma$, define the distance $d(\sigma)$ of σ from the fundamental chamber [1] by $d(\sigma)=Z(\omega)$, where ω is the shortest element in σ. Write $\Gamma_{h}=\{\sigma \in \Gamma \mid d(\sigma) \leq h\}$ (h a positive integer), and correspondingly, write $\Gamma_{J, h}=\Gamma_{J} \cap \Gamma_{h}$.
(4.1.2) LEMMA. Let $\sigma=k^{W} L^{w}$ be a simplex of $\Gamma, w \in X_{L}$. Then
(i) the faces of σ of codimension 1 are

$$
\left\{_{k} W_{L u\{r\}^{w}} \mid r=r_{\alpha}, \alpha \in k_{k-L\}}:\right.
$$

for any face σ^{\prime} of σ, we have $d\left(\sigma^{\prime}\right) \leq d(\sigma)$;
(ii) the face $k^{W} L^{\prime} \omega=\sigma^{\prime}$ of $\left({ }_{k} \Pi \supset L^{\prime} \supset L\right)$ satisfies $d\left(\sigma^{\prime}\right)<d(\sigma)$ if and only if there is an element $\alpha \in L^{\prime}-L$ such that $Z\left(r_{\alpha} \omega\right)<Z(\omega)$;
(iii) if $d(\sigma)>0$, then σ has a face σ^{\prime} of codimension 1 with $d\left(\sigma^{\prime}\right)<d(\sigma)$.

The proof of (4.1.2) is an easy exercise in Weyl groups. As an immediate consequence, we see that Γ_{h} and $\Gamma_{J, h}$ are subcomplexes of Γ and Γ_{J} respectively.
(4.1.3) COROLLARY. Let $\sigma={ }_{k}{ }^{W} L^{\omega}$ be a simplex of Γ, and assume $\omega \in X_{L}$. Then σ has a proper face σ^{\prime} with $d\left(\sigma^{\prime}\right)=d(\sigma)$ if and only if $\omega \notin Y_{L}$.

Proof. If $w k Y_{L}$ then there is an element $\alpha \in_{k} \Pi-L$ such that if $r=r_{\alpha}$ is the corresponding reflection in k^{W}, then $Z(r w)>Z(w)$. By (4.1.2) (ii), the face $\sigma_{r}={ }_{k}{ }^{W} L \cup\{r\}{ }^{\omega}$ then satisfies $d\left(\sigma_{r}\right)=d(\sigma)$.

The converse follows similarly.
(4.1.4) LEMMA. With notation as in (4.1.3), suppose that $d(\sigma)=h$. Then

$$
[\sigma] \cap \Gamma_{h-1}={\underset{U}{i=1}}_{p}^{U_{i}}\left[\sigma_{i}\right]
$$

where $\sigma_{1}, \ldots, \sigma_{p}$ are the faces of σ which have codimension 1 and satisfy $d\left(\sigma_{i}\right)<h$.

This follows easily from (4.1.2) (ii).
Let $C\left(\Gamma_{J}\right)$ be the collection of simplexes of Γ_{J} of maximal
dimension $\left(=\left\{\mathcal{K}_{K} W_{J} v \mid v \epsilon_{k^{W}}{ }^{W}\right)\right.$. Write $C^{0}\left(\Gamma_{J}\right)$ for the set of simplexes σ in $C\left(\Gamma_{J}\right)$ which have a (proper) face σ^{\prime} such that $d\left(\sigma^{\prime}\right)=d(\sigma)$. By (4.1.3), we have that $C^{0}\left(\Gamma_{J}\right)=\left\{\left\{_{k} W_{J} v \mid v \in X_{J}-Y_{J}\right\}\right.$. Correspondingly, we write $\Gamma_{J}^{0}=\underset{\sigma \in C^{0}\left(\Gamma_{J}\right)}{U}[\sigma]$.
(4.1.5) LEMMA. Suppose $\left|{ }_{k}^{\Pi-J}\right|>1$. Then Γ_{J}^{0} has the homology of a point.

Proof. Write $\Gamma_{J, h}^{0}=\Gamma_{J}^{0} \cap \Gamma_{h}(h=0,1,2, \ldots)$. Clearly $\Gamma_{J, 0}^{0}=\left[W_{J}\right]$ is contractible. We show by induction on h that $\Gamma_{J, h}^{0}$ has the homology of a point for all h. Now

$$
\Gamma_{J, h+1}=\Gamma_{J, h}^{0} \cup\left[k W_{J} w_{1}\right] \cup \ldots \cup\left[k W_{J} w_{m}\right]
$$

where $\left\{{ }_{k}^{W} J_{i} \mid i=1, \ldots, m\right\}=\left\{\sigma \in C^{0}\left(\Gamma_{J}\right) \mid d(\sigma)=h+1\right\}$. One now checks the conditions of Lemma (4.1.1): (i) and (ii) are trivial; thus it remains to verify
(iii) $\left[\sigma_{i}\right] \cap \Gamma_{J, h}^{0}$ has the homology of a point $\left(\sigma_{i}=k^{W} d_{i}\right)$ and (iv) $\left[\sigma_{i}\right] \cap\left[\sigma_{j}\right] \subset \Gamma_{J, h}^{0}$ if $i \neq j$.

For (iii), we have from (4.1.4) that $\left[\sigma_{i}\right] \cap \Gamma_{J, h}^{0}=\bigcup_{j=1}^{p}\left[\tau_{i j}\right]$ where $\tau_{i_{1}}, \cdots, \tau_{i_{p}}$ are the faces of σ_{i} which have codimension 1 and satisfy $d\left(\tau_{i j}\right) \leq h$. Now by (4.1.2) (iii), σ_{i} has a face $\tau_{i l}$ with
$d\left(\tau_{i 1}\right) \leq h$. Further, since $\sigma_{i} \in \Gamma_{J}^{0}, \sigma_{i}$ also has a face τ with $d(\tau)=h+1 . \operatorname{Thus} \bigcap_{j=1}^{p}\left[\tau_{i j}\right] \neq \emptyset\left(\rho_{k} W_{\Pi_{k}}-\{r\}^{\omega}{ }_{i}\right.$, where $\tau=k^{W}{ }_{J U\{r\}^{\omega}}{ }_{i}$
is any face satisfying $d(\tau)=d\left(\sigma_{i}\right)$), and it follows that ${\underset{j}{j=1}}_{p}\left[\tau_{i j}\right]$ is contractible. Condition (iv) is easily verified. Thus Lenma (4.1.1) applies, and we deduce that $\Gamma_{J, h}^{0}$ and $\Gamma_{J, h+1}^{0}$ have the same homology. The result follows.
(4.1.6) LEMMA. The complexes Γ_{J} and Γ_{J}^{0} have the same ($d-1$)skeleton, where $d=\operatorname{dim} \Gamma_{J}=\left|{ }_{k} \Pi-J\right|-1$.

Proof. Let $k^{W} J_{J \cup\{r\}}{ }^{w}$ be a (d-1)-simplex of Γ_{J}; we may assume w to be in $X_{J \cup\{\alpha\}}$, where $r=r_{\alpha}$. Then a fortiori, $\omega \in X_{J}$ and it follows that the simplex $\sigma=k^{W} J^{W}$ lies in $C^{0}\left(\Gamma_{J}\right)$ (it has the face $\sigma^{\prime}=k^{W}{ }_{J \cup\{r\}^{w}}$ with $d\left(\sigma^{\prime}\right)=d(\sigma)$). Thus $\sigma^{\prime} \in[\sigma] \subset \Gamma_{J}^{0}$.

Proof of (4.1). From (4.1.6), we have

$$
\Gamma_{J}=\Gamma_{J}^{0} \cup\left\{\omega_{1}\right\} \cup\left\{\omega_{2}\right\} \cup \ldots \cup\left\{\omega_{t}\right\}
$$

where $\omega_{i}={ }_{k}^{W} y_{J} y_{i}$ and $y_{J}=\left\{y_{1}, \ldots, y_{t}\right\}$. Thus

$$
H_{J}\left(\Gamma_{J}\right)= \begin{cases}H_{p}\left(\Gamma_{J}^{0}\right) & (p<d) \\ H_{p}\left(\Gamma_{J}^{0}\right) \oplus \rho^{\left|Y_{J}\right|} & (p=d)\end{cases}
$$

The result now follows immediately from (4.1.5).
From (4.1) we quickly deduce the homology of Δ_{J} using
(4.2) LEMMA. The partially ordered sets $k W\left(\Gamma_{J} \times \Gamma_{J}\right)$ and $G(k) \backslash\left(\Delta_{J} \times \Delta_{J}\right)$ are isomorphic.

Proof. The proof is exactly the same as that of the corresponding
result for $k^{W \backslash(\Gamma \times \Gamma)}$ and $G(k) \backslash(\Delta \times \Delta)$. It may be found in [3].
(4.3) COROLLARY. Suppose $\left\lvert\, \begin{aligned} & \Pi-J \\ & \Pi\end{aligned}>1\right.$. Then then homology of Δ_{J} is given by

$$
H_{i}\left(\Delta_{J}\right)= \begin{cases}Q & (i=0), \\ 0, & 0<i<\left|\left.\right|_{k} ^{\Pi}-J-1\right| \\ Q^{t}, & i=|k-J-1|, \quad t \neq 0\end{cases}
$$

Putting together the results of (3.11), (4.1) and (4.3) we obtain
(4.4) THEOREM. Let $J \subset \subset_{k} \Pi$, with $D=|\pi-J|+d-1>0$ where $d=k-r a n k$ of $Z(G)$. Then the rational homology groups of $B_{J}(G)$ and $B_{J}(S)$ are given by

$$
\begin{aligned}
& H_{i}\left(B_{J}(G)\right)= \begin{cases}Q, & i \neq 0, \\
0, & 0<i<D, \\
\varphi^{t}, & t \neq 0, \quad i=D,\end{cases} \\
& H_{i}\left(B_{J}(S)\right)= \begin{cases}Q & , \quad i \neq 0, \\
0, & 0<i<D, \\
\left|Y_{J}\right|, & i=D,\end{cases}
\end{aligned}
$$

where $Y_{J}=\left\{\omega \in k^{W} \mid \omega J \subset \Phi^{+}, w(k \Pi-J) \subset \Phi^{-}\right\}$.

5. Representations associated with the spaces $B_{J}(G)$

From Theorem (4.4) it is apparent that we have a representation M_{J} of $G(k)$ on $H_{D}\left(B_{J}(G)\right)$. Moreover when $\left|{ }_{k} \Pi-J\right|>1$, it follows from (3.10) (i) that M_{J} is the same representation as that of $G(k)$ on $\left.{ }^{H}\right|_{k} \Pi-J \mid-1 \quad\left(\Delta_{J}(G, k)\right)$. Applying the Hopf trace formula to this latter complex we see that (when $\left|{ }_{k} \Pi-J\right|>1$)

$$
\text { (5.1) } M_{J}=\sum_{L, k}^{\Pi \square L \triangle J}(-1)^{|L-J|_{\operatorname{Ind}_{2}}^{G(k)}(k)}(1)
$$

Moreover, we may always assume that the k-rank d of $2(G)^{0}$ is nonzero (by suspending $B(G)$ if necessary); thus the formula (5.1) holds without restriction on J. This is equivalent to stipulating that $B_{J}(G)$ is connected for all J.

The representations M_{J} were introduced by Solomon [11] and studied by Surowski [16] and Stanley [14]. Our object in reintroducing them here is to show how the trace of M_{J} at regular semisimple elements of $G(k)$ may be evaluated directly from our main result (Theorem (2.5)).
(5.2) DEFINITION. For $L \subset{ }_{k}$ II define $\alpha_{L}: W \rightarrow \mathbb{N}$ by

$$
\alpha_{L}(x)=\#\left\{W_{\bar{L}} \omega \mid \omega \in k^{W}, W_{\bar{L}} \omega x=W_{\bar{L}} \omega\right\} .
$$

Note that in the split case, $\quad \alpha_{L}=\operatorname{Ind}_{W_{L}}^{W}(1) \quad\left(W=k^{W}, L=\bar{L}\right)$.
(5.3) THEOREM. Let s be a regular semisimple element of $G(k)$, and let ω_{s} be the corresponding element of W, chosen as in the statement of Theorem (2.5). If μ_{J} is the character of the representation M_{J} above, then

$$
\mu_{J}(s)=\left.\sum_{k}^{\Pi \in L C J}(-1)^{\mid L-J}\right|_{\alpha_{L}}\left(w_{s}\right)
$$

Proof. We have by the Lefschetz principle that

$$
\sum_{i=0}^{D}(-1)^{i} \operatorname{tr}\left(s, H_{i}\left(B_{J}(G)\right)\right)=\chi_{E}\left(B_{J}(G)\right)^{s}
$$

where X_{E} is the Euler characteristic.
But by (4.4) the left side reduces to $1+(-1)^{D_{\mu}}(s)$. Now by Theorem (2.5), the right hand side is

$$
\chi_{E}\left[B_{J}(G) \cap B\left(z_{S}\left(w_{s}\right)\right)\right]=X_{E}\left[B_{J}\left(z_{S}\left(w_{s}\right)\right)\right]
$$

To identify the topological nature of the space $B_{J}\left(Z_{S}\left(\omega_{S}\right)\right)$ we wish to relate it to the complex $\Gamma_{J}(c f .(3.10)(i i))$. For this we use (2.7) to
prove
(5.4) LEMMA. Let Γ_{J}^{ω} be the subcomplex of Γ_{J} defined by the condition

$$
W_{L} \omega \in \Gamma_{J}^{\omega_{S}} \Leftrightarrow W_{\bar{L}} \omega_{s}=W_{\bar{L}} \omega
$$

Then under the identification of (3.10) (ii), $B_{J}\left(z_{S}\left(w_{s}\right)\right)$ is identified with the d-fold suspension of $\left|\begin{array}{c}\Gamma_{J}^{s} \\ \Gamma^{s}\end{array}\right|$.

Proof of lemma. From (2.7) we have that $b \in B(S)$ is in $B\left(z_{S}\left(w_{s}\right)\right) \Leftrightarrow \dot{\omega}_{s} \in P(b)$. Now for $b \in B_{J}(S), \quad P(b)=w^{-1} P_{L} \omega$ for some $L \in k_{k} \Pi$, with $L \supset J$ (recall $k_{L} P_{L}=P_{\bar{L}}$), and some $w \in k_{k}^{W}$. Thus the condition $\dot{w}_{s} \in P(b)$ is equivalent to $w_{s} \in \omega^{-1} W_{\bar{L}} w$, or that $W \bar{L}^{\omega} \omega \omega_{s}=W \widetilde{L}^{\omega}$. Thus under the identification of (3.10) (ii), $B_{J}\left(Z_{S}\left(w_{s}\right)\right)$ is precisely the image of the suspensions of the simplexes in Γ_{J}^{w}. This proves the lemma.

Completion of the proof of Theorem (5.3). The Euler characteristic of $B_{J}\left(Z_{S}\left(\omega_{s}\right)\right)$ is now easily computed in terms of that of $\Gamma_{J}^{w_{s}}$, which is obtained by using the Hopf trace formula, and recalling that $\chi_{E}(S X)=2-\chi_{E}(X)$, where $S X$ is the suspension of the topological space X.
(5.5) COROLLARY. We have, for each subset $J \subset_{k}$ I,

$$
\operatorname{Ind}_{k_{J}}^{G(k)}(1)(s)=\alpha_{J}\left(\omega_{s}\right)
$$

This is obtained by applying Möbius inversion with respect to the partially ordered set of subsets of k^{Π} to the formula of (5.3).

6. Concluding remarks

(6.1) It is not immediately apparent that our definition of $\alpha_{L}(x)$ is F-conjugacy invariant. This is because the element w_{s} is somewhat special. However, let us define

$$
\alpha_{L}^{\prime}(x)=\#\left\{W \bar{L} \bar{L}^{v} \mid W_{\bar{L}}^{w x}=W \bar{L} F(x)\right\}
$$

It is then not difficult to show that for the elements w_{s} of (5.5), one has $\alpha_{L}\left(w_{s}\right)=\alpha_{L}^{\prime}\left(w_{s}\right)$, and α_{L}^{\prime} is patently F-conjugacy invariant: $\alpha_{L}^{\prime}\left(\omega x F(w)^{-1}\right)=\alpha_{L}^{\prime}(x)$ for each $w \in W$.
(6.2) Next, we remark that in the split case (when F acts trivially on W and $S=\bar{S}$ in $\S 2$) the results (and proofs) simplify. In particular, in the split case, one has a W-action on $B(S)$ and Theorem (2.5) has the simple formulation given in (2.6).

The result (5) is then deduced from the simple geometric observation that
(5.5)' we have $\Lambda\left(s, B_{J}(G)\right)=\Lambda\left(w_{s}, B_{J}(S)\right) \quad($ where $\Lambda(-, X)$
denotes the Lefschetz number: $\left.\sum_{i=0}^{\infty}(-1)^{i} \operatorname{tr}\left(-, H_{i}(X)\right) \cdot\right\}$
(6.3) As mentioned in the introduction, the formula (5.5) is not new. One of the by-products of the present geometric setting for it is that it may be generalized to the case where we have an equivariant $G(k)$-sheaf F of complex vector spaces on $B(G)$ (in the sense of Grothendieck [6]). Suppose for simplicity that G is split; we assume always that the cohomology modules $H_{c}^{i}(B(G), F)$ (cohomology with compact supports) are of finite type (that is, have finite complex dimension).

One then has a virtual $G(k)$ module $\Lambda_{G}=\sum_{i=0}^{\infty}(-1)^{i} H_{c}^{i}(B(G), F)$ whose associated trace function will be written $\lambda_{G}(B(G), F)(x)$. Now the methods of Verdier [17] may be generalized (see Donovan and Lehrer [5]) to prove that

$$
\lambda_{G}(\mathbb{B}(G), F)(x)=\lambda_{\langle x\rangle}\left(\mathbb{B}(G)^{x}, \mathcal{F} \mid \mathcal{B}(G)^{x}\right)(x),
$$

where $\langle x\rangle$ denotes the cyclic group generated by x and $F \mid Y$ denotes the sheaf F restricted to the subspace Y of $B(G)$. Hence for s a regular semisimple element of $G(k)$ (and G split), we have
(6.4) $\quad \lambda_{G}(B(G), F)(s)=\lambda_{\left(s^{\prime}\right)}\left(B(S)^{w_{s}}, F \mid B(S)^{\omega_{s}}\right)\left(s^{\prime}\right)$
where s^{\prime} is an appropriate $G(k)$-conjugate of s.
We note finally that since $B_{J}(G)$ is a closed subspace of $B(G)$, the discussion in $\S 5$ may be thought of as a special case of (6.4), where F is taken as constant on $B_{J}(G)$ and zero outside $B_{J}(G)$.

References

[1] Armand Borel et Jacques Tits, "Groups réductifs", Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55-151.
[2] C.W. Curtis, G.I. Lehrer, and J. Tits, "Spherical buildings and the character of the Steinberg representation", Invent. Math. 58 (1980), 201-210.
[3] C.W. Curtis and G.1. Lehrer, "A new proof of a theorem of solmonTits", Proc. Amer. Math. Soc. 85 (1982), 154-156.
[4] P. Deligne and G. Lusztig, "Representations of reductive groups over finite fields", Ann. of Math. (2) 103 (1976), 103-161.
[5] P.W. Donovan and G.I. Lehrer, "On the Euler-Poincaré characteristic of a G-sheaf", in preparation.
[6] Alexandre Grothendieck, "Sur quelques points d'algèbe homologique", Tôhoku Math. J. (2) 9 (1957), 119-221.
[7] Noriaki Kawanaka, "A theorem on finite Chevalley groups", Osaka J. Math. 10 (1973), 1-13.
[8] George Lusztig, "Unipotent characters of the symplectic and odd orthogonal groups over a finite field", Invent. Math. 64 (1981), 263-296.
[9] George Lusztig, "Unipotent characters of the even orthogonal groups over a finite field", Trans. Amer. Math. Soc. 272 (1982), 733-751.
[10] George Lusztig, Representations of finite Chevalley groups (Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, 39. American Mathematical Society, Providence, Rhode Island, 1978).
[11] Louis Solomon, "A decomposition of the group algebra of a finite Coxeter group", J. Algebra 9 (1968), 220-239.
[12] Louis Solomon, "The Steinberg character of a finite group with $B N$ pair", Theory of finite groups, 213-221 (Proc. Sympos., Harvard University, 1968. Benjamin, New York, 1969).
[13] T.A. Springer and R. Steinberg, "Conjugacy classes", Seminar on algebraic groups and related finite groups, Princeton, 1968/69, 167-226 (Lecture Notes in Mathematics, 131. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
[14] Richard P. Stanley, "Some aspects of groups acting on finite posets", J. Combin. Theory Ser. A 32 (1982), 132-161.
[15] David B. Surowski, "Permutation characters of finite groups of Lie type", J. Austral. Math. Soc. Ser. A 27 (1979), 378-384.
[16] David B. Surowski, "A reflection sieve for finite $B N$-pairs of type A_{n}, B_{n} and $C_{n} ", J$. Algebra 73 (1981), 538-551.
[17] Jean-Louis Verdier, "Caractéristique d'Euler-Poincaré", Bull. Soc. Math. Fronce 101 (1973), 441-445.

Department of Pure Mathematics,
University of Sydney,
Sydney,
New South Wales 2006,
Australia.

