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THE SPHERICAL BUILDING AND
REGULAR SEMISIMPLE ELEMENTS

G.I. LEHRER

Let G be a connected reductive algebraic group defined over a

finite field k . The finite group G(k) of fe-rational points

of G acts on the spherical building B(G) , a polyhedron which

is functorially associated with G . We identify the subspace of

points of 8(<J) fixed by a regular semisimple element s of

G(k) topologically as a subspace of a sphere (apartment) in

B(G) which depends on an element of the Weyl group which is

determined by s . Applications include the derivation of the

values of certain characters of G(k) at s by means of

Lefschetz theory. The characters considered arise from the

action of G(k) on the cohomology of equivariant sheaves over

8(C) .

Let k be the finite field IF of q elements and G a connected

reductive group defined over k . In [2] there was constructed a certain

topological space B(G) (the construction in [2] applied for an arbitrary

field k ) which is associated with G functorially. The (metric) space

B(G) is a union of spheres B(S) as S runs over the maximal fc-split

tori of G , and has a "rational subspace" which may be roughly thought of

as the space of one parameter subgroups of G , suitably topologized. In

[2] the construction was applied to the derivation of a character formula

for the group G(k) of rational points G(k) acting on the homology of

B(C) ; this formula follows from the identification of the fixed-point set
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362 G.I . Lehrer

of g € G(k) on B(G) , via Lefschetz theory.

In the present work we prove a general result concerning the fixed

point set B(G) of a regular semisimple element s € G{k) acting on

B(G) . This relates B(G)S to the set of points of an."apartment" 8(S)

(5 a maximal split torus) which are fixed by an element w of the Weyl

group of G which corresponds to s (see §2 below). As an application,

we use Lefschetz theory applied to certain subspaces BT(G) (J a subset
d

of the set H of simple roots) of B(G) to deduce the values of certain

principal series characters of G(k) at s . One consequence of this is

G(k) W r i
that in the spli t case, we have 1D dx(s) = 1.. \w ) (J c II) . This

result is of course not new. Lusztig has proved vastly more general

results ([8], [9], [70]) giving the values of all irreducible unipotent

characters of G on regular semisimple elements for most groups G and

the result has been dealt with explicitly (by different methods) by Deligne

and Lusztig [4, §§T, 8] , Kawanaka [7] and Surowski [12]. However i t seems

useful to put i t into the present geometric context, at least partly

because similar results can be obtained for any representation of G(k)

which is realized on the cohomology of an equivariant sheaf over 8(G)

(see §6 below).

Section 1 is devoted to the recollection of the main properties of

B(G) and Section 2 to the statement and proof of the main theorem. In

Section 3 we introduce certain closed subspaces BAG) of B(G) and give
eJ

them a simplicial structure. In Section U the homology of the spaces

8T(G) is computed simplicially, and in Section 5 the characters of G{k)

on the homology groups is studied via the fixed point theory of Section 2.

Finally, in Section 6, we discuss some special cases, and give a general

formulation for G{k)-equivariant sheaves over 8(G) .

1. The spherical building B(c) of a reductive fe-group

Let G be a reductive k-group (k any field). For any maximal

k-spli t torus S of G , B(S) is defined as the sphere whose points are

the rays (half-lines) of Y(S) ® R (Y(S) = Hom(G , S) , G being the
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multiplicative group of k ) . To every point b of B(5) we associate a

parabolic fc-subgroup P{b) = PQ(b) of G as in [2, §1]: P(b) is the

unique parabolic fc-subgroup of G which contains S and which

corresponds to the region of Y(S) ®R in which b l ies (these regions

are the simplexes of the Coxeter complex in the semisimple case).

If 8 is the disjoint union of the spheres B(S) (over al l maximal

fe-split tori S of G ) then we define an equivalence relation on 8 by

b ~ e if a = adg.b for some g € P(b)(k) . The building B(G) is then

defined as

(1.1) B(G) = B^G)/- .

Clearly G(k) acts on 8(G) . Some of i t s principal properties are

as follows (these may be found in [2]). Let S be a maximal k-split

torus of G .

(1.2) The projection B^G) •+ B(G) = 81(G)/~ restr icts to an

injection of 8(S) into 8(G) .

(1.3) The point b [(. B{G)) is in B(S) if and only i f 5 c p(b) .

(l.U) The isotropy group of b in G(k) is P{b)(k) .

(1.5) Let s be a semisimple element of G(k) . Then 8 Z~(s)

the fixed point set B(G)S of s acting on B(G) .

Suppose now that k is a finite field (say k - IF as in the

introduction). Then {of. Lusztig [JO]) associated with the ?c-structure of

G , we have a Frobenius endomorphism F -. G •* G which satisfies

(1.6) G(k) = C? = {g € G | F(g) = g) ;

(1.7) an algebraic subset H — G is defined over k if and

only i f F(tf) = tf ;

(1.8) for any fe-subgroup H of G we have

2. Fixed points of regular semisimple elements

Let s be a regular semislmple element of G{k) . Then s l ies in a
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unique maximal torus T , which is defined over k since T = ZJs) (of.

[ I , §§10.3, 10.5]).

(2.1) LEMMA. Let T be the maximal torus of G which contains the

regular semisimple element s (. G{k) . The fixed-point set 8(G)S of s
acting on B(G) i s B(lT,) where T, is the maximal k-split subtorus of

T .

Proof. From (1.5) we have that B(G)S = B ZG(s)
0 . But

ZG(s)° = T , whence B(G)S = 8(3") . From [2, Lemma (7-D (i)3 and [/,

§1.U] we have that S(T) = K[TJ} , whence the result . D

The above result applies when k is any field. Henceforth, we take

(2.2) LEMMA. A k-torus R of G is k-split if and only if F

acts on R by taking elements to their qth power.

Proof. R is sp l i t precisely when there is a fe-isomorphism
<)>:/?->• D where D i s a group of diagonal matrices. The Frobenius map on
D i s given by taking qth powers. Since <f> is a fe-morphism, i t
commutes with Frobenius ("transports the k-structure"), whence F is also
the q-power map on R . Conversely, if F consists of taking qth
powers, F acts on Y(R) as multiplication by q . Hence Y(R) =

whence R is spl i t [7, §1.3]. •

(2.2.1) COROLLARY. For any k-torus R of G 3 the split part

of R is given by R^ = {r € R \ F{r) = rq) .

We now fix the following notation:

S a maximal k-spli t torus of G ;

S a maximal k-torus of G containing S (so (5) , = S ) ;

W = #C(S)/S (the Weyl group of G with respect to S ) ;

W = NG(S)/ZG{S) •
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u is a representative in #G(S) for w € W .

We give a proof of the following result of Springer and Steinberg [13,

II.1.2] for the reader's convenience as well as for the purpose of

establishing notation.

(2.3) LEMMA. The G(k) = CT -conjugacy classes of F-stable maximal
tori of G are in bijective correspondence with the F-classes of W ,

where F-equivalence is defined by w ~ w if w = w f(») 3 some

v € W .

Proof. Let S be any F-stable maximal torus in G . Then

S = gSg~ , some g € G ; since S and S are F-stable, we have

Fig^F^g)'1 = g~Sg~X whence g~XF(g) = w € N{S) . I t is easily checked

that replacing g by gn [g € N(S)) or S by a u -conjugate has the

effect of replacing w by an F-equivalent element of W . •

Now suppose that s is a regular semisimple element of G(k) and
that T is the unique maximal torus of G such that s € T . Then T is
F-stable (see above) and so by (2.3), T corresponds to an element
W € W , which is determined to within F-conjugacy. Replacing s by a
G(k)-conjugate clearly gives the same F-class. We have shown:

(2.U) PROPOSITION. To each G(k)-conjugacy class of regular semi-
simple elements of G(k) there corresponds a unique F-conjugacy class in
W .

(2.5) THEOREM. Let s be a regular semisimple element of G(k) and
let c be the corresponding [of- (2.U)) F-class in W . Then the fixed-

8

point set 8(G) is G(k)-conjugate to 8(Z,,(ZJ )) for some element

w € c } where Z~[w ) = \t € S | tw = w t] and S is the maximal

k-split torus of G fixed above.

Proof. If T is the unique maximal torus of G which contains 6 ,

and T = gSg'1 , then g~ F(g) = w and w € c (see (2.3)).
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Now B{G)S = 5(7^) by (2.1), and since T^ is k-spl i t , there is an

element x of G(k) such that T-, c S (all maximal fe-split tori are

G(k)-conjugate by 11, §U.2l]). But B(G)XSX =adx.B(G)S for any

x € G(k) , whence replacing s (and therefore T ) by a G(fc)-conjugate

replaces B{G) by a G(fc)-conjugate and fixes the F-class cn . Thus we
s

may assume tha t T,cS.

After t h i s reduction, we have tha t S and T are both maximal

Ac-tori in Z^(T^ , which i s a connected reductive k-subgroup of G [7 ,

(2.15) ( d )L Thus there i s an element z € ZQ{TJ} s u c n t h a t T = ^ s " 1

and the element w ? W defined by w = z F(z) i s in the F-class <3
o o S

of W .

Moreover since z centralizes T'-, , so does F{z) and hence so does

Wg = z~ F(z) . Thus I", £ Zs(u
s) • Conversely, suppose that x £ S is

fixed by tf . Then s ' ^ s j x ^ s ) " ^ = x , whence zxs"1 = F(z)xF{z)~1 .

Taking c?th powers of both sides, we see that

(zxz~1)q = F(z)xqF(z)~X = Flzxz'1)

since by (2.2) we have that S = F(x) .

But zxz~X € zSz'1 c S53"1 = T . i t follows from (2.2.1) (since

F{ZXZ~ ) = [zxz~ y ) , that 3X3 is in the spl i t part of T , that is

3X3~ € T^ . Since z centralizes T, , i t follows that x € T, and so

Z5(wg) 5 T^ . Hence z
s{

w
s) = T£ and the theorem is proved. •

(2.6) COROLLARY. Suppose G is k-split and that s is a regular

semisimple semisimple element of ff(fc) . Then 8(G)S is G(k)-conjugate
w

to B(S) s , for any element w € c , where c is the conjugacy class
s s s

of W corresponding to s .
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Proof. In this case S = S and F acts t r ivial ly on W . Thus the

F-conjugacy classes of W are simply the conjugacy classes and the state-

ment follows directly from (2.5). •

We conclude this section with the following characterization of

B[Zs(w)) , for w € W .

(2.7) PROPOSITION. Let w € W . A point b of 8(5) is in

B(zs{w)) if and only if w € P(b) .

Proof. Write 5 ' = Z5(u) . This i s a fc-split torus of G V , §1.6]

and from [2 , Lemma (1.2) ( i i ) ] we have that b € B(S') implies that

P(b) 3 ZG(S') , so that w ( P(b) .

Conversely, suppose that b € B(S) and w € P(b) . Then

S r\ Rad P(b) cent ra l izes w and from [2 , Lemma (1.2) ( i i ) ] we have

b € 8(5 r> Rad P(b)) . Since S r, Rad P(i>) C ZQ(w) , we have

b € 8(5 n ZG(U)) = 8(Z5(w)) as required. D

3. The subspaces BT

Let K be an algebraic closure of k ; we wri te $, $ , II for the

set of roo t s , posi t ive roots and simple roots of G determined by 5 and

a Borel subgroup B ^> S (B may be assumed to be a fe-group). The

corresponding Weyl group i s W = W(S, G) . Following Borel and Tits [2 ,

§5]> the corresponding data for the fc-structure w i l l be denoted

fe$ = $(5, G) , k<f , k1l and jW .

The following facts will be of importance later .

(3.1) The parabolic fe-subgroups of G which contain B are the

,Pj for the various subsets J c ,n H , §5.12].

(3-2) The parabolic fe-subgroups of G which contain 5 are

]kPJ I J C k11' W € kW\ • mreover tPJ = W'kPJ ' i f a n d o n l y i f J = J>

and WWj = W Wj (here ^ = u f^P^u" 1 , and so on).

This follows from [ / , §§5.9 and 5.15].
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(3.3) For any subset J c II , there is a unique F-invariant subset

7 c II such that . P . = Pj .

Since ,PT contains B , clearly ,P = P7 for some J c A . More-
K d K d d

over, since , P . is defined over k , i t is F-invariant, whence i t

follows that W-r is F-invariant. But F maps II to i tself , whence
F{J) = J [ 7 3 , I I .

For each subse t J c n we define a G{k)-invariant subspace B>(G

as fo l lows .

(3.U) DEFINITION.

( i ) 8J(ff) = \b € B(C) I P(b) > ff^PjJff"1 for some g € C(k)J .

( i i ) For any reductive k-subgroup H S G , define
B JH) = B(fl) o BAG) .

Theorem (2.5) may be restated for B as follows.
d

(3-5) PROPOSITION. Let s be a regular semisimple element in
G{k) , with corresponding F-conjugacy class c in W . There exists

s
w € a such that

To investigate the topological nature of BAG) and BT(S) we

introduce the following finite simplicial complexes.

A = AAG, k) is the subcomplex of the combinatorial building (see
d J

[2, §6]) consisting of the following simplexes:

(3.6) A^ = lp I P is a parabolic fc-subgroup of G, P 3 j ^ for

some g € G(k)\ .

Analogously, we introduce the subcomplex FT of the Coxeter complex
o

r of , W as fo l lows .
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(3.7) T^ = \kWLw | L=> J, w € jW} .

(3.8) PROPOSITION. If G is semisimple, then there is a G(k)-

equivariant homeomorphism x : |AT(G)| -+• BAG) satisfying

(i) for b € |A.(G)| , p(x(Z>)) is the parabolic subgroup

corresponding to the simplex of A. containing b in its

interior;

(ii) if S is a maximal k-split torus and A AS) is the sub-
j

complex of, A (G) whose simplexes correspond to the

parabolic k-subgroups containing S , then x restricted

to |A AS) j is a triangulation of 8 (S) .

The proof consists of the observation that the map x of [2,

Proposition (6.1)] takes |A^| to B^ and |A^(5)| to 8^(5) .

In addition we have

(3-9) PROPOSITION. Let G' be the derived group of G , and let d

be the k-rank of the connected centre of G . Then 8 (G) may be

identified in a G(k)-equivariant way with the d-fold suspension of

8 r(G') . This identification maps B AS) (S a maximal k-split torus of

G ) to the d-fold suspension of 8,(5') , where S' is a maxinul k-split

torus of G' , which is contained in S (S' = 5 <"> G') .

The p r o o f i s an i m m e d i a t e c o n s e q u e n c e o f t h e p r o o f o f ( 7 - 1 ) a n d ( 7 . 2 )

i n [ 2 ] .

Combin ing ( 3 . 9 ) a n d ( 3 . 8 ) , we o b t a i n

(3.10) COROLLARY, (i) BAG) is homeomorphic in a G{k)-equivariant
a

way with the d-fold suspension of |A I .
d

(ii) BAS) is homeomorphic in a ,W-equivariant way to the d-fold

suspension of | r . | .
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4. The simplicial complexes r r and AT
d o

Although similar results are fairly well known (see, for example,

[76]), we include the proof of the following result for completeness. The

proof follows ideas of Solomon [7 2] who treated the case J = 0 .

(U.I) PROPOSITION. Suppose | 7IW| > 1 . Then the complex TT has

rational homology given by

a = o) ,

o (o < i < \kn-j-i\) ,

J , i = |fen-j-i| ,

where YT = |u € ,W \ w {J) c $ , y (,II-e7j c $ > .

We use the following elementary result, which may be found in Solomon

[72].

(U.l.l) LEMMA. Let K be a simplicial complex and L, L , ..., L

be subconplexes such that

(i) K = L u L1 u ... " Ln ,

(ii) L- has the homology of a point (each i ) ,

(iii) L n L. has the homology of a point (each i ) ,

(iv) L. n L . c L if i ? j .
i- 3

Then H*(#) S HA(L) .

In the proof of (U.l) we shall use the following notation: for any
simplex a , we denote by [a] the complex consisting of a together with
i t s faces; a chamber of a simplicial complex K is a simplex of maximal
dimension; for any subset L c , n , X denotes the set of shortest right

coset representatives of , W in , W , that i s ,

= <W € W | w (i) c , $ > . Clearly X is a disjoint union:X

J
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For any simplex a € T , define the distance d{a) of 0 from the
fundamental chamber [7] by d(a) = l(w) , where w is the shortest element
in a . Write V, = {a € T | d(a) < h] (h a positive integer), and

correspondingly, write F. , = T. n I\ .

(4.1.2) LEMMA. £et a = , Vru fee a simplex of T , w I XT . Then

(i) the faces of a of codimension 1 are

/or awi/ /aee a ' of a } we have d(a') 5 d(a) ;

t/je face ^L,w = o' of (,n 3 £' 3 L) satisfies

d(a') < d(a) if and only if there is an element a € L'-
such that £(rau) < £(u) ;

i i i ; i / d(a) > 0 3 then a has a face a ' of oodimension 1

d(a') < d(a) .

The proof of (4.1.2) is an easy exercise in Weyl groups. As an
immediate consequence, we see that I\ and Vj , are subcomplexes of T

and Tj respectively.

(4.1.3) COROLLARY. Let a = ,WTu) be a simplex of T , and assume
K u

L

if W

w € XT . Then a has a proper face a' with d(a') = d(a) if and only
L

Proof. If w ^ Y then there is an element a € ,II-L such that if

r = r is the corresponding reflection in ,W , then l(m>) > l(w) . By
01 K.

(U.I.2) (ii), the face a = ,W , -.W then satisfies d[a ) = d(o) .

The converse follows similarly. D

(U.I.4) LEMMA. With notation as in (4.1.3)^ suppose that d(a) = h .

Then

[a] « r w = U [a,]
1s~ J-
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where a , .. . , a are the faces of a which have codimension 1 and

satisfy d[a.} < h .

This follows easily from (U.I.2) (ii) .

Let C\T S\ be the collection of simplexes of V T of maximal

dimension (= {,W v \ v € ,W}) . Write C (r ) for the set of simplexes

a in C(r ) which have a (proper) face a ' such that d(o') = d{o) . By

(U.I. 3) , we have that C° [T ) = \k
Wjv I v e Xj~YJ • Correspondingly, we

write r ° = U [a] .

(U.I.5) LEMMA. Suppose L n - j | > 1 . Then T° has the homology of

a point.

P r o o f . W r i t e T°T u = TC' n r (h = 0 , 1 , 2 , . . . ) . C l e a r l y
J ,n d n

r . = [ L ] is contractible. We show by induction on h that FT , has

the homology of a point for al l h . Now

where {,^,w. | i = 1, . . . , m\ = jo € C°(r ) | d(a) = h+l\ . One now

checks the conditions of Lemma (U.I . I ) : (i) and (ii) are t r i v i a l ; thus i t

remains to verify

(Hi) [a .1 n TT , has the homology of a point (a. = ,WJJ.) and

(iv) [a.] " [a.] c r ° if i jt j .

For (Hi) , we have from (U.l.U) that fa .1 n Y T , = U [T . .] where

T. , . . . , T . are the faces of o. which have codimension 1 and satisfy

dfx. .) S h . Now by (U.I.2) (Hi), a. has a face x. with

https://doi.org/10.1017/S0004972700025879 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025879


Regular semisimple elements 373

d(r. ) 5 h . Further, since a . € F . , a. also has a face T with
7*1 "V d %

dlx) = h * 1 . Thus R [ T ^ ] * 0 (3 fctfw. , where T = ^ ^
J 1 K

P
is any face sa t i s fy ing <i(x) = d(p.) ) , and i t follows that U Pr. f] i s

cont rac t ib le . Condition (riu>) i s eas i ly ver i f ied . Thus Lennna ( U . l . l )

appl ies , and we deduce that FT , and FT , n have the same homology.
ti ,n j ,n+i.

The result follows. O

(1+.1.6) LEMMA. The complexes TT and F _. have the same ( d - l ) -

skeleton, where d - dim F = Lll-J'l - 1 .
d K

Proof. Let r.̂ TU/ \
w b e a (d-1)-simplex of F ; we may assume W

to be in ^j^fn} > where r = r . Then a fortiori, W € X. and it

follows that the simplex a = JJjj) lies in C° {T ) (it has the face

a' = k
wju{p}

w with d(a') = d(o) ). Thus a' € [a] c F° . D

Proof of (4.1). Prom (U.I.6), we have

Tj = Tj u i^ u ^ 2 ^ u • • • u i^

where tô  = ]<WJyi and *j= {h^ •••» «/tl • Thusô  ]<WJyi

(p < d) ,

\lr\

The result now follows immediately from (U.I.5)- O

From (U.l) we quickly deduce the homology of A. using
d

(U.2) LEMMA. The partially ordered sets W\{V x F 1 and

G(k)\{& x A ) are isomorphic.

Proof. The proof is exactly the same as that of the corresponding
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resul t for fe*A(r x r) and G(k)\(A x A) . I t may be found in [3].

(U.3) COROLLARY. Suppose L n - J l > 1 • Then then homology of A

is given by

<P (t = 0) ,

0 , 0 < i < \kn-j-i\ ,

o .

P u t t i n g t o g e t h e r t h e r e s u l t s of ( 3 - 1 1 ) , ( U . l ) a n d ( U . 3 ) we o b t a i n

(U.U) THEOREM. Let J c n , with D = Ln-«/ | + d - 1 > 0 wheve

d = k-rank of Z(G) . Then the rational homology groups of BAG) and

B (S) are given by

i * 0
0 < i

0 i = D ,

, i * 0 ,
, 0 < i < D ,

where Y, = \w € W \ wJ c $ , wLn-j) c $"} .

5. Representations associated with the spaces 8(G)

From Theorem (U.U) i t i s apparent tha t we have a representat ion M
tJ

of G(k) on H (8 (G)) . Moreover when Lll-^| > 1 , i t follows from

(3-10) (i) that Af is the same representation as that of G(k) on
Hi „ .I (A (G, k)) . Applying the Hopf trace formula to this l a t t e r

'k ~ '"
complex we see t h a t (when | JT.II—=7" | > 1 )

(5.D Mj = (1) .
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Moreover, we may always assume that the fe-rank d of 2(G) is non-
zero (by suspending 8(G) if necessary); thus the formula (5-1) holds
without restriction on J . This is equivalent to stipulating that BJG)

d

i s connected for a l l J .

The representat ions MT were introduced by Solomon [7 7] and studied

by Surowski [76] and Stanley [74]. Our object in reintroducing them here

i s to show how the trace of W. at regular semisimple elements of G{k)

may be evaluated d i rec t ly from our main re su l t (Theorem ( 2 . 5 ) ) .

(5.2) DEFINITION. For ' L c jjl define ct̂  : W ->• IN by

Note that in the split case, â . = Ind^ (l) [w = kW, L = Z) .

L

(5.3) THEOREM. Let s be a regular semisimple element of G(k) ,
and let w be the corresponding element of W , chosen as in the state-s

ment of Theorem (2.5). If PT is the character of the representation M

above, then

VAB) = I ( - l ) | w |c i> ) .
J L s

Proof. We have by the Lefschetz principle that

£ (-l)\r(6, //^(ff))) =XE{

where Xp i-s t n e Euler characteristic.

But by (h.h) the left side reduces to 1 + (-1) (i (s) . Now by

Theorem (2.5), the right hand side is

To identify the topological nature of the space 8TfZ_fu 11 we wish to
<J v o v s''

relate it to the complex T [cf. (3-10) (ii)). For this we use (2.7) to
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prove

w
s(5-1*) LEMMA. Let T be the subcomplex of V defined by the

condition

w
WTW € F T

S *=» W-rWU = WrU .
L J L s L

Then under the identification of (3.10) (ii), BTfz_(u )1 is identified

w
with the d-fold suspension of p

Proof of lemma. From (2.7) we have tha t b € 8(5) i s in

8(z_(w )) *=» w € P(b) . Now for b € 8T(5) , P(b) = u " 1 ^ for some
& ' S S u Li

L € , II , with L 3 e/ ( reca l l , P- = Pr- ) , and some u € , V . Thus the

condition w € P(£>) is equivalent to w € w (v̂pu or that

P/rUW = fcfcw . Thus under the identification of (3.10) (ii), 8 JzJw ))

w
is precisely the image of the suspensions of the simplexes in I \ s . This

proves the lemma. •

Completion of the proof of Theorem (5.3). The Euler characteristic of

w
8j.(Zg(us)) is now easily computed in terms of that of T , which is

obtained by using the Hopf trace formula, and recalling that

Xjp(SX) = 2 - Xr>(-̂ ) » where SX i s the suspension of the topological space

X .

( 5 . 5 ) COROLLARY. We have, for each subset J c feJI ,

K a

This i s obtained by applying Mobius inversion with respect t o the

p a r t i a l l y ordered set of subsets of ,IT to the formula of (5-3) .
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6. Concluding remarks

(6.1) I t is not immediately apparent that our definition of a^ix)

is F-conjugacy invariant. This is because the element w is somewhat

special. However, let us define

I t i s then not d i f f i cu l t t o show that for the elements w of (5 -5 ) , one

has a^(«s) = <*£(w
s) , and oti i s patently .F-conjugacy invar ian t :

a^{wxF{w)~X) = a'L(x) for each w € W .

(6.2) Next, we remark that in the spli t case (when F acts t r iv ia l ly
on W and S = S in §2) the results (and proofs) simplify. In
particular, in the spl i t case, one has a (/-action on 8(5) and Theorem
(2.5) has the simple formulation given in (2.6).

The result (5) is then deduced from the simple geometric observation
that

(5.5) ' we have A(s, B/G)) = A(wg, Bj(S)) [where A(-, X)

denotes the Lefschetz number: £ (-1) t r ( - , H.(X)} . |
i=0 J

(6.3) As mentioned in the introduction, the formula (5-5) is not new.
One of the by-products of the present geometric setting for i t is that i t
may be generalized to the case where we have an equivariant G(k)-sheaf F
of complex vector spaces on 8(G) (in the sense of Grothendieck [6]).
Suppose for simplicity that G is sp l i t ; we assume always that the

cohomology modules H (B(C), F) (cohomology with compact supports) are of

finite type (that i s , have finite complex dimension).

oo

One then has a virtual G{k) module Â  = £ (-l)Vj(B(G), F) whose
Is —\J

associated trace function will be written A.,(8(G), F)(x) . Now the

methods of Verdier [77] may be generalized (see Donovan and Lehrer [5]) to
prove that
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X C ( 8 ( C ) , F)(x) = X < a

where <a?> denotes the cyclic group generated by x and ¥\Y denotes the

sheaf F restricted to the subspace Y of 8(ff) . Hence for s a

regular semisimple element of G(k) (and G split), we have

w w
(6.U) X (8(G), F)(s) = A(sr>(8(5)

 s , F|8(S) s)(s')

where s' i s an appropriate G(fc)-conjugate of s .

We note f ina l ly tha t s ince 8-(G) i s a closed subspace of B(G) , the

discussion in §5 may be thought of as a specia l case of (6.U), where F i s

taken as constant on BAG) and zero outside 8T(G) .
d d
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