羁
NANYANG
TEGHNOOCIICA
UNIVERSITY

Lalan Kumar ${ }^{1}$, Guoan Bi^{2}, and Rajesh M. Hegde ${ }^{3}$ IIT Bhubaneswar, ${ }^{2}$ NTU Singapore, and ${ }^{3}$ IIT Kanpur

Introduction

The root-MUSIC (RM) method estimates DOAs as the roots of the MUSIC polynomial owing to Vandermonde structure of array manifold
Beamspace transformation based on phase mode excitation is aplied for UCA to get the Vandermonde structure in array mani-
UCA
Sparse UCA root-MUSIC and manifold separation techniques were further utilized for extending ULA root-MUSIC for UCA. Recently, various existing DOA estimation techniques were re-
formulated in the spherical harmonics (SH) domain utilizing spherical microphone array.

- In this work, we have developed the theory of root-MUSIC in SH domain using manifold separation technique.

The Spherical Harmonics

- $Y_{n}^{m}(\theta, \phi)$ is called spherical harmonic of order n and degree m. It is expressed as

$$
\begin{aligned}
Y_{n}^{m}(\Psi) & =\sqrt{\frac{(2 n+1)(n-m)!}{4 \pi(n+m)!} P_{n}^{m}}(\cos \theta) e^{j m \phi}, \\
& \forall 0 \leq n \leq N, 0 \leq m \leq n \\
& =(-1)^{|m|} Y_{n}^{|m| *}(\Psi), \forall-n \leq m<0,
\end{aligned}
$$

(12)
where P_{n}^{m} is the associated Legendre function.

SH-RM using Manifold Separation
Manifold separation means writing steering vector (Manifold vector) as a product of a characteristic matrix of the array and a vector with Vandermonde structure depending on the azimuth angle. Utilizing (14) and (12), the steering vector for co-elevation θ_{0} can be written in more compact form as

$$
\begin{aligned}
\mathrm{y}^{H}(\Psi) & =\mathrm{y}^{H}\left(\theta_{0}, \phi\right) \\
& =\left[f_{00},-f_{1(-1)} e^{i \phi}, f_{10}, f_{11} e^{-j \phi}, \ldots, f_{N N e^{-j N} \mid}\right]^{T}
\end{aligned}
$$

Re-writing (19) in matrix form,

$$
\begin{aligned}
\mathrm{y}^{H}\left(\theta_{0}, \phi\right) & =F\left(\theta_{0}\right) d(\phi) \\
\text { where, } F\left(\theta_{0}\right) & =\operatorname{diag}(f)_{00},- \\
d(\phi) & =\left[1, e^{\phi}, 1, e^{-}\right.
\end{aligned}
$$

RMSE Analysi

CRMSE vs (a) SNR for two sources at $\left(20^{\circ}, 40^{\circ}\right)$ and $\left(20^{\circ}, 80^{\circ}\right)$, (b) azimuth separation, azimuth of one source is fixed at 40° and that of other source is varying in steps of 10°. SNR = 20dB.

$$
\underbrace{20}_{\text {Sumb }}
$$

The Data Model in Spatial Domain
A spherical microphone array of order N, radius r and the number of sensors I is considered. A sound field of L plane-waves is incident on the array with wavenumber k.
The $l^{l n}$ source location is denoted by $\Psi_{l}=\left(\theta_{l}, \phi_{l}\right)$ and $i^{\text {th }}$ sensor , $\left(A_{i}, \phi_{i}\right)$
In spaia (k), he sound pressure at I microphones, $\mathbf{p}(k)=$ $\left.p_{1}(k) p_{2}(k) \ldots p_{I}(k)\right)^{T}$, is written as

$$
\begin{aligned}
\mathbf{p}(k) & =\mathbf{V}(k) \mathbf{s}(k)+\mathbf{n}(k), \text { where } \\
\mathbf{v}(k) & =\left[\mathbf{v}_{\mathbf{1}}(k) \mathbf{v}_{\mathbf{2}}(k), \ldots, \mathbf{v}_{\mathbf{L}}(k)\right] \\
\mathbf{v}_{l}(k) & =\left[e^{-j \mathbf{k}_{l_{1}}^{T}, e^{-j \mathbf{k}_{l}^{T} \mathbf{r}_{2}}, \ldots, e^{\left.-j \mathbf{k}_{l}^{T} \mathbf{r}_{l}\right]}{ }^{T}}\right. \\
\mathbf{k}_{l} & =-\left(k \sin \theta_{l} \cos \phi_{l}, k \sin \theta_{l} \sin \phi_{l}, k \cos \theta_{l}\right)^{T} \\
\mathbf{r}_{i} & =\left(r \sin \theta_{i} \cos \phi_{i}, r \sin \theta_{i} \sin \phi_{i}, r \cos \theta_{i}\right)^{T}
\end{aligned}
$$

- $e^{-j \mathbf{k}_{l}^{T} r_{i}}$ is plane wave solution to the wave equation in Cartesian Steordinates
Steering Vector Matrix in SH Domain
- Substituting (6) and (3) in (2), the expression of steering matrix becomes

$$
\mathbf{V}(k)=\mathbf{Y}(\Phi) \mathbf{B}(k r) \mathbf{Y}^{H}(\Psi)
$$

- $\mathrm{Y}(\Phi)$ is $I \times(N+1)^{2}$ matrix whose $i^{\text {th }}$ row is given as

$$
\mathrm{y}\left(\Phi_{i}\right)=\left[Y_{0}^{0}\left(\Phi_{i}\right), Y_{1}^{-1}\left(\Phi_{i}\right), Y_{1}^{0}\left(\Phi_{i}\right), Y_{1}^{1}\left(\Phi_{i}\right), \ldots, Y_{N}^{N}\left(\Phi_{i}\right)\right]
$$

- The $(N+1)^{2} \times(N+1)^{2}$ matrix $\mathbf{B}(k r)$ is given by
$\mathrm{B}(k r)=\operatorname{diag}\left(b_{0}(k r), b_{1}(k r), b_{1}(k r), b_{1}(k r r), \ldots, b_{N}(k r)\right) . \quad$ (15)
SH-RM using Manifold Separation
- $d(\phi)$ consists of only exponent terms containing azimuth angle. Each submatrix corresponding to a particular order, follows Vandermonde structure.
- Utilizing (21), the SH-MUSIC cost function can be written as

$$
\begin{aligned}
& P_{S H M}^{-1}(\phi)=d^{H}(\phi) F^{H}\left(\theta_{0}\right) \mathbf{S}_{\mathbf{a}_{\text {m }}}^{\mathbf{N S}}\left[\mathbf{S}_{\mathbf{a}_{\text {na }}}^{\mathbf{N S}}{ }^{H} F\left(\theta_{0}\right) d(\phi)\right. \\
& \begin{aligned}
& =d^{H}(\phi) F^{H}\left(\theta_{0}\right) \mathbf{C} F\left(\theta_{0}\right) d(\phi) \\
\text { where } & \text { C }
\end{aligned} \\
& \text { where, } \mathbf{C}=\mathbf{S}_{\mathbf{a}_{n m}}^{\mathbf{N S}}\left[\mathrm{S}_{\mathbf{a}_{\mathrm{nm}}}^{\mathrm{NS}} H^{H}\right.
\end{aligned}
$$

Finite Order Mode Strength - Writing $e^{-j \mathbf{k}_{\mathbf{i}} \mathbf{r}_{i}}$ in spherical co-ordinates, we have

$$
e^{-j \mathbf{k}_{i}^{T} \mathbf{r}_{i}}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} b_{n}(k, r)\left[Y_{n}^{m}\left(\Psi_{l}\right)\right]^{*} Y_{n}^{m}\left(\boldsymbol{\Phi}_{i}\right)
$$

- The far-field mode strength $b_{n}(k, r)$ is given by
$b_{n}(k r)=4 \pi j^{n} j_{n}(k r), \quad$ for open sphere $=4 \pi j^{n}\left(j_{n}(k r)-\frac{j_{n}^{\prime}(k r)}{h_{n}^{\prime}(k r)}\right), \quad$ for rigid sphere

- b_{n} decreases significantly for $n>k r$. The summation in (6) can be truncated to some finite $N \geq k r$, called array order. Final Data Model in SH Domain
- Substituting (13) in (1), then multiplying both sides with $\mathrm{Y}^{H}(\Phi)$ and utilizing the relations in (10) and (11), the data model in spherical harmonics domain can be written as

$$
\begin{equation*}
\operatorname{pnm}(k)=\mathbf{B}(k r) \mathbf{Y}^{H}(\Psi) \mathbf{s}(k)+\mathbf{n}_{\mathbf{n m}}(k) . \tag{16}
\end{equation*}
$$

- $\mathrm{B}(k r)$ is a constant based on the array geometry. Multiplying both side by $\mathrm{B}^{-1}(k r)$, we have

SH-RM using Manifold Separation

- Out of $4 N$ roots, $2 N$ roots will be within the unit circle and $2 N$ outside the unit circle. Of the $2 N$ roots within the unit circle, L roots close to unit circle correspond to the DOAs.
- As $z=e^{j \phi}$, the DOA can be estimated from the roots by using the relation, $\phi=\Im(\ln (z))$, where $\Im()$ is imaginary part of () .
- SH-MUSIC and SH-root-MUSIC plots are illustrated in the following Figure for two sources at ($20^{\circ}, 40^{\circ}$) and $\left(20^{\circ}, 80^{\circ}\right), \mathrm{N}=4$ $\mathrm{SNR}=15 \mathrm{~dB}$.

Validation with Real Data

- Eigenmike was utilized in anechoic chamber to acquire data.
- A sound with frequency 1250 Hz was played using smartphone speaker fixed at $\left(90^{\circ}, 90^{\circ}\right)$ in far-field region
Fig the $2 N(=8)$ roots within the unit circle are plotted in the Figure.

Spherical Fourier Transform
-The Spherical Fourier Transform (SFT) of the received pressure, $p(k)$, is given as

$$
\begin{aligned}
p_{n m}(k) & =\int_{0}^{2 \pi} \int_{0}^{\pi} p(k)\left[Y_{n}^{m}(\Phi)\right]^{*} \sin (\theta) d \theta d \phi \\
& \cong \sum_{i=1}^{I} a_{i} p_{i}(k)\left[Y_{n m}\left(\Phi_{i}\right)\right]^{*}
\end{aligned}
$$

- In matrix form for all $n \in[0, N], m \in[-n, n]$ and I, the SFT becomes

$$
\operatorname{pnm}(k)=\mathbf{Y}^{H}(\boldsymbol{\Phi}) \Gamma \mathbf{p}(k),
$$

where $\Gamma=\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{I}\right)$ is matrix of sampling weights.
Under the assumption of (9), we have the orthogonality property of spherical harmonics as

$$
\mathbf{Y}^{H}(\mathbf{\Phi}) \boldsymbol{\Gamma} \mathbf{Y}(\mathbf{\Phi})=\mathbf{I},
$$

The Spherical Harmonics MUSIC
Comparing the spatial data model in (1) with spherical harmonics data model in $(17),\left[\mathbf{Y}^{H}(\Psi)\right]_{(N+1)^{2} \times L}$ is the steering matrix in pherical harmonics domain.

- The SH-MUSIC spectrum can thus be written as

$$
P_{S H M}(\Psi)=\frac{1}{\mathbf{y}(\Psi) \mathbf{S}_{\mathbf{a}_{\mathrm{m}}}^{\mathrm{NS}}\left[\mathbf{S}_{\mathbf{a}_{\mathrm{m}}^{\mathrm{N}} \mathbf{N}}\right]_{\mathbf{y}}{ }^{H}(\Psi)},
$$

where $y^{H}(\Psi)$ is a steering vector and can be written as (14).

- $\mathrm{S}_{\mathrm{a}_{\mathrm{nm}}}^{\mathrm{NS}}$ is the noise subspace obtained from eigenvalue decomposition of autocorrelation matrix, $\mathbf{S}_{\mathbf{a}_{\mathrm{nm}}}=E\left[\mathbf{a}_{\mathrm{nm}}(k) \mathrm{a}_{\mathrm{n}}(k)^{H}\right]$.

Performance Evaluation

- The experiments utilized an Eigenmike ${ }^{\circledR}$ system, consisting of 32 microphones, embedded in a rigid sphere of radius 4.2 cm . - The RMSE analysis and statistical analysis are presented for two sources at $20^{\circ}, 40^{\circ}$) and $\left(20^{\circ}, 80^{\circ}\right)$ using 500 independent Monte Carlo trials.
- Cumulative root mean square error (CRMSE) and probability of resolution were used to evaluate the performance of the proposed method.
The CRMSE is computed using
CRMSE $=\frac{1}{2 T} \sum_{t=1}^{T} \sum_{l=1}^{2}\left[\left(\phi_{l}-\hat{\phi}_{l}^{(t)}\right)^{2}\right]$,

Conclusions

- Theory of root-MUSIC is established in spherical harmonics domain. The theory is validated using simulation and real data experiments.
The Vandermonde structure of array manifold in spherical harmonics domain is shown using manifold separation technique. ization expers of for sher

