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Neutron diffraction proves advantageous as compared to X-ray diffraction in texture analysis because of the lower
absorption coefficient for a broad variety of materials especially metals. The spherical sample method is recom-
mended because it yields the most reliable results and it does not require great preparational efforts. The funda-
mental difference between the spherical sample method in X-ray and in neutron diffraction is discussed.

X-RAY AND NEUTRON DIFFRACTION

Texture measurements usually are carried out by
the X-ray diffraction technique. In recent years,
however, neutron diffraction became accessible
more easily and was applied to texture investigations
at an increasing rate1-’. Both these methods are
very similar to one another. There are, however,
some quantitative differences which, in many cases,
make neutron diffraction by far superior to X-ray
diffraction. A comparison of the quantitative
aspects of the two methods was given, for example,
in several recent publications. 9’ 5,16

Most of the superiorities of neutron diffraction in
texture analysis are based on the much lower
absorption coefficient for neutrons in a wide variety
of materials especially metals. Hence the sample
may be taken several millimeters or even centi-
meters thick without the necessary absorption cor-
rection being unduly large. This allows specimens
of industrially interested dimensions to be investi-
gated as a whole. Because of the usual inhomo-
geneity of the textures, such overall sampling is
necessary for the calculation of average orientation
properties comparable with the macroscopic
properties of the material.

Secondly, the relative deviations of the sample
from its ideally proposed shape can be kept much
smaller in the millimeter range than in the range of
a few hundredths or tenths of a millimeter. Hence
the remaining absorption correction can be cal-
culated much more precisely than in the X-ray case.
Thus it is possible to reduce the experimental errors
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of texture measurements by almost an order of
magnitude without increasing the efforts required
in specimen preparation. It is this feature which
makes neutron diffraction exceptionally valuable
if texture data are to be processed mathematically.17

There is, however, one source of error which is
not reduced or which may even be increased by
neutron diffraction, if the usual transmission and
back reflection techniques are employed. In these
techniques different areas of the sample are being
irradiated at different angular positions, because
the sheet plane cuts the primary beam at different
angles. Hence at different angular positions of the
sample, different lots of crystallites are involved
which may exhibit different orientation distributions
among themselves, if the texture is not homo-
geneous. This means that different parts of a pole
figure may correspond, strictly speaking, to different
textures. This effect may easily be estimated with
materials of cubic crystal symmetry. In this case
certain integrals taken over the whole pole figure
were to vanish if the pole figure was correct.17 The
deviation from zero provides then a good measure
of the inconsistency of the pole figure values among
themselves. The inconsistency must be well dis-
tinguished from the uncertainty of a pole figure
being brought about by the uncertain definition of
an inhomogeneous texture, although both are of
the same order of magnitude. When only pole
figures are examined this difference does not
matter. If, however, three-dimensional orientation
distribution functions are to be calculated from the
pole figure data either by an interational method or
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by solving a system of linear equations for the
coefficients, then the inconsistency may give rise
to an additional, even enhanced, error. An inhomo-
geneity effect of this kind frequently occurs in the
transverse direction, if metal sheet samples are
prepared on a laboratory scale (rolled in strips of
10 cm or less in width). Since with the usual back-
reflection and transmission technique of neutron
diffraction the optimum sample diameter is about
5-10 cm, considerable parts of the inhomogeneous
side regions of the strip may be included.

THE SPHERICAL SAMPLE METHOD

An inhomogeneity effect of this kind may easily be
avoided if the sample is smaller than the cross
section of the incident beam. In this case, the same
lot of crystallites is being irradiated at any angular
position. Furthermore, if the shape of the sample is
approximately that of a sphere, then correction for
absorption can be neglected, because of the low
absorption coefficient. The resulting intensity values
are immediately proportional to pole density values,
and they are no longer inconsistent with each other
arising from inhomogeneity effects. Figure shows a

FIGURE Preparation of a "spherical sample" for
neutron diffraction texture analysis.

very simple method for constructing a "sphere" out
ofa sheet material. A"sphere" ofthis quality is com-
pletely sutficient for the spherical sample method in
the case of neutron diffraction. The cross-shaped
bars of the section number are used to fasten the
spherical sample to the goniometer in the same
way as sheet samples are fastened. They may give
rise to a small residual inhomogeneity effect, but
they may also be replaced by some other material
soldered or glued to the sample. The scheme of
measurement is the same as it is with the sheet

specimen, for both the "transmission" and the
"back-reflection" ranges. As far as the sample
itself is concerned, there is no longer any difference
between these two ranges. The division of the whole
pole figure into these, two ranges is necessary only
because of the shadow cast by certain parts of the
goniometer.

It is to be emphasized that there is a fundamental
difference between the spherical sample method in
neutron diffraction and the same method in X-ray
diffraction.18, 9 In the X-ray method, diffraction
takes place solely in a small surface layer of the
sphere. Therefore, every angular position is being
measured with a completely different lot of crystal-
lites. Hence the X-ray method is extremely sensitive
to inhomogeneities of the texture. Furthermore, a
smooth and well-defilied spherical surface is needed.
In the neutron method, on the other hand, diffrac-
tion takes place in the whole volume of the speci-
men. Hence inhomogeneity effects are completely
eliminated, and there is no need for a good surface.
An appraisal of the intensity of the reflected

beam, the absorption and other geometrical con-
ditions show that reasonable diameters for a
spherical sample range from about 0.5 cm to 3 or
4 cm. Furthermore it turned out that a certain
amount of material made into a sphere yields a
higher pulse rate of the reflected beam than the
same volume investigated in the form of a sheet.
This is due to the specific aperture conditions in the
back-reflection and transmission method.2 Thus
the spherical sample method, to a certain degree,
may reduce the limitations of the neutron diffrac-
tion method if only small amounts of material are
available.
The pole figures of a textured specimen may be

regarded as different "projections" of the three-
dimensional texture function. Hence there exist
certain relationships among them which must be
fulfilled exactly if the pole figures were devoid of
experimental error. In any real case, however, there
will be finite deviations which can be used to
define certain error coefficients describing the
degree of misfit of the pole figures among one
another.17 In Figure 2 these error coefficients are
shown for an inhomogeneous brass-specimen
measured by the usual back-reflection and trans-
mission method (curve a). It has been suggested
that the higher order coefficients corresponded to
statistical errors, whereas the strong increase
towards lower orders was due to systematical
errors. 21 The latter could have been brought about
by the texture inhomogeneities described above.
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FIGURE 2 Comparison of the error ccicnts for a
strongly inhomogencous specimen: (a) sheet sample (b)
spherical sample (c) mean value of the statistical errors of
several samples.

Then the measurements were repeated with the
same specimen, but made into a sphere (curve b).
It can be seen that now the lower-order terms
are also in the same order of magnitude of the
statistical errors which have been estimated from a
large number of measurements with different
materials (curve c). This shows that the measure-
ments using a spherical sample are no longer in-
fluenced by the strong systematical errors due to
inhomogeneity although, now as before, the texture
is inhomogeneously distributed throughout the
sample. The resulting pole density values correpond
to the mean value of the texture irrespective of the
spatial distribution of the different orientations
within the sample.

CONCLUSION

From the foregoing it must be concluded that a
spherical sample is superior to a flat sheet sample
in neutron diffraction texture analysis. Further-
more, a sphere of the low quality needed is easy to
prepare. Hence the spherical sample method is to be
recommended as a standard method in neutron
diffraction texture analysis.
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