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The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105

Jeffrey E. McClintock1, Rebecca Shafee2, Ramesh Narayan1, Ronald A. Remillard3,

Shane W. Davis4, Li-Xin Li5

ABSTRACT

Based on a spectral analysis of the X-ray continuum that employs a fully

relativistic accretion-disk model, we conclude that the compact primary of the

binary X-ray source GRS 1915+105 is a rapidly-rotating Kerr black hole. We

find a lower limit on the dimensionless spin parameter of a∗ > 0.98. Our result is

robust in the sense that it is independent of the details of the data analysis and

insensitive to the uncertainties in the mass and distance of the black hole. Fur-

thermore, our accretion-disk model includes an advanced treatment of spectral

hardening. Our data selection relies on a rigorous and quantitative definition of

the thermal state of black hole binaries, which we used to screen all of the avail-

able RXTE and ASCA data for the thermal state of GRS 1915+105. In addition,

we focus on those data for which the accretion disk luminosity is less than 30% of

the Eddington luminosity. We argue that these low-luminosity data are most ap-

propriate for the thin α-disk model that we employ. We assume that there is zero

torque at the inner edge of the disk, as is likely when the disk is thin, although

we show that the presence of a significant torque does not affect our results. Our

model and the model of the relativistic jets observed for this source constrain the

distance and black hole mass and could thus be tested by determining a VLBA

parallax distance and improving the measurement of the mass function. Finally,

we comment on the significance of our results for relativistic-jet and core-collapse

models, and for the detection of gravitational waves.
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1. Introduction

GRS 1915+105 has unique and striking properties that sharply distinguish it from the

40 known binaries that are believed to contain a stellar-mass black hole (Remillard & Mc-

Clintock 2006, hereafter RM06). It is the most reliable source of highly relativistic radio

jets in the Galaxy (Mirabel & Rodŕiguez 1994; Fender et al. 1999; Miller-Jones et al. 2006),

and it is the prototype of the microquasars (Mirabel & Rodŕiguez 1999). GRS 1915+105

(hereafter GRS1915) frequently displays extraordinary X-ray variability that is not mimicked

by any other black hole system (e.g., Belloni et al. 2000; Klein-Wolt et al. 2002). Its black

hole (BH) primary is unique in displaying a constellation of high-frequency QPOs (HFQ-

POs), namely, 41 Hz, 67 Hz, 113 Hz and 166 Hz. The 67 Hz QPO is atypically coherent

(Q ≡ ν/∆ν ∼ 20) and relatively strong (rms > 1%) compared to the HFQPOs observed

for six other accreting BHs (Morgan et al. 1997; McClintock & Remillard 2006, hereafter

MR06). Among the 17 transient and ephemeral systems that contain a dynamically con-

firmed BH (RM06), GRS1915 is unique in having remained active for more than a decade

since its discovery during outburst in 1992 (MR06). GRS1915 has an orbital period of 33.5

days and is the widest of the BH binaries (BHBs), and it likely contains the most massive

stellar BH (Greiner et al. 2001; Harlaftis & Greiner 2004; RM06).

Zhang et al. (1997) first argued that the relativistic jets and extraordinary X-ray behav-

ior of GRS1915 are due to the high spin of its BH primary. In their approximate analysis,

they found that both GRS1915 and GRO J1655–40 had high spins, a∗ > 0.9 (a∗ = cJ/GM2,

where M and J are the mass and angular momentum of the BH; a∗ = 0 for a Schwarzschild

hole and a∗ = 1 for an extreme Kerr hole). Subsequently, Gierlinśki et al. (2001) estimated

the spin of GRO J1655–40 and LMC X–3. Recently, we have firmly established the method-

ology pioneered by Zhang et al. and Gierlinśki et al. by constructing relativistic accretion

disk models (Li et al. 2005; Davis et al. 2005) and by modeling in detail the effects of spectral

hardening (Davis et al. 2005, 2006). We have made these analysis tools publicly available via

XSPEC (kerrbb and bhspec; Arnaud 1996). Using this modern methodology, spins have now

been estimated for several stellar-mass BHs, most notably: GRO J1655–40 and 4U 1543–47

(Shafee et al. 2006, hereafter S06), GRS1915 (Middleton et al. 2006), and LMC X-3 (Davis

et al. 2006).

All of the plausibly reliable estimates of BH spin to date, including the present work,

depend on fits to the X-ray continuum and measurements of the X-ray luminosity, coupled

with optical measurements of BH mass, orbital inclination, and distance (e.g., S06). In this

paper, we show that GRS1915 does indeed harbor a rapidly-spinning Kerr BH as suggested

by Zhang et al. (1997). However, in the case of GRO J1655–40 the results obtained by

ourselves and others show that the spin of this BH is modest (a∗ ∼ 0.75; S06; Gierlinśki et
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al. 2001) and much lower than the value (a∗ ∼ 0.93) suggested by Zhang et al. The high

spin reported herein for GRS1915 contradicts the modest spin value (a∗ ∼ 0.7) reported by

Middleton et al. (2006), and we discuss this inconsistency in detail in §5.3.

Our spin estimates are based on an analysis of the “thermal state” of BHBs (MR06)

whose remarkably simple properties have been recognized for decades. Basic principles of

physics predict that accreting BHs should radiate thermal emission from the inner accretion

disk, and a multi-temperature model of a thin accretion disk was published shortly after

the launch of Uhuru (Pringle & Rees 1972; Shakura & Sunyaev 1973; Novikov & Thorne

1973; Lynden-Bell & Pringle 1974). A nonrelativistic approximation to this model, now

referred to as diskbb in XSPEC (Arnaud 1996) was first implemented and used extensively

by Mitsuda et al. (1984) and Makishima et al. (1986). The two parameters of the model are

the temperature Tin and radius Rin of the inner edge of the accretion disk. In their review

on BHBs, Tanaka and Lewin (1995) show for a few BHBs (see their Fig. 3.14) that as the

thermal disk flux varies by 1–2 orders of magnitude the value of Rin remains constant to

within . 20%. This striking result prompted Tanaka & Lewin to comment that Rin, which

was typically found to be ∼ tens of kilometers, must be related to the radius of the innermost

stable circular orbit (RISCO). The stability of Rin has by now been observed in great detail

for many BHBs (e.g., Ebisawa et al. 1994; Sobczak et al. 1999; Sobczak et al. 2000; Park

et al. 2004). Further strong evidence for a thermal disk interpretation is provided by plots

of the observed disk flux versus apparent temperature, which track the expected L ∝ T 4

relation for a constant inner disk radius (Gierlinśki & Done 2004; Kubota & Done 2004).

Spin can be determined because it has a profound impact on the behavior and properties

of a BH. Quantitatively and specifically, consider two BHs with the same mass M , one a

Schwarzschild hole and the other an extreme Kerr hole. For the Kerr hole, the radius of

the ISCO is six times smaller and the binding energy at the ISCO seven times greater than

for the Schwarzschild hole. Relative to the spinless BH, the much deeper gravity well of

the extreme Kerr hole hardens the X-ray spectrum and greatly increases its efficiency for

converting accreted rest mass into radiant energy. The continuum fitting approach that we

use is based on measuring spectral shape (hardness) and luminosity (efficiency).

This paper is organized as follows. In §§2–4 we discuss respectively the selection, re-

duction, and analysis of the data. In §5 we present our results for GRS1915 and compare

them with those of Middleton et al. (2006), and we present a table summary of the spins

of GRS1915 and three other BHs. The discussion topics in §6 include a description of our

methodology, our rationale for favoring low-luminosity data, the natal origin of BH spin, the

significance of measuring BH spin, and a proposed test of our model. In §7 we offer our

conclusions.
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2. Data Selection

Our primary resource is the huge and growing archive of data on GRS1915 that has been

obtained during the past decade using the large-area PCA detector on board the Rossi X-ray

Timing Explorer (RXTE; Swank 1998). Many BHBs have by now been observed hundreds

of times, but none has been observed more often than GRS1915. The net inventory of

RXTE pointed observations on this source from 1996 to the present now totals 4.7 Ms,

which corresponds to 1311 pointed observations each of duration 1–10 ks.

The unique properties of GRS1915 and the great volume of perplexing data present a

serious challenge: Is it possible to identify extended periods of time when GRS1915 was in a

genuine pacific state dominated by thermal emission, and can one use these data to obtain

a reliable estimate of spin? We believe we have answered “yes” to this challenge by using

a quantitative definition of the “thermal state” that is based on our exhaustive studies of

many BHBs and BH candidates (MR06; RM06). For a discussion of BH states, see MR06

and RM06, and for precise definitions of the three outburst states – including the thermal

state – see Table 2 in RM06. For complete overviews on the evolution and energetics of BH

states for six canonical BHBs (i.e., excluding GRS1915), see §5 in RM06.

In the thermal state (formerly high/soft state and “thermal dominant” state; MR06),

which is the only state relevant to this work, the flux is dominated by blackbody-like emission

from the inner accretion disk, QPOs are absent or very weak, and the rms variability is also

weak. Quantitatively, the thermal state is defined by two timing criteria and one spectral

criterion applied over the energy band 2–20 keV (MR06; RM06): (1) QPOs are absent or

very weak: amplitude < 0.005%; (2) the power continuum level integrated over 0.1–10 Hz is

< 0.075 rms; and (3) the fraction of the emission contributed by the accretion disk component

fD exceeds 75% of the total emission.

We now turn to describing how we screened the RXTE data archive for GRS1915 and

identified 20 observations as belonging strictly to the thermal state. As a starting point, all

of these individual PCA observations of GRS1915 that were publicly available as of 2005

January 1 were organized into 640 data segments, where we sometimes combined brief ob-

servations that occurred within an interval of several hours. We then screened for temporal

variability, and 338 relatively “steady” observations were identified for which the rms fluc-

tuations in the count rate divided by the mean count rate was < 16% using 1-s time bins.

Next, a hardness ratio (HR = 8.6 − 18.0 keV / 5.0 − 8.6 keV) was computed for each of

these 338 observations using the scheme of Muno et al. (2001) to normalize the PCA count

rates for several epochs with different PCA gain settings. We then selected a gross sample

of 85 observations that displayed the softest spectra (HR < 0.30). At this point, we strictly

applied the three criteria, which define the thermal state. Applying the timing criteria (1)
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and (2) stated above (i.e., QPO amplitude < 0.005% and rms continuum power < 0.075

rms), left us with 47 candidate observations. Finally, based on a decomposition of the spec-

trum into thermal and nonthermal components, which is described in the following section,

we obtained our sample of 20 observations that additionally meets criterion (3) given above,

namely, that the thermal disk component contributes fD > 75% of the total 2–20 keV flux.

It is this final sample of 20 strictly thermal-state observations that is the focus of this work.

A catalog of the 20 RXTE observations, which span a time interval of 7.5 years, is given in

Table 1.

Finally, we screened the 11 archival observations of GRS1915 obtained by the Advanced

Satellite for Cosmology and Astrophysics (ASCA) and identified two appropriate thermal-

state observations. These two observations, which were made on 1994 September 27 and 1999

April 15, are also cataloged in Table 1. In selecting these data we only applied the spectral

criterion (number 3) mentioned above and applied it only over the observed bandpass of

1.2-10 keV. The limited count rates (Table 1) did not allow us to exercise the two timing

criteria. Because of these limitations, we are somewhat less certain that these observations

correspond to the true thermal state than is the case for the RXTE observations.

3. Data Reduction

In our spectral analysis of the RXTE data, we only include pulse-height spectra from

PCU-2 because it is almost always operating and because fits to the simple power-law (PL)

spectrum of the Crab show that this is the best calibrated proportional counter unit (PCU).

Data reduction tools from HEASOFT version 5.2 were used to screen the event files and

spectra. Data were taken in the “Standard 2 mode,” which provides coverage of the PCA

bandpass every 16 s. Data from all Xe gas layers of PCU-2 were added to make the spectra.

Background spectra were obtained using the tool pcabackest and the latest “bright source”

background model. Background spectra were subtracted from the total spectra using the

tool mathpha. Redistribution matrix files and ancillary response files were freshly generated

individually for each PCU layer and combined into a single response file using the tool pcarsp.

In fitting each of the 20 pulse-height spectra (§4), we used response files that were targeted

to the time of each GRS1915 observation.

It is well known that fits to PCA spectra of the Crab Nebula reveal residuals as large

as 1%, and we therefore added the customary systematic error of 1% to all PCU energy

channels using the tool grppha (e.g., Sobczak et al. 2000). Because large fit-residuals are

often found below 3 keV, which cannot be accounted for by any plausible spectral feature,

and because the spectrum becomes background-dominated and the calibration less certain
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above 25 keV, we restricted our spectral analysis to the 3–25 keV band, which is customary

for analysis of PCA spectra obtained after the gain change of 1999 March. We used this

same 3–25 keV band even for the 14 PCA data sets that were obtained prior to 1999 March.

Table 1. Observations of GRS 1915+105

Mission Obs. Date (UT)a MJD Exposure Count Rateb

(Detector) No. (yymmdd) (s) (counts s−1)

ASCA 1 940927 48988.1 6019 98.3

(GIS2) 2 990415 51283.9 7153 143.3

RXTE 1 960605 50239.5 10768 2197.5

(PCU2) 2 960607 50241.4 10960 2356.1

3c 960703 50267.4 3424 1402.1

4c 960703 50267.5 2944 1367.0

5 970819 50679.2 2176 4953.9

6 970819 50679.3 2608 4686.1

7 970819 50679.4 3328 5117.6

8 970819 50679.5 1488 4941.5

9 971111 50763.2 10432 4532.1

10 971209 50791.2 4544 5181.7

11 971211 50793.4 2368 4284.8

12 980220 50804.9 5472 5426.6

13 980220 50864.9 1520 2726.2

14c 980329 50901.7 2768 1282.3

15 991014 51465.6 5824 4976.6

16 011024 52206.6 4384 4285.4

17c 030101 52640.4 3184 1704.0

18 031029 52941.6 4128 4445.6

19 031103 52946.6 2496 4594.9

20c 031124 52967.5 4240 1675.1
a Start time of observation. MJD = JD – 2,400,000.5.
b PCA (full bandwidth): counts s−1 per PCU; 1 Crab = 2500 cts s−1 per PCU.
c Key low-luminosity observations (see §4.2.1 & §6.1).

All PCA count rates for the 20 pulse-height spectra were corrected for dead time. For all

normal events (i.e., good events, rejected events and events in the propane layer) we adopted

a dead time of τN = 8.83 µs, and for Very Long Events we adopted τVLE1 = 59 µs for

setting = 1 and τVLE1 = 138 µs for setting = 2. The true event rate corrected for dead time
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divided by the observed rate is then ≡ Rcorr/R = 1.0− (RN× τN+RVLEi× τVLEi), where the

index i refers to the VLE setting for a given observation. The dead time corrections ranged

from 1.016 to 1.080.

As in S06, we again found it necessary to correct the effective area of the PCA despite

a recent official correction (Jahoda et al. 2006), which was made using a nominal and ap-

proximate spectrum of the Crab nebula (Zombeck et al. 1990). We have chosen to correct

our 3–25 keV fluxes to the most definitive Crab spectrum available, namely, the PL index

(Γ = 2.10 ± 0.03) and normalization (A = 9.7 ± 1.0 ph cm−2 s−1) given by Toor & Seward

(1974) and the hydrogen column given by Willingale et al. (2001), which implies a 3.0–25.0

keV flux of 2.64 × 10−8 erg s−1cm2 . We consider the old Toor and Seward results more

reliable than the current but preliminary results that are summarized in Kirsch et al. (2005).

We made these corrections to the effective area as follows: We selected 25 Crab ob-

servations distributed over the 7.5 years spanned by the 20 RXTE observations. The Crab

pulse-height spectra were corrected for dead time and joined with their response files in

the same manner as described above for the GRS1915 spectra. The Crab spectra were fit-

ted over the range 3–25 keV using a simple PL model with the hydrogen column fixed at

NH = 3.45× 1021 cm−2 (Willingale et al. 2001), and the energy flux was computed over this

same interval. The fluxes so computed systematically exceeded the Crab flux quoted above

by the factor 1.091± 0.013 (rms). Therefore, the fluxes we obtained from the analysis of the

20 spectra (§4) were all corrected downward by the reciprocal factor 0.917.

For the two ASCA spectra (Table 1), we analyzed only the data from the GIS2 detec-

tor; the calibration of the GIS3 detector, in particular its gain correction, is less certain. We

ignored the data from the SIS detectors because GRS1915 is bright and the pileup effects

are troublesome (Kotani et al. 2000), which makes the SIS data less suitable for fitting the

broad continuum spectrum that is of interest here. Starting with the unscreened ASCA data

files obtained from the HEASARC, we followed as closely as possible the data reduction

procedures and criteria mentioned in Kotani et al. (2000). The GIS events for each detector

were summed within a radius of 6′ centered on the source position, and the response function

of the X-ray telescope (Serlemitsos et al. 1995) was applied. Background was not subtracted

for this bright source. A gain correction based on the instrumental gold M-edge was ap-

plied. A systematic error of 2% was added to each energy channel to account for calibration

uncertainties, and the standard dead time corrections were applied. No correction to the

effective area is required because the GIS effective-area calibrations were based on the Toor

& Seward (1974) spectrum of the Crab (Makishima et al. 1996).
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4. Data Analysis

All of the data analysis and model fitting was performed using HEASOFT version 5.2

and XSPEC version 12.2 (Arnaud 1996) except for the model bhspec (see below), which

requires XSPEC version 11.3. We first consider the most conventional analysis of all 22

data sets (i.e., 20 RXTE plus two ASCA) using the simple multi-temperature disk black-

body model diskbb and then describe three successive analyses of these data sets using our

relativistic disk model.

In all the RXTE spectral fits described herein, we fixed the value of the hydrogen column

density at NH = 4.0× 1022 cm−2. This value is consistent with the values determined from

an analysis of the ASCA GIS data for GRS1915 by Ebisawa et al. (1998), who found that

NH was “always within the range 3.5 − 4.1× 1022 cm−2,” and by ourselves for observations

#1 and #2, respectively: NH = (3.30±0.04)×1022 cm−2 and NH = (3.75±0.04)×1022 cm−2

(§4.1). Our adopted value of NH is also in reasonable agreement with the BeppoSAX value

determined by Feroci et al. (1999), NH ∼ 5.6 × 1022 cm−2, and with radio and millimeter

determinations of the interstellar column, NH = (3.5± 0.3)× 1022 cm−2 (Chapuis & Corbel

2004).

In the following subsections, we discuss in detail the analysis of the RXTE data over

the energy range 3–25 keV. All of these fits required a nonthermal “tail” component of

emission plus two additional weak line and edge components, which are described below.

On the other hand, the ASCA GIS pulse-height spectra, which were analyzed over the

energy range 1.2–8 keV required neither a tail component nor the edge components. Apart

from these simplifications, the only difference between the analysis of the ASCA data and

the RXTE data is that in the former case we allowed NH to vary freely. Because of the

restricted bandpass of ASCA and the limitations associated with screening these data (§2),
we consider the ASCA results somewhat less reliable than the RXTE results, although in

the case of GRO J1655–40 we found good agreement between the two, most notably in the

case of one simultaneous observation (S06).

4.1. Nonrelativistic Disk Blackbody plus Simple Power-law Model

A basic, conventional model consisting of only three principal components, namely,

a multi-temperature disk blackbody (diskbb), a simple PL model (power), and interstellar

absorption (phabs) with NH fixed at 4.0× 1022 (MR06) consistently gave unacceptably poor

fits to the RXTE data. In the usual way, we added two additional components, a Gaussian

line gaussian and a broad Fe absorption edge (smedge; e.g., Ebisawa et al. 1994; Sobczak et



– 9 –

al. 1999, 2000; Park et al. 2004; MR06). In applying the line component, we followed closely

the results obtained from high-resolution ASCA SIS observations of GRS1915. Specifically,

in a pair of GRS1915 SIS spectra, Kotani et al. (2000) found a complex of several, relatively-

narrow absorption features that extend from ∼ 6.4−8.3 keV; for both spectra, the equivalent

width of the total complex is EW ≈ 0.13 keV. Accordingly, given the limited resolution of

the PCA (≈ 18% at 6 keV), we added to our basic model a broad absorption line with a fixed

width of 0.5 keV, which we bounded to lie between 6.3 keV and 7.5 keV. Then, by adding

an additional broad Fe absorption component (smedge) with an edge energy restricted to

the range 6.9–9.0 keV, we were able to obtain good fits to all 20 RXTE spectra. We note

that Kotani et al. also used a sharp absorption edge component in their model, and we used

such a feature in some cases (see §4.2.4).

Using the model described above, we obtained the values of the parameters and fluxes

plotted in Figure 1. There are a total of 8 fit parameters: The disk blackbody temperature

Tin and its normalization constant K, the PL index Γ and its normalization constant, the

smedge optical depth τS and the smedge edge energy ES, the central energy of the Gaussian

absorption line EFe and the intensity of the line NFe. All the fit parameters, except for the

PL normalization parameter, are shown in Figure 1. Also shown is the equivalent width EW

of the Gaussian line, the 2–20 keV disk and PL fluxes (FD and FPL, respectively), and the

ratio of these fluxes fD, which is a key quantity used in the selection of these thermal-state

data (§2).

Finally, we briefly summarize our ASCA GIS2 fit results. For observation #1 (Table 1),

we find kTin = 1.66±0.03 keV, K = 126.1±9.3 and χ2
ν = 1.08 for 98 dof. For observation #2

we find kTin = 1.91±0.03 keV, K = 137.8±8.1 and χ2

ν = 0.94 for 159 dof. The values of NH

for both observations are quoted above. A Gaussian absorption line with a central energy of

6.85 ± 0.04 keV and an equivalent width of 0.11 keV was included in the fit to observation

#1, but was not required or included for observation #2. Neither a smedge component nor

a PL or other tail component of emission was included in these 1.2-8.0 keV fits.

4.2. Relativistic Analysis

As in S06, we estimate a∗ by fitting the thermal component of the X-ray continuum

using a fully relativistic model of a thin accretion disk around a Kerr BH (Li et al. 2005).

The model, which is available in XSPEC under the name kerrbb, includes all relativistic

effects, such as frame dragging, Doppler boosting, gravitational redshift, and light bending.

It also includes self-irradiation of the disk (“returning radiation”) and the effects of limb

darkening. A limitation of kerrbb is that one of its three key fit parameters, namely, the
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spectral hardening factor f that relates the color temperature T and the effective temperature

Teff of the disk emission (f = T/Teff ; Shimura & Takahara 1995; Merloni et al. 2000) is

treated as a constant.

Because of this limitation of kerrbb our work is based on a second, complementary

relativistic disk model called bhspec, which has also been implemented in XSPEC (Davis et

al. 2005, hereafter D05; Davis et al. 2006, hereafter D06). It does not include the effects

of returning radiation, but it provides state-of-the-art capability for computing the spectral

hardening factor f . The code bhspec is based on non-LTE atmosphere models within an α-

viscosity prescription (D05; Shakura & Sunyaev 1973), has just two principal fit parameters

(spin and mass accretion rate), and can be used directly to fit for a∗ (D06). As we now

describe, our approach is to combine the functionalities of bhspec and kerrb into a single

code that we call kerrbb2.

The use of this hybrid code kerrbb2 marks an important difference in methodology

between our earlier work (S06) and the present one. As discussed in S06, kerrbb has three fit

parameters — a∗, f and the mass accretion rate Ṁ — only two of which can be determined at

one time. In S06, we fitted for f and Ṁ with a∗ fixed, and we also computed the Eddington-

scaled luminosity, l ≡ L/LEdd [LEdd = 1.3× 1038M erg s−1 and L = L(a∗, Ṁ), e.g., Shapiro

& Teukolsky 1984] . We then plotted f versus l and graphically compared the fit results to

a model calculation of f versus l performed using bhspec. Finally, by varying the assumed

value of a∗, we determined our estimate of the spin parameter. In the present work, this

procedure has been streamlined using kerrbb2, which we now describe.

The code kerrbb2 is a modified version of kerrbb that contains a pair of look-up tables

for f corresponding to two values of the viscosity parameter: α = 0.01, 0.1. The entries in

the tables were computed using bhspec. The two tables give f versus l for a wide range of

the spin parameter, 0 < a∗ < 0.9999. The computations of f versus l were done using the

appropriate, corresponding response matrices and energy ranges used in fitting the spectra

with kerrbb. Thus, kerrbb and the subroutine/table computed using bhspec now allow us

to directly fit for a∗ and l ≡ L/LEdd while retaining the special features of kerrbb (e.g.,

returning radiation). This hybrid code kerrbb2 is used exclusively in all of the data analysis

described herein.

In order to estimate the BH spin by fitting the broadband X-ray spectrum, one must

input known values of the massM of the BH, the distanceD to the binary, and the inclination

i of the black-hole spin axis, which for GRS1915 we take to be the inclination of the non-

precessing and stable jets (Fender et al. 1999; Dhawan et al. 2000b). For GRS1915, we adopt

the following values for these three parameters: M = 14.0 ± 4.4 M⊙ (Harlaftis & Greiner

2004), D = 11.0 kpc and i = 66◦ ± 2◦ with D < 11.2± 0.8 kpc (Fender et al. 1999). In this
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section we use the nominal values of these parameters, and in §5.2 we examine the effects

on a∗ of allowing these parameters to vary.

In all of the relativistic model fits described below, we used precisely the same ancillary

components with the same constraints that we used in our nonrelativistic analysis (§4.1),
namely, the 0.5 keV-wide Gaussian absorption line and the broad absorption component

(smedge). Furthermore, for all of the results presented below, we switched on limb darkening

(lflag = 1) and returning radiation effects (rflag = 1). We set the torque at the inner boundary

of the accretion disk to zero, fixed the normalization to 1 (as appropriate when M , i, and D

are held fixed), allowed the mass accretion rate to vary freely, and fitted directly for the spin

parameter a∗. In the following subsections, we describe our analysis of the 20 RXTE and

two ASCA spectra using kerrbb2 in which we applied in turn three different models for the

tail component, namely, a simple PL model, a thermal Comptonization model, and a simple

PL model plus an exponential cutoff at lower energies.

4.2.1. Relativistic Disk plus Simple Power-law Model

We now consider our baseline analysis of the 20 RXTE PCA pulse-height spectra us-

ing our relativistic disk model kerrbb2 in conjunction with a simple power-law component

power. Following precisely the prescription we used in our nonrelativistic analysis (§4.1), we
added two additional components, a broad Fe absorption line with a fixed width of 0.5 keV

(Kotani et al. 2000) and a broad Fe absorption edge (e.g., Ebisawa et al. 1994). These two

conventional and incidental features, which are required in order to obtain a good fit, are

subject to exactly the same constraints as before (§4.1). As stated earlier, these fits were

done over the energy range 3–25 keV, and the column density was fixed to NH = 4.0× 1022.

As before (§4.1), there are a total of 8 fit parameters, 6 of which are identical to those

described previously: the PL index Γ and its normalization constant, the smedge optical

depth τS and the smedge edge energy ES, and the central energy of the Gaussian absorption

line EFe and the intensity of the line NFe. Of course, the two principal fit parameters are now

a∗ and Ṁ in place of the temperature and disk normalization constant, which are returned by

diskbb. The analysis was done for all 20 RXTE observations for both values of the viscosity

parameter.

The fit results are summarized in Figure 2 (α = 0.01) and Figure 3 (α = 0.1) in precisely

the same format used in displaying the diskbb results in Figure 1. That is, the structure of

these figures (e.g., the order of parameters and the ranges over which the parameters are

displayed) is identical to the structure of Figure 1, which summarizes the results of our
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nonrelativistic analysis (§4.1). There are two important differences to note between Figures

2 & 3 and Figure 1. First, the obvious difference is that a∗ and Ṁ are now displayed in place

of Tin and K. Secondly, in Figures 2 and 3, the value of the disk fraction fD in the top panel

is in the range fD ∼ 0.9− 1.0. This is generally significantly greater than the corresponding

values of fD shown in Figure 1, which occasionally dip down to fD ≈ 0.75. Thus kerrbb2 is

able to accommodate a larger fraction of the total flux than diskbb or, correspondingly, the

model for the tail component is less important when fitting with kerrbb2.

The data points for five of the observations in Figures 2 and 3 are enclosed by blue

circles. These are the five lowest-luminosity observations (L/LEdd < 0.3). They are critically

important for our determination of the spin of GRS1915, as we explain in §6.1 and the

Appendix. For four of these observations the values of chi-square are relatively high. As

we show in §4.2.4, the addition of a minor feature to the spectral model allows us to obtain

good fits (χ2

ν ≈ 1) to these four crucial spectra without significantly affecting the values of

the two important parameters, a∗ and Ṁ .

Finally, we briefly summarize our ASCA GIS2 results for the case α = 0.01. For

observation #1 (Table 1), we find a∗ = 0.988 ± 0.003, Ṁ = (1.40 ± 0.08) × 1018 g s−1,

NH = (3.39 ± 0.04) × 1021 cm−2 and χ2

ν = 1.25 for 95 dof. For observation #2 we find

a∗ = 0.957 ± 0.005, Ṁ= (3.66 ± 0.14) × 1018 g s−1, NH = (3.99 ± 0.04) × 1021 cm−2 and

χ2

ν = 0.82 for 159 dof. A Gaussian absorption line with a central energy of 6.77 ± 0.05 keV

and an equivalent width of 0.21 keV was included in the fit to observation #1, but was not

required or included for observation #2. No PL or other tail component of emission was

included in these 1.2-8.0 keV fits.

4.2.2. Relativistic Disk plus Comptonization Model

In the analysis of the RXTE observations described above in §4.1 and §4.2.1, we found

that the PL component sometimes makes a modest contribution to the total flux at energies

below ∼ 5 keV. We question whether this contribution from the PL is physically reason-

able, since the PL is believed to be produced by Comptonization of the soft disk photons

by a scattering corona. In order to check if this PL flux affects our results, we next fitted

the tail component of emission using a more physically-motivated model for which the disk

component dominates more strongly below several keV. Namely, we used a thermal Comp-

tonization model (comptt) in place of the simple PL component (Titarchuk 1994; Hua &

Titarchuk 1995). A drawback of comptt is its complexity; it has four principal parameters:

the temperature of the soft input photons T0, the coronal plasma temperature Tcor, the

optical depth of the corona τC, and a normalization parameter.
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In determining the spin, we considered three fixed values of T0 (§5.1) that are centered

on 2 keV, which is the nominal value of the disk temperature determined in §4.1. As we

show in §5.1, this choice is completely unimportant. We also considered two values of the

coronal temperature, Tcor = 30 keV and Tcor = 50 keV, and we found that this choice is also

unimportant. For the purposes of the discussion at hand, we adopt the values T0 = 2.0 keV

and Tcor = 50 keV. Thus, we are left with two fit parameters, τC and the normalization

constant. When fitting with no constraints on τC, we found that the parameter sometimes

ran away to unphysically low values (. 0.01). We therefore set a hard lower bound on

the optical depth: τC > 0.4 (for Tcor = 50 keV). This bound is based on the values of the

photon index determined in §4.1 (Γ . 4) and a simple calculation that relies on the Zeldovich

approximation as described in §7.5 of Rybicki & Lightman (1979). Finally, we set comptt’s

geometry switch to −1, thereby selecting disk geometry and interpolated values of the β

parameter. Our results for the fitting parameters and other quantities are summarized in

Figure 4 for α = 0.01 only. The structure of this figure is identical with that of Figure 2

except that Γ is replaced by τC and the PL flux FPL is replaced by the 2–20 keV flux in the

comptt component FC.

4.2.3. Relativistic Disk plus Cutoff Power-law Model

Modeling the tail component using the thermal Comptonization model is an effective

way to check on the effects of PL flux below ∼ 5 keV (§4.2.2). However, this model is quite

complex. Therefore, we now consider a simpler model that allows us to cut off the flux at

low energy in an ad hoc way, namely, a simple PL model (§4.2.1) that is cutoff at lower

energies by an exponential (expabs*power in XSPEC). This model has three parameters, the

two standard PL parameters (§4.2.1) plus a cutoff parameter Ec. In §5.1 we consider three

plausible choices for the cutoff energy (Ec = 8, 10 & 12 keV), but for now we consider

only the central value, Ec = 10 keV. The fit results for this simple model are summarized

in Figure 5, which is strictly identical in structure to Figure 2. The results shown are for

α = 0.01.

4.2.4. Introduction of a Sharp Absorption Edge

Five values of chi-square in Figure 2 (observation nos. 3, 4, 12, 14 & 17) are rela-

tively high, χ2

ν & 1.5, and the fit to observation no. 14 is unacceptably high, χ2

ν = 3.9 (44

dof). Furthermore, these same observations give similarly high values of chi-square for the

Comptonization model (Fig. 4) and the cutoff PL model (Fig. 5) as well. These particular
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observations are important because four of them are low-luminosity observations (§4.2.1,
§6.1, Appendix). In an effort to improve the fits for these five observations, we followed

the lead of Kotani et al. (2000; §4.1). Specifically, we added to our spectral model a sharp

edge feature (edge in XSPEC), which we bounded to lie in the range 8–13 keV, and we then

refitted these five PHA spectra. The results are summarized in Figure 6, where the new

parameters and fluxes are plotted as red open circles and the small black data points have

been copied from Figure 2. Apart from the new fit results, Figure 6 differs from Figure 2 in

that it includes a pair of additional panels displaying the parameters of the edge component,

EEd and τEd. Note in Figure 6 that the optical depth of the edge component is modest,

τEd ≈ 0.2, and that the addition of this feature significantly reduces the optical depth of the

smedge component. Figure 6 contains two important messages. First, with the addition of

the edge component all of the five fits are now good (χ2
ν ≈ 1). Secondly, the values of a∗

and Ṁ are scarcely affected by the inclusion of the sharp edge (see §5.5, Fig. 6). Finally, we
found that the sharp edge gave the same improvements in chi-square and the same degree

of stability in the values of a∗ and Ṁ as well when applied to the Comptonization (§4.2.2)
and cutoff PL models (§4.2.3).

4.3. Critique of the Different Analysis Approaches

The disk fraction fD, which is the ratio of the 2–20 keV thermal disk flux to the flux

in the tail component (PL, Compton, or cutoff PL) is an important parameter and it is

therefore displayed in the top panels in Figures 1–5. Note that the value of fD in Figure 1

never dips below 0.75 for any of the 20 observations, which is a principal selection criterion

that we used in selecting these data (§2) via the nonrelativistic analysis (§4.1). The typical

value is ≈ 90%, although for two observations fD does fall below 80%. In the case of the

relativistic analyses using the PL tail model, the values of fD are significantly higher with

typical values & 95% and with few values below 90% (Figures 2, 3 and 5). The comptt

tail model consistently gives the highest values of fD, which approach 100%. In §4.2.2, we
expressed some reservations about the simple PL component’s contribution to the total flux

at low energies. However, as we show in §5, our results for the PL model agree well with the

results obtained for the other two tail models.

A careful comparison of Figures 1–5 shows that the Gaussian line parameters (EFe,

NFe), the line’s equivalent width (EW ), and the smedge parameters (ES and τS ) change

very little whether the disk is modeled with diskbb or with kerrbb2 and whether the model

for the tail component is a simple PL, a Comptonized plasma, or a cutoff PL. This strongly

indicates that these ancillary parameters, which are required in order to obtain a good fit,
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are quite unimportant. Furthermore, the Gaussian and smedge components are relatively

weak: the Gaussian line has an EW ≈ 0.2 keV, comparable to the ≈ 0.13 keV value reported

by Kotani et al. (2000), and the optical depth of the smedge component is moderate, τS ∼ 2

(for comparison, see Ebisawa et al. 1994; Sobczak et al. 1999, 2000; Park et al. 2004).

Finally, if one considers the principal relativistic fit parameters – a∗ and Ṁ – plotted in

Figures 2–5, one sees that the corresponding values of these parameters from figure to figure

are little affected by the choice of model for the tail component (i.e., PL, Compton, or cutoff

PL) or by the inclusion of a sharp absorption edge (§4.2.4, Fig. 6). Thus, we conclude that

our results are robust to the details of the analysis – that is, they depend weakly on the line

and edge parameters, and they depend weakly as well on the choice of the model for the tail

component of emission.

5. Results

In this section, we present our results in the form of plots of the dimensionless spin

parameter a∗ versus the dimensionless luminosity l ≡ L/LLedd. The Eddington-scaled lumi-

nosity l is computed from the two kerrbb2 fit parameters a∗ and Ṁ and the BH mass M

(§4.2). In this section we consider in turn the following topics: (1) Our results for the spin of

GRS1915; (2) the effects of varying M , i and D; (3) a comparison of our results with those

of Middleton et al. (2006); (4) the effects of returning radiation and torque; (5) a lower limit

on the spin parameter of a∗ > 0.98; and (6) a comparison of this limit with the spins of three

other sources.

An important point should be mentioned at the outset. The model that we employ to

fit the continuum spectrum of GRS1915 is physically consistent only if (i) the accretion disk

is in an optically thick thermal state, and (ii) the disk is geometrically thin in the vertical

direction. Through the stringent data selection described earlier we have ensured the first

requirement, but the second criterion requires a further restriction of the data. In § 6.1 we

make use of a Newtonian analysis to estimate the disk thickness, and in the Appendix we

describe a fully relativistic analysis. Based on these two analyses, we show that the accretion

disk will be thin at all radii, with a height to radius ratio less than 0.1, only if the accretion

luminosity is less than 30% of the Eddington luminosity. Only five observations with RXTE

and one observation with ASCA satisfy this restriction, and we therefore focus most of our

attention on these particular data sets (though we present detailed results for all 22 sets).
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5.1. Spin versus Luminosity for GRS 1915+105

All the results given in this subsection assume the nominal values of the optically-

determined input parameters given in §4.2: M = 14.0 M⊙, i = 66◦, and D = 11.0 kpc

(see §4.2). In the following, we show the results of fitting for the spin parameter using

three different tail models in turn – simple PL, thermal Comptonization and cutoff PL – in

conjunction with our relativistic disk model kerrbb2.

Figure 7 summarizes our fit results (§4.2.1) obtained using our baseline PL tail model

(MR06; RM06). The spin parameter is shown plotted versus the Eddington-scaled luminosity

l. The results for all 20 RXTE and 2 ASCA observations (Table 1) are included in this figure.

The results are shown for two value of the viscosity parameter, α = 0.01 and α = 0.1. All

of the analyses reported herein were computed for both values of α ; however, for low

luminosities (l . 0.3), which are strongly favored in this work (see §6.1 and the Appendix),

the spin estimates are quite insensitive to the value of α (e.g., Fig. 7), and we therefore

generally show results for only α = 0.01. Error bars are included in Figure 7, although they

are generally too small to be apparent.

The principal result of this paper is captured in the set of six lowest-luminosity data

points (5 RXTE and 1 ASCA) in Figure 7, namely that the spin-parameter estimate is very

nearly unity for l . 0.3. For the group of four data points at intermediate luminosities,

0.3 . l . 0.45, the estimated value of the spin parameter is somewhat depressed, especially

for α = 0.1. At high luminosities, l & 0.65, the spin estimate is severely depressed and seen

to decrease significantly with increasing l. As we discuss in §6.1 and the Appendix, there

are good reasons to focus only on those data that correspond to l < 0.3. We thus conclude

that GRS1915 has a spin parameter close to the maximal Kerr value of a∗ = 1.

We now consider the effects of replacing the simple PL model for the tail component

of emission with a thermal Comptonization model, comptt. As explained in §4.2.2, we con-

sidered this model because we had reservations about the behavior of the simple PL model

at low energies. Additionally, a Comptonization model is more physically motivated and

offers a point of comparison with other studies of spin that exclusively use a supplementary

Comptonization model (e.g., Middleton et al. 2006, D06). The fitted parameters of this

model are displayed in Figure 8. As discussed in §4.2.2, in fitting the data using this com-

ponent, we fixed the thermal temperature of the soft seed photons at three different trial

temperatures – T0 = 1.5, 2.0 and 2.5 keV – where the central value was determined from

our nonrelativistic analysis (§4.1; Fig. 1). Figure 8 shows a∗ versus l for the three values of

T0 where it is immediately obvious that the results obtained using comptt do not depend on

the temperature of the seed photons over the range considered. Error bars are suppressed,

but in all cases their extent is less than the height of the plotting symbols. The results,
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which are shown for α = 0.01, can be seen to be nearly identical to the results obtained

using the PL component for α = 0.01 (Fig. 7). Again, for l . 0.3 we find that a∗ ≈ 1 and

for intermediate luminosities the spin is slightly depressed (a∗ ≈ 0.98). As before, the spin

drops very significantly at high luminosities (l & 0.65).

Next, we consider the results for the cutoff PL model which, like the thermal Comp-

tonization model, contributes negligibly to the flux at low energies. Relative to the Comp-

tonization model, its chief advantage is its greater simplicity, and its disadvantage is its lack

of physical motivation (§4.2). The results are summarized in Figure 9 for α = 0.01 and

for the three values of the break energy mentioned in §4.2.2. The error bars, which do not

exceed the size of the plotting symbols, are suppressed. As shown in Figure 9, the results

are essentially independent of the choice of cutoff energy. Furthermore, the results for the

cutoff PL model at both low and intermediate luminosities are nearly identical to the results

obtained with the thermal Comptonization model (Fig. 8) and with the simple PL model

for α = 0.01 (Fig. 7).

Finally, in Figure 10 we show superposed the results obtained using all three tail models

for α = 0.01. This figure clearly demonstrates the robustness of our principal result, namely,

that the very high spin of GRS1915 does not depend in any significant way on the model used

to resolve the relativistic disk component from the faint, adulterating non-disk component.

Furthermore, in §4.2 we have demonstrated that the minor fitting components, the Gaussian

line and the smedge, operate the same in all the fits and are therefore incidental to the results

that we have obtained for the spin parameter (Figs. 7–10).

5.2. Effects of Varying M , i and D on the Spin of GRS 1915+105

Under the assumption of an intrinsically symmetric jet ejection, Fender et al. (1999)

place an upper limit on the distance to GRS 1915+105 of D = 11.2 ± 0.8 kpc. Further,

Fender et al. treat as realistic only distances that are in the range 9–12 kpc, as indicated

by the entries in their Table 2. We follow their lead. As shown in their table, the kinematic

jet model associates with each distance a unique value of the jet inclination (e.g., adopting

the MERLIN values, D = 11 kpc corresponds to i = 66◦), which we take as the spin axis of

the BH and the accretion disk (§4.2). In turn, each value of i is associated with a definite

value of the BH mass via the dynamical results for GRS1915 (Greiner et al. 2001; Harlaftis

& Greiner 2004). Thus, we have a correlated triplet of numbers D, i and M , which are

given in Table 2 for five values of D. In Figure 11a, we show the effects of varying D from

11–12.5 kpc. The cases D = 9− 10 kpc are not shown because these values drive a∗ toward

higher values and we are interested here in highlighting the lowest values of a∗. Furthermore,
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as discussed in §6.4, our fit results indicate that the distance to GRS1915 is unlikely to be

less than 9–10 kpc. In Figure 11a and Table 2, we also include D = 12.5 kpc because this

extreme distance was adopted by Middleton et al. (2006).

Table 2. Parameters for GRS 1915+105

Distancea Inclinationa Massb

(kpc) (degrees) (M⊙)

9.0 61.5 15.5

10.0 63.9 14.6

11.0 66.0 14.0

12.0 67.8 13.5

12.5c,d 68.6 13.3
a Fender et al. 1999.
b Based on Porb, K2 and M2 from Harliftis & Greiner 2004.
c Adopted by Middleton et. al. 2006.
d Intrinsic jet velocity > c.

In addition to the uncertainty in the distance, the dynamically-determined value of the

BH mass carries its own sizable uncertainty, M = 14.0± 4.4 M⊙, because the radial velocity

amplitude of the secondary is known only to a precision of 11% (Greiner et al. 2001; Harlaftis

& Greiner 2004). The effects on the spin due to this uncertainty in the mass are shown in

Figure 11b. As indicated in the figure, the smallest mass, M = 9.6, gives the lowest values of

spin. Limiting our consideration to L/LEdd < 0.3 (§6.1, Appendix), Figure 11ab shows that

for most allowable distances and masses the spin parameter is nearly unity (see §5.5). Finally,
on a separate and incidental matter, we note that our RXTE results are also insensitive to

our adopted value of NH over the full range indicated (§4) because the absorbing column is

already ∼ 85% transmitting at the PCA’s detector threshold energy of 3 keV.

5.3. Comparison with the Results of Middleton et al. for GRS 1915+105

For the nominal 11 kpc distance that we adopt (§5.2), Middleton et al. (2006) report a

single, moderate value of the spin parameter of a∗ ∼ 0.8 (or a∗ ∼ 0.7 for their adopted dis-

tance of 12.5 kpc). As we make clear in §5.5, the M06 value of a∗ ∼ 0.8 is very much less than

the value we find: a∗ ∼ 0.98− 0.99. M06 and we used precisely the same publicly-available

relativistic accretion disk models (i.e., kerrbb and bhspec). The key difference between the

two studies is in the methodology of data selection. M06 used a quite different approach



– 19 –

that yielded a restricted data sample comprised solely of high-luminosity observations. As

we conclude below, our results are in fact in reasonable agreement with Middleton et al. in

this high-luminosity regime, which we argue is unreliable for the determination of spin (§6.1,
Appendix).

Both M06 and we agree completely on the necessity of selecting spectra that mini-

mize the nonthermal component and that are dominated by disk emission. However, M06’s

methodologies for selecting such spectra were quite different from ours (§2). One difference is

that M06 based their initial selection on the state classifications defined by Belloni et al. 2000

(see also Belloni et al. 1997, and Belloni 2004), which were devised primarily to study disk-jet

coupling via a unified model of X-ray states and radio jets. We, on the other hand, used

quantitative state definitions that are centered on physical models of X-ray states (MR05;

MR06). These latter state definitions have been applied more widely to many BH binaries

including GROJ 1655–40, 4U 1543–47, XTE J1550–564, H 1743–322, XTE J1859+226, and

GX 339–4 (MR05; MR06). A second difference is that we screened all the available data and

identified 22 observations that are strictly thermal-state data. This yielded a total of 89 ks

of RXTE data and 13 ks of ASCA data (Table 1) compared with the much smaller collection

of data considered by M06. It is this larger data sample that allowed us to identify several

crucial observations at low luminosities (L/LEdd < 0.3) that are completely absent in M06’s

data sample.

In the end, M06 fitted jointly three representative 16-s observations in order to determine

a single spin estimate with the nominal value of a∗ = 0.82 (for D = 11 kpc). This single

spin value and the three corresponding luminosities are indicated in Figure 12 by the three

filled triangles, which are connected by a solid line. As shown, these three luminosities

range from L/LEdd = 0.40 − 1.45. Note that MR06’s low value of spin, a∗ ∼ 0.82, is in

reasonable accord with the value of ≈ 0.88 that we find (Fig. 12) for a luminosity of ≈ 80%

of LEdd using the comptt model, which is analogous to the thcomp tail model that M06

used. Furthermore, their somewhat lower spin value, which is an average over a wide range

of luminosity, may be largely due to the inclusion of an observation at super-Eddington

luminosity (L/LEdd ≈ 1.45; Fig. 12). Note also that even their mid-luminosity observation

with L/LEdd ≈ 0.85 (Fig. 12) corresponds to the effective Eddington luminosity for thin-disk

geometry (§6.1, Appendix). As already mentioned, and discussed in further detail in §6.1 and
the Appendix, the continuum spectral models used by M06 and us are not self-consistent

and become progressively less reliable at higher luminosities. In fact, all three 16-second

observations of M06 correspond to l > 0.3 and are thus in a regime where a number of the

physical assumptions which underly the spectral models are likely to break down.
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5.4. Effects of Returning Radiation and Nonzero Torque at the ISCO

All of our results include the self-irradiation of the disk as a result of light deflection

(assuming that the disk is infinitely thin, see Li et al. 2005), which we refer to as returning

radiation. The effects on our results of turning off the returning radiation (rflag = 0) is

shown in Figure 13. As indicated in the figure, the returning radiation boosts the luminosity

of the disk by several percent, but has no significant effect on the spin parameter. The

returning radiation feature is not included in bhspec, the relativistic disk model we used

to compute tables of the spectral hardening factor, which were incorporated into kerrbb

via a subroutine to create kerrbb2 (§4.2). Both kerrbb2 and bhspec can be used directly to

determine the principal fit parameters a∗ and Ṁ . We made a thorough comparison of the fit

results obtained using the two models for GRS1915 (and for 4U 1543–47 and GRO J1655–40

as well). For the purposes of this comparison only, we switched the returning radiation off

for kerrbb2 (rflag = 0). We found that the two models gave very comparable results for a∗
versus l.

Throughout this paper we assume that there is no torque acting at the inner edge of

the disk. This assumption is in agreement with the classic and current literature on thin-

disk accretion, which advocates the use of a zero-torque boundary condition (Shakura &

Sunyaev 1973; Novikov & Thorne 1973; Afshordi & Paczyński 2003; Li 2003). However, as

discussed in §6.1, a torque may be present near the ISCO, especially in the case of thicker,

higher-luminosity disks. Our model kerrbb2 is quite general and capable of handling positive

torques of any magnitude with the dimensionless torque parameter ηT defined as the ratio

of the power generated by the torque to the gravitational binding energy of the accreted gas

(Li et al. 2005). As illustrated in Figure 14, the spin parameter decreases with increasing

torque. In the presence of sizable torques, the spin parameter of GRS1915 is significantly

depressed at high luminosities, but it is scarcely affected at low luminosities.

5.5. Summary of Results for GRS 1915+105 and Three Additional Sources

In Table 3 we summarize the average values of the spin of GRS1915 returned by kerrbb2

for L/LEdd < 0.3 that are based on the nominal values of M , i and D (§4.2) and on α = 0.01.

The fit results are given for each of the three tail models (§4.2). The quantities displayed are

the Gaussian-weighted mean value of the spin a∗ and the standard deviation for N = 5. As

indicated by comparing the two lines in the table, the inclusion of a sharp absorption edge

in the spectral model (§4.2.4) has a negligible effect on the value of the spin parameter.
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Table 3: Fitted values of spin for L/LEdd < 0.3

Object Model

Power Law Comptt Cutoff Power Law

mean st. dev. mean st. dev. mean st. dev.

GRS 1915+105a 0.998 0.001 0.997 0.001 0.997 0.001

GRS 1915+105b 0.998 0.001 0.995 0.002 0.996 0.001
a Sharp absorption edge excluded from the fit; see §4.2.4.
b Sharp absorption edge included in the fit; see §4.2.4.

The formal and precise values of a∗ in Table 3 for all three models (with and without the

edge) are consistent with the physical limit on the Kerr parameter of a∗ = 0.998 computed

by Thorne (1974). We consider this agreement accidental given the likely uncertainties in the

idealized thin-disk model and the model for spectral hardening, the systematic uncertainties

in the data, and the uncertainties inM , i and D. Nevertheless, the results in Table 3 indicate

a very high value for the spin parameter of a∗ & 0.99.

We now consider somewhat lower values of spin that cropped up during our analysis.

We restrict our discussion to L/LLedd < 0.3 (§6.1, Appendix). For example, for the first

ASCA observation (Table 1), we find a∗ = 0.988 ± 0.003 for nominal values of M , i and

D (§4.2.1). Figure 11a and 11b show respectively the effects of changing D and M on a∗.

Considering distance, the spin is lowest for D = 12.5 kpc: a∗ = 0.991 ± 0.006 (weighted

mean for three observations). Considering mass, the spin is lowest for M = 9.6 M⊙ (single

observation with a∗ = 0.987±0.001). Finally, the values of a∗ are slightly less if one considers

the case α = 0.1 (Fig. 7). Based on these and other considerations and the results in Table 3,

we adopt a∗ > 0.98 as a lower limit on the spin parameter.

This lower limit of 0.98 for the spin of GRS1915 and our previously estimated values of

a∗ for GRO J1655–40 and 4U 1543–47 (S06) are summarized in Table 4. We obtained very

similar estimates of a∗ for the latter two sources using our revised code kerrbb2 (§4.2), and
we will report on this work in a later paper. Also given in Table 4 is an upper limit on a∗
for LMC X-3 obtained by D06. Here we provide conservative estimates of spin, which are

based on the considerations given above for GRS1915 and the full range of variation of a∗
considered for GRO J1655–40 and 4U 1543–47 in R06. The spin estimates given in Table 4

are our bottom-line results.
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Table 4. Spin estimates for four sources

Black Hole Mission a∗

GRS 1915+105 RXTE/ASCA > 0.98

GRO J1655–40 RXTE/ASCA 0.65-0.75

4U 1543–47 RXTE 0.75-0.85

LMC X–3 RXTE/BeppoSAX < 0.26a

a Davis et al. 2006.

It is important to emphasize that the spins of GRO J1655–40 and 4U 1543–47, although

sizable, are effectively very much less than that of GRS1915, which in turn is significantly

less than the theoretical maximum value of a∗ = 1. The implications of the extreme spin of

GRS1915 are not immediately apparent if one considers the parameter a∗ alone. Therefore it

is instructive to consider such related dimensionless parameters as the radius of the innermost

stable circular orbit (ISCO) ξ, the binding energy per unit mass at the ISCO η, and the

Keplerian frequency at the ISCO ωK, which are all monotonic functions of a∗ (e.g., Shapiro

& Teukolsky 1984). These three quantities are defined and plotted versus a∗ in Figure 15,

which also shows for the four BHs in question the values of these quantities for our nominal

estimates of spin. In this approximate comparison, note that both the nominal Keplerian

frequency and the binding energy at the ISCO for GRO J1655–40 and 4U 1543–47 are only

half the values indicated for GRS1915.

6. Discussion

There are four avenues for measuring spin – continuum fitting, high-frequency QPOs,

the Fe K line, and polarimetry (RM06). Because spin is such a critical parameter it is

important to attempt to measure it by as many of these methods as possible, as this will

provide arguably the best possible check on our results. The best current method, continuum

fitting, has the drawback that its application requires accurate estimates of BH mass M ,

disk inclination i, and distance D. In contrast, observations of HFQPOs require knowledge

of only M to provide a spin estimate, and once the correct model is known this method

is likely to offer the most reliable measurements of spin. Presently, however, the leading

model of HFQPOs, which was initially proposed by Abramowicz & Kluzńiak (2001), does

not provide a useful constraint on a∗ for GRS1915 because of the wide range of possible

resonances and the sizable uncertainty in the BH mass (Török et al. 2005). Another HFQPO

model, on the other hand, predicts the precise value a∗ = 0.99616 for the spin of GRS1915

(Aschenbach 2004). Broadened iron lines do not even require M , although knowledge of i
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is useful in order to avoid having to include that parameter in the fit. However, there are

serious sources of uncertainty in the model, including the placement of the continuum, the

model of the fluorescing source, and the ionization state of the disk (Reynolds & Nowak

2003). Furthermore, in the case of GRS1915, the line is seldom seen and has provided poor

constraints on the models, and no estimate of spin has been given (Martocchia et al. 2002,

2004; Miller et al. 2004). Polarimetry appears promising because the polarization features

of BH disk radiation can be affected strongly by GR effects (Lightman & Shapiro 1976;

Connors et al. 1980; Dovčiak et al. 2004). Unfortunately, however, there have been no such

observations of BHBs, and there are no mission opportunities on the horizon. In short, the

HFQPO and Fe-line methods are not well enough developed to provide dependable results,

and the required polarimetry data are not available, whereas the continuum method, despite

its limitations, is already delivering results.

The methodology of the continuum-fitting approach is straightforward and transpar-

ent. Its foundation is (1) the simplicity of the rigorously defined thermal state (§1 & §2),
which matches very closely the predictions of the classic thin disk models (§1), and (2) the

vast amount of X-ray spectral data contained in the NASA/GSFC HEASARC archives for

missions ranging from Ginga and RXTE to Chandra and XMM-Newton.

In the thin disk model, there is an axisymmetric radiatively-efficient accretion flow in

which, for a given BH mass M , mass accretion rate Ṁ and BH spin parameter a∗, one can

calculate very accurately the total luminosity of the disk, Ldisk = ηṀc2. The parameter η,

which measures the radiative efficiency of the disk, is a function only of a∗ (see Fig. 15).

We can also calculate precisely the local radiative flux Fdisk(R) emitted at radius R by each

surface of the disk. Moreover, the accreting gas is optically thick, and the emission is thermal

and blackbody-like, making it straightforward to compute the spectrum of the emission.

Most importantly, the inner edge of a thin disk is located very close to the innermost stable

circular orbit (ISCO) of the BH spacetime, whose radius RISCO (in gravitational units) is a

function only of the spin of the BH: RISCO/(GM/c2) = ξ(a∗), where ξ(a∗) is a monotonically

decreasing function of a∗ (see Fig. 15). Thus, if one measures the radius of the disk inner

edge, and if one also has an estimate of the mass M of the BH, then one can immediately

obtain a∗. This is the principle behind our method of estimating BH spin, which was first

described by Zhang et al. (1997).

There is one principal difficulty in applying this method. At the high disk temperatures

typically found in BHB disks (Tin ∼ 107 K), the spectral hardening factor f (§4.2) is expected
to deviate substantially from unity. It is therefore important to have a reliable estimate of f .

Until recently, the only estimate available was that from Shimura & Takahara (1995), whose

seminal but limited study was rather approximate. Within the last year, D05 along with
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Davis & Hubeny (2006) have computed more accurate disk atmosphere models including

metal opacities and have obtained reliable estimates of f as a function of the disk luminosity

and inclination. The use of a rigorous and modern estimate of f is absolutely essential for the

successful application of this method of estimating BH spin, and it is only now that such an

estimate has become available. Nevertheless, even at the lower luminosities we favor (§6.1),
the vertical structure of real magnetohydrodynamical (MHD) disks may differ in detail from

our models (see §3 of D06 for details). However, preliminary investigations which incorporate

the results of MHD simulations suggest only small changes (∆f/f . 15%).

6.1. Rationale for Reliance on Low-Luminosity Data

In S06, we argued that the method employed in that paper as well as the present paper to

estimate BH spin is most reliable at low disk luminosities. The argument has been amplified

by D06 (see their §3.1). The main reason to distrust high luminosity data is that the disk is

likely to be vertically thick, whereas the model explicitly assumes a thin disk. The detailed

general relativistic ray tracing used in kerrbb, kerrbb2 and bhspec assumes a razor-thin disk

whose surface is exactly at z = 0. So long as the disk thickness H is much less than the local

disk radius R, we expect only small errors to result from the idealized geometry assumed

in the model. However, as H/R increases we expect various geometrical effects to creep in.

Although it is hard to be quantitative, it is reasonable to think that the errors will become

non-negligible once H/R > 0.1.

Another important assumption in the models is that there is no torque applied at the

inner edge of the disk (§5.4). Krolik (1999) and Gammie (1999) argued that magnetic fields

would be amplified near the inner edge of the disk, where the gas begins to free-fall into the

BH, and that these fields would apply a torque on the disk. The torque will enhance the

energy dissipation near the ISCO and lead to a modification in the profile of the disk flux

F (R). If this effect is strong enough it will introduce a large error in the BH spin estimate.

Interestingly, Li (2004) finds that, in some cases, a strong magnetic field connecting the disk

and the BH may actually move the inner edge of the disk out and cause a reduction in the

luminosity. Afshordi & Paczyński (2003) suggested that the torques are likely to scale as

some positive power of H/R and therefore will be unimportant in very thin disks (see their

Figs. 17 and 18). This topic is still under debate and is likely to be settled only with detailed

models.

To make progress on this question, one approach is to work with the viscous hydro-

dynamic disk equations, including pressure and radial dynamics (as in Narayan, Kato &

Honma 1997 and Afshordi & Paczyński 2003), and to calculate the viscous stress at the
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sonic radius and the rate of viscous energy dissipation as a function of radius for various

disk thicknesses. Within the limitations of the α-viscosity prescription, this will provide a

clean answer to whether or not the torque at the inner edge is important for thin disks.

Our preliminary analysis appears to support Afshordi & Paczyński’s (2003) assertion that

the torque is unimportant for thin disks. A more detailed, and ultimately more rigorous,

approach is to carry out 3D numerical MHD simulations of realistic thin disks, including

radiative cooling to keep the disk thin. The only work to date involves non-radiative thick

disks and is not yet very useful.

Regardless of the current uncertainty over the magnitude of the torque at the disk inner

edge, we note that at low luminosities (when the disk is thin, see below) the effects on the

spin parameter of even a sizable torque is quite small (see § 5.4).

Another effect that becomes important when the disk is vertically thick is radial advec-

tion of energy (Abramowicz et al. 1988, 1995; Narayan & Yi 1994, 1995). The more energy

advection there is in the disk, the less energy is radiated to infinity, and the larger is the

deviation of F (R) from the idealized thin disk profile assumed in the model. Thus, it is

safest to work with disks that have negligible radial advection, i.e., disks with H/R ≪ 1.

Let us now estimate the disk thickness H and the ratio H/R for a Newtonian thin

accretion disk. The flux emitted by a thin accretion disk around a BH with zero torque at

the inner edge is given by (e.g., Frank et al. 2002)

F (R) =
3GMṀ

8πR3

[

1−
(

Rin

R

)1/2
]

, (1)

where M is the mass of the BH, Ṁ is the mass accretion rate, R is the cylindrical radius, and

Rin is the radius of the inner edge of the disk. Let us define the Eddington mass accretion

rate by equating the disk luminosity to the Eddington luminosity,

GMṀEdd

2Rin

= LEdd ≡ 4πGMc

κ
, i.e., ṀEdd =

8πcRin

κ
, (2)

where κ is the opacity of the gas. Correspondingly, let us define the Eddington-scaled mass

accretion rate by

ṁ ≡ Ṁ

ṀEdd

. (3)

We now rewrite the disk flux F (R) in terms of ṁ and calculate the vertical acceleration due

to radiation pressure,

grad(R) =
F (R)κ

c
=

3GMṁ

R2

[

(

Rin

R

)

−
(

Rin

R

)3/2
]

. (4)
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In equilibrium, the radiative acceleration must be balanced by the vertical component of

gravity, which for simplicity we can write as gz(R, z) = GMz/R3. We then find

H

R
≈ 3ṁ

[

(

Rin

R

)

−
(

Rin

R

)3/2
]

. (5)

Figure 16 shows H/R as a function of R for various choices of the accretion rate: from below,

ṁ = 0.1, 0.2, ..., 1.2. If we wish to have H/R < 0.1 at all R, then we see that we are limited

to ṁ . 0.25, i.e., to Eddington-scaled disk luminosities l . 0.25. The Appendix describes

a more accurate estimate of the disk height that is calculated for a general relativistic disk

around a Kerr BH. Results are shown in Figure 17. According to that analysis, in order to

have H/R . 0.1 at all radii, we must restrict our attention to luminosities l . 0.3. This is

the limit we employ throughout the paper.

If we consider the exact expression for the Newtonian vertical gravity

gz(R, z) =
GMz

(R2 + z2)3/2
, (6)

rather than the approximation GMz/R3, then we find that the maximum value of the vertical

gravitational acceleration (which is achieved at z = R/
√
2) is

(gz)max =
2

3
√
3

GM

R2
. (7)

For any accretion rate greater than about 85% of Eddington, or log(L/LEdd) > −0.06, one

finds that some parts of the disk produce too much radiation to be balanced even by the

maximum vertical gravity (gz)max. Radiation pressure will then cause material to be blown

away from the disk. This critical luminosity is clearly related to the Eddington limit; the

slightly different numerical value, i.e., 85% instead of 100% of the canonical Eddington limit,

is the result of the different geometry of a disk compared to the spherical geometry that one

usually considers. (See Nityananda & Narayan 1982 for a discussion of geometry effects on

the Eddington limit.)

We showed in § 5 that, by focusing on data corresponding to L/LEdd . 0.3, we obtain

very consistent results for the spin parameter of GRS1915, independent of the details of the

spectral model we employ. We also found that the results begin to deviate as we go to higher

luminosities, suggesting that as the disk thickens one or more of the effects described in this

subsection becomes important. It is interesting that the deviations are not random but

very systematic, e.g., the estimate of a∗ decreases smoothly and monotonically as L/LEdd

increases. This signature could conceivably be used to identify which of our assumptions

breaks down as the luminosity increases. Detailed viscous disk models with varying disk

thickness might be able to shed some light on this issue.
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6.2. The Spins of Stellar Black Holes are Chiefly Natal

King and Kolb (1999) provide a global evolutionary and observational argument that

neither significant spinup nor spindown is likely to occur during the lifetime of any BH

binary and hence that BH primaries essentially retain the spin rates that they had at birth.

In the particular case of 4U 1543–47, based on its present accretion rate and modest age

(. 1 Gyr), we argued that the spin of its BH (§5.7) is likewise chiefly natal (S06). The

fast spin reported herein for GRS1915, a∗ > 0.98, is almost certainly a natal spin because

the alternative, achieving this spin gradually via accretion torques, would require almost

doubling the mass of the BH (see below). Such a large increment in BH mass is unlikely to

have occurred during the evolution of GRS1915 or any BH binary simply because systems

with initially low- or moderate-mass secondaries (i.e., M . a few M⊙) obviously cannot

supply the required mass, and systems with high-mass secondaries have lifetimes that are

too short to effect the required mass transfer. We now consider the exceptional case of

GRS1915 in more detail.

GRS1915 presently has a low-mass secondary, M2 = 0.81±0.53 M⊙ (Harliftis & Greiner

2004) and the most massive primary and longest period of any BH binary (§1). There is a

great deal of uncertainty in evolutionary models for GRS1915 and for all BH binaries. The

specific evolutionary model of Belczynski & Bulik (2002) for GRS1915 argues for a small

transfer of mass to the primary and negligible spin up, which is in agreement with most

generic models (e.g., King & Kolb 1999). An evolutionary model of GRS1915 that links this

source to the ultraluminous X-ray sources implies the most extreme mass transfer and spin

up (Podsiadlowski et al. 2003). These authors argue that the initial secondary mass could

have been as high as 6 M⊙ and the BH primary could have accreted as much as ∼ 4 M⊙ (see

also Lee et al. 2002). Even for this extreme scenario, the predicted spin up due to accretion

torques is modest. Based on a precise calculation that ignores returning radiation (§5.5), we
find that the transfer of 4M⊙ onto a 10M⊙ natal black hole with zero initial spin yields a final

spin of only ∼ 0.77, which is far less than our limit of a∗ > 0.98 (§5.5, Fig. 15). Likewise, to
achieve a final spin of a∗ > 0.98 would require an initial spin of a∗ > 0.75. Furthermore, if one

includes the effects of returning radiation, then the accretion is less efficient in spinning up

the hole and a somewhat larger natal spin is required. Again neglecting returning radiation,

a 10 M⊙ BH that is spun up by accretion torques from a∗ = 0 to a∗ = 0.98 would have a

final mass of 19.3 M⊙; since some of the rest mass energy is radiated away, the total rest

mass accreted in such a spin up event would be 10.7 M⊙. We thus conclude that the extreme

spin of GRS1915 was likely imparted to the BH primary during the process of its formation.

The generation of large spins is central to GRB models. Natal spins of a∗ ∼ 0.8, in

agreement with our observations, were predicted for GRO J1655–40 and 4U 1543–47 by



– 28 –

Lee et al. (2002). The extreme spin of GRS1915, a∗ > 0.98, is an expected consequence of

collapsar models (§6.3).

6.3. Significance of Measuring Black Hole Spin

The properties of a BH are completely defined by specifying just two parameters, its

mass M and its dimensionless spin parameter a∗. Furthermore, a BH’s mass simply sup-

plies a physical scale, whereas its spin fundamentally changes the geometry of space-time.

Accordingly, in order to model the ways in which an accreting BH can interact with its envi-

ronment, one must know its spin. For example, consider one of the most intriguing unsolved

problems in astrophysics, namely, the connection between BH spin and relativistic jets that

are commonly observed for both supermassive and stellar-mass BHs and that are so promi-

nent in the case of GRS1915 (e.g., Mirabel & Rodŕiguez 1999). For many years, scientists

have speculated that these jets are powered by BH spin via a Penrose-like process associated

with magnetic fields (e.g., Blandford & Znajek 1977; Hawley & Balbus 2002; Meier 2003;

McKinney & Gammie 2004). However, these ideas will remain mere speculation until suf-

ficient data on BH spins have been amassed and the models can be tested and confirmed.

This provides strong motivation for measuring the spins of accreting BHs.

The strong evidence for natal spins – particularly in the case of GRS1915(§6.2) – is

obviously of major significance in building core-collapse models for SN and GRBs (Woosley

1993; MacFadyen & Woosley 1999; Woosley & Heger 2006). For example, one of the greatest

uncertainties in GRB modeling is whether one can arrive at the core collapse stage with

sufficient angular momentum to make a disk around a BH. The spins of GRO J1655–40 and

4U 1543–47 – and especially GRS1915 – provide strong evidence for the high natal rotation

rates of BHs and thus provide strong support for the collapsar model of “long-soft” GRBs.

The continuing development of gravitational wave astronomy is central to the explo-

ration of BHs, and knowledge of BH spin is fundamentally important to this effort. To

detect the faint coalescence signal for two inspiralling BHs, one must compute the expected

waveform and use it to filter the data. Our spin estimates for GRO J1655-40 and 4U 1543–47

(R06) motivated the first such waveform computation that includes the effects of spin (Cam-

panelli et al. 2006), and our results reported here for GRS1915 present a further challenge

to the waveform modelers.
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6.4. An Observational Test of the Spin and Jet Models for GRS 1915+105

As mentioned in §5.2, our fit results for the five low-luminosity observations (l < 0.3;

see §4.2.1, Table 1) indicate that the distance to GRS1915 is unlikely to be less than about

9–10 kpc. This result is based on the abrupt and dramatic rise in χ2 that occurs for lesser

distances. For the nominal 14.0M⊙ value of BH mass and D = 11.0, 10.5, 10.0, 9.5 and

9.0 kpc, the respective values of χ2

ν for each low-luminosity observation are 0.6, 0.6, 2.6,

13.3, 43.4 (obs. no. 3); 0.5, 1.4, 2.7, 14.2, 43.8 (obs. no. 4); 0.6, 2.0, 6.3, 23.1, 263.6; (obs.

no. 14); 1.0, 1.1, 5.6, 26.8, 77.1 (obs. no. 17); and 0.7, 0.7, 1.4, 12.1, 45.4 (obs. no. 20). This

abrupt rise in χ2 indicates that we have reached the limit of our table model (a∗ = 0.9999)

and that the fit is demanding unphysical values of a∗ > 1. In Figure 18a, this distance

lower limit, which is a function of BH mass, is indicated by the long slant line labeled “spin

model.” For each assumed value of mass, and hence inclination and distance (see §5.2), the
limiting value plotted in Figure 18a is an average result for the five low-luminosity points at

a 99% level of confidence (∆χ2 = 6.6). (The results are very insensitive to the binary mass

ratio, which we have held fixed at its nominal observed value; Harlaftis & Greiner 2004.) To

the right of the vertical line labeled “jet model,” the intrinsic velocity of the radio jet exceeds

the velocity of light (§5.2; Fender et al. 1999). The region below the nearly horizontal line is

disallowed by the jet model and the 1-σ lower limit on the mass function (§5.2; Greiner et

al. 2001). Thus, taken together, the spin and jet models plus the value of the mass function

predict that the distance and BH mass of GRS1915 lie within the triangular region shown

in the figure.

Six model-dependent estimates of the distance to GRS1915 are summarized in Figure

18b. Some estimates disagree, others are very uncertain, and none provides a convincing test

of the constraints summarized in Figure 18a. We believe that it should be possible to obtain

a model-independent VLBA parallax distance that is precise to ∼ 10% and to reduce the

uncertainty by a factor of two in the radial velocity amplitude K of the secondary, which

would significantly improve the accuracy of the mass function. Such improvements in the

observational constraints will provide a powerful test of the spin and jet models for GRS1915.

7. Conclusions

Using a rigorous and quantitative definition of the thermal state of a black hole binary

(§2), we screened all the available RXTE PCA and ASCAGIS data and identified a total of 22

observations of GRS 1915+105 that are free of QPOs and strong timing noise and for which

the thermal disk component of emission contributes > 75 % of the total 2–20 keV flux. We

then fitted the 22 disk-dominated spectra using principally a model of a thin accretion disk in
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the Kerr metric that includes all relativistic effects plus an advanced treatment of the spectral

hardening factor f (§4.2). The spectral fitting of the 22 spectra was repeated a number of

times using three different models for the nonthermal tail component of emission and two

different values of the viscosity parameter (§4). The results for the key relativistic parameters

– the spin a∗ and the mass accretion rate Ṁ – were shown to be quite independent of any

details of the analysis and insensitive to the uncertainties in the independently-determined

input parameters, namely, the mass, inclination and distance of the black hole (§5).

On theoretical grounds, we argue that the spin parameter can be determined most re-

liably at lower luminosities (§6.1, Appendix). Our relativistic disk model assumes a disk

that is thin and torque-free at its inner edge. Higher luminosities are problematic because

they likely lead to disk thickening and nonzero torques near the ISCO. Based on theoret-

ical arguments, we propose a limit on the disk thickness and a corresponding limit on the

disk luminosity, L/LEdd < 0.3, below which one can obtain reliable estimates of the spin

parameter. Adopting this criterion, we obtain our principal conclusion: GRS 1915+105 is

a rapidly-rotating BH with a lower limit on its spin parameter of a∗ > 0.98. Finally, we

propose an observational test of our spin model.
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A. Vertical Thickness of a Thin Accretion Disk around a Kerr Black Hole

Following Page & Thorne (1974), we define the following functions for later use,

A = 1 + a2
∗
x−4 + 2a2

∗
x−6 , B = 1 + a∗x

−3 , (A1)

C = 1− 3x−2 + 2a∗x
−3 , D = 1− 2x−2 + a2

∗
x−4 , (A2)

where a∗ ≡ a/cRg is the dimensionless spin of the black hole BH, Rg ≡ GM/c2 is the

gravitational radius of the BH of mass M , and x ≡ (R/Rg)
1/2. Note, D vanishes on the

horizon of the BH.

On the equatorial plane of the BH, the lapse function and the angular velocity of frame
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dragging are

χ =

(D
A

)1/2

, ω =
2a∗R

2

gc

R3A . (A3)

The angular velocity of a thin Keplerian disk at radius R is

ΩD =

(

GM

R3

)1/2
1

B , (A4)

and the rotational 3-velocity of the disk relative to the locally nonrotating frame is

vφ =
A1/2

χ
(ΩD − ω)R . (A5)

The 4-velocity of the disk particle is then

Ua =
Γ

χ

[(

∂

∂t

)a

+ ΩD

(

∂

∂φ

)a]

, (A6)

where Γ =
(

1− v2φ/c
2
)−1/2

= B/C1/2 is the Lorentz factor. The 4-velocity satisfies the

normalization condition UaUa = −1.

The relative acceleration between two neighboring particles moving on geodesics with a

small separation vector Xa is given by the geodesic deviation equation (Wald 1984),

ga = −R a
cbd XbU cUd , (A7)

where R a
cbd is the Riemann tensor of the spacetime and Ua is the four-velocity of the geodesic.

The acceleration is measured in the rest frame of the particles. For a particle above the

equatorial plane at a small height z and corotating with the disk, we have Xa = zeaz , where

eaz is a normalized unit vector orthogonal to the equatorial plane. Combining this with the

Ua given in equation (A6) and the Riemann tensor of the Kerr spacetime, we can calculate

the relative acceleration,

ga = −gze
a
z , gz = ξ

GMz

R3
, (A8)

where1

ξ =
1

C
(

1− 4a∗x
−3 + 3a2

∗
x−4

)

. (A9)

1Our result differs from eq. (5.7.2) of Novikov & Thorne (1973). After intensive examination, we believe

that their formula is incorrect.
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For a disk that is radiation-dominated (at least at the photosphere), the equilibrium in

the vertical direction is determined by

Fκ

c
≈ gz|z=H , (A10)

where F = F (R) is the radiation flux density of the disk (measured by an observer corotating

with the disk) and κ is the disk opacity. The flux density F has been derived by Page &

Thorne (1974) and is given by

F =
3GMṀ

8πR3
f0 , (A11)

where f0 = (2R2/3Rg)f and the expression for f is given in equation (15n) of Page & Thorne

(1974). Our choice of f0 instead of f is based on the fact that, unlike f , f0 is dimensionless.

Note that at R = RISCO (the innermost stable circular orbit) we have f0 = 0, and that as

R → ∞ we have f0 → 1.

By equations (A8)–(A10), the scale-height of the disk is

H

R
≈ 3κṀ

8πRc

f0
ξ

. (A12)

Following the analysis of the Newtonian case (§ 6.1), we define the Eddington luminosity by

LEdd =
4πGMc

κ
= εṀEddc

2 , i.e., ṀEdd =
4πcRg

κε
, (A13)

except that here ε = ε(a∗) is the radiative efficiency of the relativistic disk (see Page &

Thorne 1974). With the above definition of ṀEdd, we have L/LEdd = Ṁ/ṀEdd ≡ ṁ, where

L is the luminosity of the disk. Then, equation (A12) can be recast into

H

R
≈ 3ṁ

2ε

f0
x2ξ

. (A14)

It can be shown that this expression for H/R simplifies to equation (5) in the Newtonian

limit. Note that H/R does not depend on the value of the opacity κ.

Since the ratio H/R = 0 at R = RISCO and also as R → ∞, it must have a maximum

at some finite R > RISCO. It turns out that for any given value of ṁ, the maximum value

of H/R is very insensitive to variation in a∗ (though the radius at which this maximum is

reached varies by a large factor). Examples of H/R as a function of the disk radius are

shown in Figure 17 for two choices of the BH spin, a∗ = 0, 0.998. Notice how the two sets of

curves agree very closely as far as their maxima are concerned. Therefore, regardless of the

value of a∗, if we wish to have (H/R)max . 0.1, we require the dimensionless disk luminosity

l ≡ L/LEdd to be . 0.3.
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Mirabel, I. F., & Rodŕiguez, L. F. 1994, Nature, 371, 46
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Fig. 1.— Detailed results from fitting all 20 RXTE observations of GRS1915 in the thermal

state with a model consisting of diskbb, a power-law, a Gaussian absorption line and a

smedge component over the energy range 3–25 keV (44 degrees of freedom). The data points

circled in blue correspond to the crucial low-luminosity observations (§5, §6.1, Appendix).
The horizontal dashed line in the bottom panel is drawn at χ2

ν = 1. From top to bottom,

the panels show: the ratio of the disk to total flux fD, the two diskbb fitting parameters,

the disk inner temperature Tin (keV) and the normalization constant K, the disk flux FD

(10−7 erg cm−2 s−1 ) and the power-law flux FPL (10−8 erg cm−2 s−1 ), the power-law photon

index Γ, the central energy of the Gaussian absorption line EFe (keV), the intensity of the

line NFe (photons cm−2 s−1 times 100) and the equivalent width of the line EWFe (keV),

the smedge edge energy ES (keV) and the smedge optical depth τS, and finally the value of

reduced chi-square. See §4.1 for further details.

Fig. 2.— Analogous to Figure 1, but with the non-relativistic disk model diskbb replaced

by our relativistic disk model kerrbb2 (44 dof). The fits were done for a viscosity parameter

α = 0.01. This figure is identical in structure with Figure 1 except that Tin and K are here

replaced by two parameters of kerrbb2, namely, the BH spin parameter a∗ and the mass

accretion rate Ṁ (1018 g s−1).

Fig. 3.— This figure is identical to Figure 2, except that the fits were computed for a

viscosity parameter α = 0.1.

Fig. 4.— Results of fitting the 20 RXTE observations of GRS1915 in the thermal state with

a model consisting of kerrbb2, a thermal Comptonization component comptt, a Gaussian

absorption line and a smedge component (43 dof). The panels are the same as in Figures 2

and 3 except that FPL and Γ are replaced by the flux in the comptt component FC and the

optical depth of the Comptonizing corona τC . See §4.2.2 for other details.

Fig. 5.— Results of fitting the 20 RXTE observations of GRS1915 in the thermal state

with a model consisting of kerrbb2, a cutoff power-law component expabs*power, a Gaussian

absorption line and a smedge component (43 dof). See §4.2.3 for other details.

Fig. 6.— Fit results for a model including a sharp absorption edge for the five observations

in Figures 2–5 that have χ2

ν & 1.5. The small black data points with error bars are identical

to those plotted in Figure 2, and the results of including the sharp edge in the fits are plotted

as open red circles. Note the pair of panels near the bottom displaying the parameters of

the edge component.

Fig. 7.— Spin parameter a∗ versus the Eddington-scaled luminosity L/LEdd for all 22 RXTE

and ASCA observations of GRS1915 in the thermal state for two values of the viscosity
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parameter α. The tail emission is modeled as a simple power law. For reasons discussed

in § 6.1 and the Appendix, the results are most trustworthy for L/LEdd . 0.3; this limit is

indicated here and below by the vertical dotted line. Data in this regime consistently give

a very high estimate of the spin parameter of GRS1915, a∗ → 1, independent of α or any

other details.

Fig. 8.— Same as Figure 7 except that the tail emission is modeled as a Comptonized plasma

and only the results for α = 0.01 are shown. Results are displayed for three values of T0, the

temperature of the seed photons.

Fig. 9.— Same as Figure 7 except that the tail emission is modeled as a cutoff PL, and

α = 0.01 only. The results are shown for three values of the cutoff energy Ec.

Fig. 10.— Direct comparison of the results displayed in Figures 7–9 for the three different

tail models, for α = 0.01 only. Note how very similar the results are, which shows that the

results are not sensitive to the details of the spectral model used to fit the high-energy tail

component in the spectrum.

Fig. 11.— (a) Effects on the spin estimate of GRS1915 as a result of varying the distance

D to the source over the range 11.0–12.5 kpc. The mass of the BH M and the inclination i

are correlated with D, as explained in §5.2. The results for D = 9 kpc and D = 10 kpc are

not shown for reasons that are given in §5.2. (b) Effects of varying the BH mass M over its

allowed range, keeping D fixed at 11.0 kpc and i fixed at 66.0o.

Fig. 12.— The single spin estimate obtained by M06, which is here referred to a distance

D = 11 kpc, is indicated by the three blue triangles that are connected by a dashed line.

Our results, which are based on the comptt tail model for T0 = 2.0 keV and α = 0.01, are

shown as red circles (see Fig. 8).

Fig. 13.— Illustrates the effect of including the returning radiation in the model. The

primary effect is to shift the estimated Eddington-scaled luminosities to higher values. There

is very little effect on the estimates of BH spin a∗.

Fig. 14.— Illustrates the effect of including a nonzero torque at the inner edge of the disk.

Fig. 15.— The behavior of three dimensionless quantities that depend only on the BH spin

parameter: (a) The radius of the ISCO in gravitational units, (b) the specific binding energy

at the ISCO, and (c) the Keplerian orbital frequency at the ISCO. The filled data points

correspond to nominal estimates of the spins of the four BHs (see Table 4): from left to

right, LMC X-3 (a∗ = 0.20), GRO J1655–40 (a∗ = 0.70), 4U 1543–47 (a∗ = 0.80), and

GRS1915 (a∗ = 0.99). The horizontal lines in each panel indicate the values of each of the
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three quantities in question that correspond to the following key values of spin: a∗ = 0

(short-dashed line), a∗ = 1 (long-dashed line), and a∗ = 0.998 (dotted line; Thorne 1974).

Fig. 16.— Ratio of disk thickness H to radius R, plotted against R/Rin, for Eddington-

scaled values of luminosity l = ṁ in steps of ∆l = 0.1 (from l = 0.1 to l = 1.2 upward). The

results are for a Newtonian disk in which Rin is the radius of the inner edge. The horizontal

dashed line corresponds to H/R = 0.1. (See Fig. 17 for the relativistic case.)

Fig. 17.— Ratio of disk thickness H to radius R for a relativistic disk around a Kerr black

hole, plotted against R/Rg, for Eddington-scaled values of luminosity l = ṁ in steps of

∆l = 0.1 (from l = 0.1 to l = 1.2 upward). The inner radius of the disk is at the innermost

stable circular orbit. The thick lines correspond to a non-rotating black hole (a∗ = 0) and

the thin lines to a maximally rotating black hole (a∗ = 0.998). The horizontal dashed line

corresponds to H/R = 0.1. It is anticipated that the disk spectral models employed in this

paper (diskbb, kerrbb2, bhspec) are most reliable when H/R . 0.1, which corresponds to the

luminosity limit l . 0.3. (See Fig. 16 for the Newtonian case.)

Fig. 18.— (a) The allowed values of BH mass and distance for GRS1915 fall within the

triangular region indicated (see text). (b) A summary of model-dependent distance estimates

for GRS1915. The two relatively precise and disparate estimates at the bottom of the

figure require comment: The one labeled “Radio/IR: lobes” is based on identifying a pair of

extended IRAS sources as the regions where the jets of GRS1915 impact the ISM (Kaiser

et al. 2004). The other estimate labeled “Near-IR systemic velocity + 21 cm” is based on a

systemic velocity of γ = −3±10 km s−1 and the Galactic rotation curve (Greiner et al. 2001).

This latter estimate ignores the potentially sizable and unknown uncertainty associated with

a possible peculiar component of radial velocity as well as any kick velocity that may have

been imparted to the system during the formation of the BH (e.g., Jonker & Nelemans 2004).

References: (1) Rodŕiguez et al. 1995; (2) Dhawan et al. 2000a; (3) Dhawan et al. 2000b; (4)

Chapuis & Corbel 2004; (5) Kaiser et al. 2004; (6) Greiner et al. 2001.
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