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ABSTRACT

Context . Various binary black hole formation channels have been proposed since the first gravitational event GW150914 was discov-
ered by the Advanced Laser Interferometer Gravitational-Wave Observatory (AdLIGO). The immediate progenitor of the binary black
hole is a close binary system composed of a black hole and a helium star, which can be the outcome of the classical isolated binary
evolution through the common envelope, or alternatively of the massive close evolution through chemically homogeneous channel.
Aims. We study the spin angular momentum evolution of the helium star in order to constrain the spin of the second-born black hole.
This work focuses on the common envelope formation channel, however, some of our conclusions are also relevant for the chemically
homogeneous evolution channel.
Methods. We perform detailed stellar structure and binary evolution calculations that take into account, mass-loss, internal differential
rotation, and tidal interactions between the helium star and the black hole companion, where we also calculate the strength of the tidal
interactions from first principles based on the structure of the helium stars. We systematically explore the parameter space of initial
binary properties, including initial black hole and helium star masses, initial rotation of the helium star as well as metallicity.
Results. We argue that the natal spin of the first-born black hole through the common envelope scenario is negligible (.0.1), and
therefore the second-born black hole’s spin dominates the measured effective spin, χeff , from gravitational wave events of double
black hole mergers. We find that tides can be only important when orbital periods are shorter than 2 days. Upon core collapse, the
helium star produces a black hole (the second-born black hole in the system) with a spin that can span the entire range from zero
to maximally spinning. We show that the bimodal distribution of the spin of the second-born black hole obtained in recent papers is
mainly due to oversimplifying assumptions. We find an anti-correlation between the merging timescale of the two black holes, Tmerger,
and the effective spin χeff . Finally, we provide new prescriptions for the tidal coefficient E2 for both H-rich and the He-rich stars.
Conclusions. To understand the spin of the second-born black hole, careful treatment of both tides and stellar winds is needed.
We predict that, with future improvements to AdLIGO’s sensitivity, the sample of merging binary black hole systems will show an
overdensity of sources with positive but small χeff originating from lower-mass black hole mergers born at low redshift.

Key words. binaries: close – stars: black holes – stars: evolution – Sun: rotation – gamma-ray burst: general – stars: Wolf–Rayet

1. Introduction

Stellar-mass black holes (BHs) are formed from the gravitational
collapse of massive stars (&20 M⊙; e.g., Fryer 1999; Heger et al.
2003; Sukhbold et al. 2016) after they exhaust the nuclear fuel at
their centers. Astrophysical BHs can be fully described by only
two quantities; their mass, M, and angular momentum J. The
angular momentum content of a BH is usually described by the
dimensionless BH spin parameter

a = cJ/GM2, (1)

where c is the speed of light in vacuum. Many BHs exist in bi-
nary systems with non-degenerate companion stars, for exam-
ple, X-ray binaries, which makes it possible to obtain the BH’s
properties indirectly (McClintock 2006; McClintock et al. 2014;
Reynolds 2014; Casares & Jonker 2014; Miller & Miller 2015).
Binary systems where both members are BHs can also exist. If
the orbital separation of these binary BHs (BBHs) is initially

sufficiently small, angular momentum losses due to gravitational
wave emission contract their orbit further and can lead to their
coalescence within the Hubble time. The existence of such BBHs
in the Universe, as a result of the evolution of massive binary
stars, was first theorized by Tutukov & Yungelson (1973).

A new window for the study of the BHs has opened with the
detection of the first gravitational wave event (Abbott et al. 2016d)
by the Advanced Laser Interferometer Gravitational-Wave Ob-

servatory (AdLIGO; LIGO Scientific Collaboration et al. 2015).
To date, six gravitational wave events and one high-significance
gravitational wave event candidate (Abbott et al. 2016b,c,d,
2017a,d,b) from the merger of BBHs have been detected by
AdLIGO. These observations demonstrate that massive stellar
BBHs exist and can merge within the Hubble time (Abbott et al.

2016a). The suggested formation channels of these BBHs
can be split into two broad categories: (i) Formation via the

evolution of massive, isolated binaries in the field, that go through
eithera common envelope (CE) phase after the formation of
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the first-born BH that significantly shrinks their orbits (here-
after referred to as the “CE” binary evolution channel; Phinney
1991; Tutukov & Yungelson 1993; Belczynski et al. 2016;
Tutukov & Cherepashchuk 2017), a stable, non-conservative
mass-transfer phase (van den Heuvel et al. 2017; Inayoshi et al.
2017), or spend their whole lives in close orbits and evolve chem-
ically homogeneously (de Mink & Mandel 2016; Marchant et al.
2016; Mandel & de Mink 2016; Song et al. 2016), and (ii) dy-
namical formation in globular clusters (Sigurdsson & Hernquist
1993; Rodriguez et al. 2015, 2016) and galactic nuclear clusters
(Miller & Lauburg 2009; O’Leary et al. 2009; Kocsis & Levin
2012; Petrovich & Antonini 2017). Finally, motivated by the ex-
istence of a potential electromagnetic counterpart for GW150914
in gamma-rays (Connaughton et al. 2016), a formation channel
from a single star, via the fragmentation of their rapidly rotating
cores, has been suggested (Loeb 2016; D’Orazio & Loeb 2017).
However, both the applicability of this scenario to GW150914
(Woosley 2016) and the detection of the electromagnetic coun-
terpart itself (Savchenko et al. 2016; Ackermann et al. 2016) have
been questioned.

For the isolated field binary channels, the spins of the two
BHs are expected to be mostly aligned with the orbital angu-
lar momentum. In contrast, the spins of the two BHs from the
dynamical formation channels are expected to have a random,
isotropically distributed direction. Clearly the spin plays an im-
portant role in distinguishing among the various BBH formation
channels (e.g. Abbott et al. 2016a; Farr et al. 2017). The spins
of the BHs have an effect on the waveform of the gravitational
waves, and this can be observed by AdLIGO. The effective inspi-
ral spin parameter χeff which can be directly constrained by the
gravitational wave signal, is defined in the following expression:

χeff ≡
M1a1 + M2a2

M1 + M2

L̂, (2)

where M1 and M2 are the masses of the two BHs, a1 and a2

are two BHs’ dimensionless spin parameters and L̂ is the direc-
tion of the orbital angular momentum.χeff has been observed to be

−0.06+0.14
−0.14

, 0.21+0.2
−0.1

,−0.12+0.21
−0.30

, 0.0+0.3
−0.2

, 0.06+0.12
−0.12

and0.07+0.23
−0.09

, for

GW150914, GW151226, GW170104, GW170814, LVT151012
and GW170608, respectively (Abbott et al. 2016b,c, 2017a,c,b).
From these 6 χeff measurements, five are consistent with zero and
only for GW151226 is χeff determined to have a positive, non-
zerovaluewithahighstatisticalconfidence.Assuminganisotropic
prior probability distribution for the misalignment angle between
the individual BH spins and the orbit, the individual BH spins of
GW170104haveasignificantprobabilityofbeingmisalignedwith
the orbit, supporting the dynamical formation scenario. Alterna-
tively, if the individual BH spin magnitudes are small, then the
posteriorprobabilityofamisalignmentbetween the individualBH
spinswith theorbitdecreasesandthe“CE”channelcannotberuled
out (Belczynski et al. 2017).

In all the formation channels that are based on the evolu-
tion of an isolated field binary (i.e. the “CE” binary evolution
channels and the chemically homogeneous evolution channels),
the immediate progenitor of the BBH is a close binary consist-
ing of a BH and a He-rich star (i.e. WR star). In these binaries,
the angular momentum of the progenitor of the second-born BH
will be mainly determined by the net effect of the stellar winds
and the tidal interaction in a close binary configuration. On the
one hand, the outer layer of the He-rich star will be lost through
stellar winds with a mass loss rate strongly dependent on the
metallicity of the mass-losing He-rich star (e.g. Eldridge & Vink
2006). At the same time, this mass loss rate can potentially be

enhanced if the star is rapidly rotating, approaching critical ro-
tation (Langer 1997; Maeder & Meynet 2000). As a result of the
mass and rotational and orbital angular momentum losses due to
stellar winds, both the orbital separation and the rotation period
of the He-rich star change. Stellar winds tend to increase the ro-
tation period of the mass-losing star. As a result of the mass and
angular momentum losses due to stellar winds, both the orbital
separation and the rotation period of the He-rich star tend to in-
crease; stellar winds extract both spin angular momentum from
the mass-losing star, slowing its rotation, and mass and orbital
angular momentum from the system, tending to widen the bi-
nary orbit. In addition to these effects, tidal interactions between
the BH and the He-rich star may also induce angular momen-
tum exchanges between the orbit and the star. Apart from stellar
winds and tides, different initial conditions for the He-rich star at
its birth, including initial rotation rate and metallicity, also play
a key role in the spin of the second-born BH at its birth.

Following the detection of the first gravitational wave event,
GW150914, for which the quantity χeff of the two coalescing
BHs was found to be consistent with zero, several studies at-
tempted to model this last evolutionary phase in the formation of
a BBH and derive constraints on the expected spin of the second-
born BH, under the assumption that these BBH were formed
via the “CE” channel (Kushnir et al. 2016; Hotokezaka & Piran
2017a; Zaldarriaga et al. 2018). These studies employed analytic
arguments and semi-analytic calculations to infer the angular
momentum content of the progenitor of the second-born BH due
to tidal interactions with its BH companion. The main conclu-
sion of these studies was that the distribution of the second-
born BH is expected to be bi-modal, with approximately half
having no spin and half spinning maximally. However, in or-
der to make the problem analytically tractable, in all three stud-
ies, several simplifying assumptions had to be made. For exam-
ple, they used approximate timescales for the process of tidal
synchronization that do not take into account changes in the
structure of the star during its lifetime. Furthermore, these stud-
ies did not self-consistently take into account wind mass-loss
which, through tidal coupling, affects the evolution of the orbit
and the angular momentum content of the WR star. Hence, it is
not obvious that these results will persist when using detailed
binary evolution models that self-consistently include the com-
plex interplay between tides, wind mass loss and stellar structure
evolution.

Massive He-rich stars are also widely accepted as the
progenitors of Type Ib/c supernovae (e.g. Filippenko 1997;
Woosley & Bloom 2006, and references therein). During the core
collapseofa rapidly rotatingHe-richstar, itsouter layersmayform
an accretion disk along with a highly relativistic jet around the
newly formed BH resulting in the release of intense Gamma-ray
radiation. According to this paradigm, also known as the collap-
sar model (Woosley 1993), massive, rapidly rotating He-rich stars
are the progenitors of long Gamma-Ray Bursts (lGRBs). In this
context, the tidal spin-up of a He-rich star from a compact com-
panion in a close binary system has been investigated in several
studies (Brown et al. 2000; Izzard et al. 2004; Petrovic et al. 2005;
Cantiello et al. 2007; van den Heuvel & Yoon 2007; Detmers et al.
2008;Eldridge et al.2008).Angularmomentumcanbetransferred
through the L-S coupling effect from the orbit to the He-rich star,
but the orbital period needs to be sufficiently short to allow for
a strong tidal interaction. Transferred angular momentum from
the orbit to the outer layers of the He-rich star will spin up its
core by various coupling effects such as toroidal magnetic fields
generated from differentially rotating, radiative stellar envelopes
(Spruit 1999, 2002).
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In this paper, we focus on the later phases of the “CE” BBH
formation channel and specifically on the evolution of a close bi-
nary system consisting of a He-rich star and a BH, immediately
after the binary detaches at the end of the CE phase. Our results
are relevant for all BBH formation channels based on the evolution
of an isolated field binary. We investigate the angular momentum
content of the second-born BH progenitor, using detailed stellar
structure and binary evolution calculations that take into account
the effects of internal differential rotation in the He-rich star, stel-
lar winds, and tides. In order to better understand the interplay
of these effects, we explore a five-dimensional initial parameter
space of initial masses of the two binary components, initial or-
bital period, initial rotation of the He-rich star and metallicity.

The paper is organized as follows. In Sect. 2, we present
qualitative arguments about the expected spin of the first-born
BH in the “CE” isolated binary evolution channel. We then in-
troduce the theory of tidal interaction adopted in this study in
Sect. 3. In Sect. 4, we show a semi-analytic test for the efficiency
of tides in WR-BH binaries. In Sect. 5, we present detailed sim-
ulations of the angular momentum evolution of He-rich stars in
close binary systems. In Sect. 6 we discuss the merging timescale
of the two compact objects. Finally, discussion and conclusions
of our results are given in Sects. 7 and 8, respectively.

2. The spin of the first-born BH in the classical

isolated binary evolution channel

In the “CE” isolated field binary formation channel (e.g., see
Belczynski et al. 2016), a binary consisting of two massive
H-rich stars in a wide orbit evolve from Zero Age Main Se-
quence (ZAMS). The more massive star (star 1) evolves faster
and fills its Roche lobe during either the Hertzsprung gap or the
supergiant phase. Star 1 transfers mass to the less massive star
(star 2) through the first Lagrangian point, and the mass transfer
(MT) during this phase is stable. After losing all its H envelope,
star 1 evolves into a He star and soon directly collapses to form
a BH (the first-born BH), while star 2, which has accreted part
of star 1’s envelope, still remains on the MS. At this point, the
orbital separation has increased further, mainly due to MT. Sub-
sequently, star 2 evolves off the main sequence and overfills its
Roche lobe while on the red supergiant branch. Because of the
mass ratio and the evolutionary stage of star 2, this MT phase
is dynamically unstable and the binary enters into a CE phase.
The BH spirals into the envelope of star 2, converting orbital en-
ergy into heat. During this phase the orbital separation shrinks
dramatically, and the post-CE system consists of a He star and a
BH in a close orbit of tens of Solar radii. Eventually star 2 also
collapses to form a BH, and potential asymmetries in the core
collapse may alter the orbit further. The final product of this for-
mation channel is a BBH in an orbit that is close enough to lead
to the coalescence of the two BHs due to angular momentum
losses from gravitational wave emission.

In this scenario, the spin of the first-born BH is expected
to be very low (a∗,1 ∼ 0) for two reasons. First, while the pro-
genitor of star 1 evolves through a red supergiant phase (assum-
ing an efficient angular momentum transport mechanism such as
the Taylor–Spruit dynamo; Spruit 1999, 2002), most of the ini-
tial angular momentum is transported to the outer layers of the
star upon expansion. The core of the star, although still rotating
at a higher angular frequency than the envelope, is depleted of
angular momentum. Eventually, the outer layer of the red super-
giant star is removed either by the MT phase or by stellar winds,
and thus the remaining angular momentum in the core of the
star will be small. Second, before the onset of the MT phase, the

orbital separation is relatively large. Therefore, even if tides can
efficiently synchronize the rotation of the outer layers of the star
to the orbit, the angular frequency of the latter will be so low that
it will not be possible to actually spin up the core. A similar argu-
ment has been presented by Fragos & McClintock (2015) about
the natal spin of BHs in Galactic low-mass X-ray binaries.

We note that in Yoon et al. (2010), detailed binary evolution
has been computed for primary stars between 12 and 25 M⊙.
Their results are not directly applicable here since we are study-
ing the progenitor of the BH rather than neutron star. Progen-
itors of BHs likely come from more massive stars. However,
it is interesting to mention that they find that the amount of
angular momentum that remains in the core of the primary is
very similar to the one obtained from the single stellar models
(Heger et al. 2005; Yoon et al. 2006). Therefore, in order to ob-
tain a more quantitative handling on the arguments presented
above and in the mass regime that leads to BH formation, we
evolved, using the Modules for Experiments in Stellar Astro-
physics (MESA) code version 8118 (Paxton et al. 2011, 2013,
2015, 2018), single massive stars of 50 M⊙ and 90 M⊙ at metal-
licities of 0.01 Z⊙, 0.1 Z⊙ and Z⊙ (Z⊙ is the solar metallicity taken
here as 0.02). For each mass and metallicity, we evolve the stars
from ZAMS, assuming different initial rotation rates (i.e. 0.1,
0.3, 0.5, 0.7 and 0.9 ωinit/ωcrit; where ωinit and ωcrit are the ini-
tial and the critical angular velocity at the surface of the star),
where we assume that the stars are, initially, uniformly rotating.
For this set of single H-rich models, we use stellar winds, mixing
and angular momentum transport parameters closely following
Marchant et al. (2016). We also use the Schwarzschild criterion
to treat the boundary of the convective zones and a convective
core overshooting parametrized with αov = 0.1. The impact of
rotation on the mass-loss rate is considered as indicated in Eq. (3)
(Heger & Langer 1998; Langer 1998).

Ṁ(ω) = Ṁ(0)

(

1

1 − ω/ωcrit

)ξ

, (3)

where ω and ωcrit (ω2
crit
= (1 − L/LEdd)GM/R3, LEDD is the

Eddington luminosity) are the angular velocity and critical angu-
lar velocity at the surface, respectively. The default value of the
exponent ξ = 0.43 is taken from Langer (1998). No gravity dark-
ening effect is accounted for (see Maeder & Meynet 2000, for a
discussion on the impact of this process). More details about our
settings in MESA for the single H-rich stars can be found on the
MESA web page1.

We run all the models up to central He exhaustion. The spin
of the BH is obtained assuming that its mass and angular mo-
mentum content are given by the mass and angular momentum
of the carbon-oxygen core at that stage. The final spin obtained
as indicated above is shown in Fig. 1 as the function of the ini-
tial relative rotation rate at ZAMS. We find that for initial ro-
tations up to 0.5 ωinit/ωcrit and for all metallicities, the spin
of the resultant BH is negligible (.0.1). Although Fig. 1 shows
that stars with initial relative rotations above 0.5 ωinit/ωcrit and
metallicities .0.1 Z⊙ produce near maximally spinning BHs, the
fast-spinning nature of these He-star progenitors induces effi-
cient internal mixing, forcing chemically homogeneous evolu-
tion; these stars never evolve onto the supergiant branch, and
therefore they cannot be progenitors of the first-born BH in the
“CE” formation scenario we consider here. Overall, we expect,
as a first-order approximation, that the first-born BH in the “CE”,
isolated field binary formation channel has negligible spin.

1 The detailed list of parameters used for the single H-rich stars can be
found at http://mesastar.org/results
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Fig. 1. Spin of the resultant BH from the evolution of single stars at cen-
tral He exhaustion for different masses (50 M⊙ and 90 M⊙) and metallic-
ities (0.01 Z⊙, 0.1 Z⊙, and Z⊙) as a function of initial rotation, assuming
that the carbon/oxygen core will collapse to form the BH, conserving
the angular momentum it had at the point of central He exhaustion.

The latter argument is even more convincing when account-
ing for two effects that we have neglected in this approach and
that would remove angular momentum from the star. First, in
this approach we considered that the star evolves as a single star,
while it is a member of a binary system. As recalled above, in
a close binary, the more massive star loses angular momentum
through the first Lagrangian point during the stable MT phase,
and its angular momentum content decreases. Second, we have
neglected the effects of disk formation during the core collapse
process (e.g., see discussion in Sect. 2.2 of Belczynski et al.
2017) which may remove some angular momentum from the
core that collapses to form the BH. The latter effect is also rele-
vant for the estimate of the spin of the second-born BH that we
discuss later. In that sense our quoted spins can be considered as
upper limits for the predicted BH spin.

3. Tidal interaction in binary systems

Tidal forces, in a close binary system, play a key role in both sec-
ular evolution of the orbit and the internal angular momentum of
the stellar components. Two main mechanisms responsible for
the dissipation of the tidal kinetic energy have been widely ac-
cepted, that is, turbulent dissipation (or convective damping) on
the equilibrium tides applied to the stars with an outer convection
zone, and radiative damping on the dynamical tides applied to
the stars with an outer radiative zone (Zahn 1977). The strength
of the interaction depends on the ratio of the stellar radius to the
orbital separation of the two stars, and the timescale of synchro-
nization is defined as follows (Zahn 1977; Hut 1981):

1

Tsync

= −
1

ω − n

dω

dt
= 3 ·

K

T

q2

r2
g

(

R

a

)6

, (4)

where ω and n are the spin angular velocity and the orbital angu-
lar velocity, respectively, q is the mass ratio of the secondary star
to the primary one, a the orbital separation, r2

g is the dimension-

less gyration radius of the star2, and K
T

, a coupling parameter de-
pending on the tidal interaction mechanism, which we describe
in the following section.

2 r2
g =

I

MR2 , where I is the moment of inertia of the star, M the mass of
the star, R the radius of the star.

3.1. Equilibrium tides

For stars with an outer convective envelope, the turbulent vis-
cosity on the equilibrium tides in the convective regions of a star
is responsible for the dissipation of the tidal kinetic energy. In
equilibrium tides, it is assumed that the star keeps the state of
hydrostatic equilibrium, and all other dissipation processes are
neglected. ( K

T
)c is expressed (see Hurley et al. 2002, and refer-

ences therein) as:

(

K

T

)

c
=

2

21

fconv

τconv

Menv

M
yr−1, (5)

where fconv is a numerical factor, τconv (in unit of year) the eddy
turnover timescale (Rasio et al. 1996), and Menv the mass of the
convective envelope.

3.2. Dynamical tides

For stars with outer radiative envelopes, radiative damping of the
stellar oscillations is responsible for the dissipation of the tidal
kinetic energy. This is also known as the regime of dynamical
tides. In this regime ( K

T
)r is defined as:

(

K

T

)

r
=

(

GM

R3

)1/2

(1 + q)5/6E2

(

R

a

)5/2

, (6)

where E2 (second order tidal coefficient, with higher orders be-
ing neglected) is a parameter that depends on the structure of the
star and refers to the coupling between the tidal potential and
gravity mode oscillations.

One widely used analytic approximation formula produced
by Hurley et al. (2002), based on tabulated results from Zahn
(1975), expresses E2 as a function of the stellar mass:

E2 = 1.592 × 10−9

(

M

M⊙

)2.84

· (7)

More recently Yoon et al. (2010) obtained the following expres-
sion:

E2 = 10−1.37
(

Rconv

R

)8

, (8)

by fitting the dependence of E2 on Rconv/R, using the values given
in Table 1 of Zahn (1977) for ZAMS stars with various masses.

There, Rconv denotes the radius of the convective core and
R is the radius of the star. The latter expression relates E2 to
the radius of the convective star and therefore is more sensitive
to the structure of the star. This formulation has been success-
fully implemented in several recent, detailed studies of rotation
in massive stars (de Mink et al. 2009; Song et al. 2013, 2018).

The original methodology to calculate E2 was introduced by
Zahn (1975), and was discussed in more detail in later works
(Claret & Cunha 1997; Siess et al. 2013; Kushnir et al. 2017).
Since both fitting formulae in Eqs. (7) and (8) for E2 were calcu-
lated based on ZAMS, H-rich stellar models at solar metallicity,
it is not obvious that they accurately represent He-rich stars over
a variety of metallicities. We therefore decided to systematically
investigate the dependence of E2, for both H-rich and He-rich
stars, over a range of metallicities (i.e. 0.01 Z⊙, 0.1 Z⊙ and Z⊙)
and evolutionary stages.

For all the simulations of He-rich stars, we first create a naked
He star at different masses. After that, with the same settings (i.e.
stellar winds, rotational mixing parameters, Schwarzschild crite-
rion for convection and overshooting with αov = 0.1) as with H-
rich stars in Sect. 2, we compute the evolution of He-rich stars
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at different metallicities up to the central He exhaustion. The
physical ingredients of the models used to compute E2 are also
the same as those used to compute the evolution of the He-rich
stars in binary systems3. Appendix A provides the details of our
method for calculating E2 as well as a brief discussion.

In all cases, a functional form similar to the one adopted by
Yoon et al. provides an adequate analytic approximation:

E2 =



























10−0.42
(

Rconv

R

)7.5
H-rich stars

10−0.93
(

Rconv

R

)6.7
He-rich stars

(9)

This updated relation is used in the expression for dynamical
tides in the present work.

We note here that for fast rotating stars, it has been sug-
gested that a high level of turbulence produced by rotation
dominates over the radiative viscosity and therefore equilib-
rium tides should be used despite the lack of an outer con-
vective zone (Toledano et al. 2007; Detmers et al. 2008). In the
following section, we test for the relative efficiency of equi-
librium tides and dynamical tides in He-rich stars with radia-
tive envelopes. However, we adopt the standard dynamical tides
in all the detailed models that are presented on Sect. 5 and
onward.

4. Testing the efficiency of the tides in WR-BH

binary systems

Due to the large dimensionality of the available initial param-
eter space of WR-BH and WR-neutron star (NS) binaries (ini-
tial masses of the two binary components, initial orbital period,
initial rotation of the He-rich star, and metallicity), it is com-
putationally impractical to cover sufficiently densely the whole
available parameter space. Knowing that tides play an important
role only in close binary systems, we first perform an order-of-
magnitude test to identify the part of the parameter space where
tides become relevant. We use MESA to evolve single He-rich
stars with different metallicities, in the mass range 4–50 M⊙ and
steps of 2 M⊙. The stellar structure information of these He-rich
star models is used to calculate the tidal timescale of the syn-
chronization with different compact object companions. For He-
rich stars, the newly derived expression for E2 from Eq. (9) is
adopted in the following calculations. Furthermore, we assume
that a binary system has a He-rich star either with a BH of 10
or 30 M⊙ or a NS of 1.4 M⊙. Finally, we consider different ini-
tial orbital periods, P, spanning the range from 0.1 to 10 days.
For each binary system, the Roche lobe radius, rL, of the He-rich
star provides a lower limit of the orbital period, as initially the
He-rich star cannot overfill its Roche lobe, where rL is given in
units of the orbital separation by Eggleton (1983):

rL =
0.49q−2/3

0.6q−2/3 + ln(1 + q−1/3)
a, 0 < q < ∞, (10)

where q is the mass ratio of the companion compact object to
the He-rich star and a the orbital separation. He-rich stars spend
most of their lifetimes burning He in the core. We adopt the prop-
erties of the star half-way through its central He burning phase
to calculate the synchronization timescale, Tsync. The ratio of the

3 The detailed list of parameters used for creation and the evolution
of single He-rich stellar models can be found at http://mesastar.
org/results

synchronization timescale to the lifetime of the core He burn-
ing phase, THe, gives us a good handle on whether tides play a
significant role in this binary configuration or not. In this approx-
imation, we assume that the orbital separation remains constant
during the whole evolution. In other words, we neglect the effects
of stellar winds and spin-orbit angular momentum exchange.

The ratio Tsync/THe as a function of initial orbital period
and the initial He-rich star mass, for three different companion
masses (1.4, 10 and 30 M⊙) is shown in Fig. 2. The color of the
outer circle and inner dot of each symbol corresponds to the Tsync

estimated based on dynamical tides and equilibrium tides, re-
spectively. Blue dots and circles correspond to systems in which
tidal forces are expected to be relevant, while red dots and circles
correspond to systems in which tides are likely to play a minor
role in the binary’s evolution.

Most importantly, we find that the strong dependence of the
synchronization timescale on the ratio of stellar radius to or-
bital separation (Tsync ∝ (R/a)−6) is the dominant factor, while
the binary mass ratio and the exact dissipation mechanism is
of less importance. Examining Fig. 2, it is safe to say that for
WR-BH and WR-NS binaries with orbital periods above ∼2
days, tides are not relevant, while binaries with periods be-
low ∼0.3 days are expected to have He-rich stars with spins
synchronized with the orbit. We note that in this approxima-
tion we find that metallicity has a negligible effect on Tsync.
The results for He-rich stars at higher metallicities (0.1 Z⊙ and
Z⊙) are almost identical and are therefore not shown in the
paper. Based on these estimates, we decided to limit the pa-
rameter space of initial orbital periods for which, below, we
perform detailed calculations (see following sections) to below
2 days.

Stellar winds, scaled with metallicity, can greatly influence
the final mass of the star, and this is clearly shown in Fig. 3. The
three panels correspond to He-rich stars at 0.01 Z⊙, 0.1 Z⊙ and
Z⊙, respectively. The color of the filled circles denotes the spin
of the resultant BH. In this figure, the dimensionless spin a∗ is
calculated based on the assumption that the He-rich star at the
central He exhaustion still has enough mass to directly collapse
to form a BH, and that the He-rich star is a solid body fully
synchronized with the orbit. The color of the star symbols at
the top of each panel refers to the ratio of the final to the initial
He-rich mass. He-rich stars lose &3 times more mass at solar
metallicity compared with 0.01 Z⊙.

From this figure, we see that for orbital periods below 2 days,
the whole range of dimensionless spins (from 0 to 1) is covered.
Fast-spinning BH’s are obtained only for short period systems,
typically below 0.3 days. For orbital periods above about 1 day,
BH spins are small, and for intermediate orbital period moder-
ately spinning BH’s are produced.

These numerical experiments, however, suffer from strong
limitations. Principally, we assume that the orbital separation re-
mains constant and that synchronization is instantaneous. In the
following section, we compute more sophisticated models where
the effects of tides and of stellar winds on stellar rotation and
orbital evolution are consistently accounted for. Through tidal
coupling, changes in the orbit and the stellar rotation then im-
pact the He-star’s evolution.

5. Rotation of the second-born black hole

Now that we have gained a qualitative understanding of which
physical processes are important for binaries with different ini-
tial conditions and we have significantly limited the relevant part
of the parameter space, we can go ahead and calculate grids of
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Fig. 2. Ratio of Tsync/THe as a function of the He-rich star initial mass and orbital period. Left panel: 10 M⊙ BH as the companion, middle panel:
30 M⊙ BH as the companion, right panel: 1.4 M⊙ NS as the companion. Outer circle: Tsync/THe for dynamical tides, inner dot: Tsync/THe for
equilibrium tides. The selected stellar structure profile for the calculation of Tsync refers to the stage when the central mass fractional He abundance
is 0.5. The black line denotes the lower limit in orbital period, below which a He-rich star of a given mass would overfill its Roche lobe at
ZAHeMS (Zero Age He Main Sequence: the time when a He star starts to burn He in the core, which is analogous to ZAMS for core H burning).
The metallicity of the He-rich star models shown in this figure is 0.01 Z⊙, but the dependence of Tsync/THe on metallicity is very weak. Therefore,
two similar figures corresponding to the He-rich stars at 0.1 Z⊙ and Z⊙ are not shown here.

Fig. 3. Approximate estimate of the dimensionless spin a∗ of the resultant BH as a function of the He-rich initial mass and orbital period, denoted
by the color of the filled circles. The star symbols, sharing the same color bar with a∗, refer to the ratio of the He-rich star’s mass at the central
carbon exhaustion to its initial mass, i.e. Mfinal/Minit. For a given initial mass of the He-rich star, this quantity remains the same whatever the orbital
period because in this estimation, stars are evolving as if they were single stars. Left panel: 0.01 Z⊙, middle panel: 0.1 Z⊙, right panel: Z⊙. In these
approximate estimates, the mass of the BH companion is assumed to be 10 M⊙, while the orbital separation is assumed to remain constant. We
also assume that tides instantaneously synchronize the spin of the He-rich star with the orbital angular velocity. The solid black line denotes the
lower limit in orbital period, below which a He-rich star at a given specific mass would overfill its Roche lobe at ZAHeMS.

detailed calculations of close binaries consisting of a WR star
and a compact object. The evolution of the binary is computed
using the MESA code. The computation accounts for tidal cou-
pling between the orbit and the He-rich star. Since the He-rich
star has a radiative envelope, only the dynamical tide is consid-
ered. We assume that there is no MT between the He-rich star
and the BH, which is assumed to be a point mass. More details
about the computations can be found on the MESA web page4.

The initial conditions explored are the masses M1 and M2 of
the two binary components, the initial rotation and metallicity of
the WR star and the initial orbital period. For the He-rich stars,
we cover the mass range from 4 to 48 M⊙ with steps of 4 M⊙ and

4 Detailed setting can be found at http://mesastar.org/results

the mass of the companion is assumed to be a NS of 1.4 M⊙ or
a BH of 10 or 30 M⊙. The initial orbital periods are between 0.2
and 2 days. Below 0.2 days, the He-rich star overfills its Roche
lobe at the onset of He burning, while for initial orbital periods
above 2 days we showed in the previous section that tides are not
important. Three metallicities (0.01 Z⊙, 0.1 Z⊙ and Z⊙) are con-
sidered. Finally, the following initial rotations for the He-rich
stars have been chosen: zero rotation, angular velocity equal to
the orbital angular velocity and 90% of the critical angular ve-
locity at the surface. The formation of almost critically spinning
helium stars is not expected in the “CE” formation channel. We
include these models here for completeness, as the conclusions
derived from these initially highly helium stars are relevant for
the chemically homogeneous channel.
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In Fig. 4, we show the spin a∗ of the second-born BH as a
function of the He-rich star’s mass and the orbital period for a
metallicity Z = 0.01 Z⊙. Figures 5 and 6 present the correspond-
ing trends for metallicities 0.1 and 1.0 Z⊙, respectively. In each
figure, the three columns correspond to the different initial an-
gular velocities of the He-rich star, i.e., ωinit = 0, ωinit = ωinit,orb

and ωinit = 0.9 ωcrit. The three rows correspond to the different
masses of the compact object companion, i.e., 1.4, 10 and 30 M⊙.

5.1. Dependence of orbital evolution and He-star rotation on
different binary properties

Before describing the results, let us reiterate a few general
trends: first tides tend to equalize the rotation period of the star
and the orbital period. This effect implies that when the star
has a relatively longer rotation period (or a slower rotation rate)
compared with the orbital period, tides tend to transfer angular
momentum from the orbit to the star spinning it up, and the or-
bit shrinks. On the contrary, when the spin period of the star is
shorter than the orbital one, angular momentum is transferred
from the star to the orbit. Consequently, the star spins down,
the orbit widens and the orbital period increases. Second, mass
loss has counteracting effects. On the one hand, it decreases the
mass of one component, and therefore its gravitational attraction,
which widens the orbit. On the other hand, it removes orbital an-
gular momentum, shrinking the orbit. Under standard assump-
tions of “fast” stellar winds the overall effect is the expansion of
the orbit. Mass loss also removes spin angular momentum from
the star tending to spin down the star. For systems near spin-orbit
synchronization, this implies that tides will spin up the primary
by transferring angular momentum from the orbit to the star. This
also tends to shrink the orbit.

In addition to mass loss, structural changes of the star as a
function of time modify the tidal interaction and therefore con-
tribute to modifying the orbit as well. As may be guessed from
this discussion, it is not easy, without performing detailed calcu-
lations, to estimate the evolution of such systems. Depending on
which effect dominates, the angular momentum of the He-rich
star may increase or decrease.

5.1.1. Dependence on initial orbital period

Let us begin by describing the upper-left panel of Fig. 4. Tides
are weak at large orbital periods. Therefore, no spin-up occurs
(starting with a low rotation implies that tides can only spin up
the primary) and the final spin of the He-rich star and of the
resulting BH remain low. For higher masses, mass loss slightly
decreases the mass and widens the orbit, hence the evolution to-
wards the upper left in the period-mass plane.

At an orbital period of around half a day (log P ≈ −0.3),
tides become important and spin up the He-rich star. In this case
however, the synchronization timescale is still comparable to or
longer than the He-star lifetime and therefore the binary never
quite reaches a state of synchronization. Instead, the final rota-
tion of the WR star is somewhere between its initial value and
the one corresponding to the orbital angular velocity. The final
spin of the BH is between 0 and 0.5.

At still smaller orbital periods, tides are efficient enough to
make the He-star rapidly reach a rotation rate that is equal to the
angular orbital velocity. At the same time, the angular momen-
tum that is transferred from the orbit to the star in order to spin it
up results in the initial shrinkage of the orbit. This phase corre-
sponds to the nearly vertically downward evolution. This initial

synchronization phase is short and hence mass losses have no
time to significantly change the mass of the binary. The orbital
period decreases because angular momentum is transferred from
the orbit to the star. Once synchronization is reached, the rota-
tion of the primary is maintained near the synchronized value by
the tidal interaction. The orbit widens again because the mass-
loss term dominates the tidal one in the evolution of the orbital
distance.

5.1.2. Dependence on initial rotation of the He star

Let us now see how the results change when higher initial rota-
tions are considered (see the upper-middle panel in Fig. 4 which
shows the case when the initial rotation of the He-rich star is
synchronized with the orbit). We see that starting from a higher
initial rotation rate for the He-rich stars produces faster-rotating
BHs in the end. Black hole spins are found in the range between
0.3 and 1.0. We also see that the orbital period always increases,
and therefore the orbit becomes wider. For the large orbital peri-
ods, for which tides are weak, this is an effect of mass loss that
decreases the mutual attraction between the two bodies and thus
widens the orbit. The star’s spin is slightly slowed down, too, due
to mass loss (one sees that the beginning of the line has a colour
corresponding to a higher rotation than its end). More interest-
ingly, and in contrast with the results for initially non-rotating
He-rich stars, we see that even for small initial orbital periods the
orbital period increases. Since here we start from synchroniza-
tion, tides do not initially transfer a significant amount of angular
momentum from the orbit to the stars, and therefore from the be-
ginning of the evolution the effect of mass loss dominates. Tides
counteract the spin down of the star due to mass loss and allow
the star to maintain a fast rotation.

Further increasing the initial velocity up to 90% of the crit-
ical one (see the upper-right panel), produces only fast rotating
BHs for all the initial conditions explored in this plot. In that
case, spins of the BHs are always near 1.0. The evolution always
tends to increase the orbital period. This widening of the orbit
results, as before, from mass loss. For shorter periods though,
where tides are efficient, it may also come from the fact that the
tides, before synchronization, slow down the star and thus trans-
fer angular momentum from the star to the orbit causing it to
widen.

5.1.3. Dependence on the mass of the compact-object
binary companion

Let us now see how the results change when the mass of the
compact object is varied. If we consider systems where the or-
bital periods are kept fixed, increasing the mass of the compact

object increases the orbital separation a (a varies as (1 + q)1/3).
On the other hand the quantity 1/Tsync varies as q2/(1 + q)2 and
therefore increases when the mass ratio increases. This indicates
that the tides at a given orbital period are stronger (despite the
increase of the distance) when the mass of the compact object is
larger.

For the case of low initial rotation (compare the left-middle
panel to the left-upper one in Fig. 4), and considering a fixed
initial orbital period and mass for the He-rich star, increasing the
mass of the compact object more efficiently spins up the He-rich
star and thus produces fast spinning BHs starting from longer
initial orbital periods.

Comparing now the bottom-left panel with the middle-left
one, that is, passing from a 10 to a 30 M⊙ BH, increases the
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Fig. 4. Spin parameter a∗ (see the color bar at the top) as a function of the orbital period and masses of the He-rich stars. The metallicity of all
He-rich stars is 0.01 Z⊙. The gray symbols indicate the initial conditions and the color symbols indicate the final ones. The colored lines linking
these two symbols show the evolution of the binary. The color along the line gives a∗ along the evolution. Black solid lines refer to the lower
limit of the orbital period. At that limit, the He-rich star fills its Roche lobe at the beginning of the core He burning phase. Square: models for
which rotation increases the mass lost by 10% with respect to the mass lost by non-rotating models; pentagon: Darwin instability; star: lGRB;
Diamond: He-rich star starts to fill its Roche lobe. The three columns correspond to different initial velocities of the He-rich stars and the three
rows correspond to different masses for the companion. All the He-rich stars have a metallicity equal to 0.01 Z⊙.

spin of the second-born BH for longer periods, but slightly de-
creases the spin for the shorter ones. This appears to be slightly
counter-intuitive at first, since one would expect that increasing
the BH mass would always more efficiently spin up the He-rich
star. However, as we increase the mass of the compact object
companion, from 1.4 M⊙ all the way to 30 M⊙, the ratio of the
spin angular momentum of the He-rich star to the orbital angular
momentum, in a state of synchronization, decreases. This means
that a smaller fraction of the orbital angular momentum has to be
transferred to the He-rich star to spin it up from an initially low
rotation to synchronization, and therefore the orbit will shrink
less in the initial phase until the system is brought into synchro-
nization. To highlight this effect, let us consider the case of a
48 M⊙ He-rich star with a 10 M⊙ BH and an initial orbital period
of 0.3 days (log P = −0.5). Initially, due to the evolution towards
synchronization, the orbit shrinks. This produces the small evo-
lution downwards (a bit to the left because of the mass loss).
After the binary reaches synchronization, the orbit widens again
due to the effects of mass loss. For more massive compact-object
companions, this initial phase towards synchronization leads to
a negligible shrinking of the orbit, as a much smaller fraction of

the orbital angular momentum needs to be transferred to the He-
rich star, and as a result the final orbital period of the binary is
longer at the point of carbon exhaustion.

Despite the slightly shorter final orbital periods for higher-
mass compact-object companions, if we compare the final spins
of the resulting second-born BHs, we see that the final spins de-
crease with increasing companion mass, going from a value near
1 for the smallest mass companion to a value near 0.8 for the
most massive one. What is the explanation for this trend? This
behavior is due to the fact that at the very end of the core He-
burning phase, the entire star quickly contracts. This contraction
de-synchronizes the star from the orbit since the contraction
timescale is shorter than the tidal timescale. After the contrac-
tion, the star is spinning faster than the orbit, with tides acting
to slow down the star. The more massive the companion is, the
stronger the tidal coupling, and therefore also the more efficient
the spin down. We note that this fast contraction also occurs for
He-rich stars in systems with larger orbital periods. However, in
these systems the loss of spin angular momentum due to stellar
winds throughout the evolution of the He-star is not compen-
sated by tides, which are too weak. When the star contracts at
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Fig. 5. As in Fig. 4, but for the metallicity Z = 0.1 Z⊙.

the end of the core He-burning phase, it has too little angular
momentum to reach large spins.

When one starts from a configuration where the binary is
synchronized, increasing the mass of the compact-object com-
panion has two effects at short orbital periods (compare the
panels in the middle column in Fig. 4). Firstly, it decreases the
widening of the orbit, and secondly it tends to produce slower
rotating BHs in the regions where tides are important. The lat-
ter effect is explained above, while the former results from the
two counteracting effects of the mass loss. On the one hand,
mass loss spins down the He-rich star and forces tides to con-
tinuously transfer angular momentum from the orbit to the star.
On the other hand it reduces the mass of the He-rich star and
tends to widen the orbit. The net effect, that is, the widening
of the orbit, remains the same when the mass of the compact
object increases. However, since in the case of a higher-mass
compact-object companion, a smaller fraction of the total bi-
nary mass is lost in winds, the overall expansion of the orbit is
smaller. As a reminder, under the assumption that the mass lost
is carrying the specific angular momentum of the mass-losing
star (Jeans mass loss), the ratio of the final to the initial or-
bital separation is inversely proportional to the ratio of the fi-
nal to the initial total binary mass (afinal/ainitial = Mbinary,initial/

Mbinary,final).
Starting with still higher initial rotations for the He-rich

stars (see the right column in Fig. 4) produces, in general,

faster-rotating BHs. We note the same behavior as for the cases
shown in the middle column, namely that increasing the mass of
the compact remnant produces smaller rotations of BH in some
initial mass and period ranges.

5.1.4. Dependence on the metallicity of the He star

When the metallicity increases (see Figs. 5 and 6), the same
qualitative behaviors are obtained but the effect of mass loss
dominates the evolution in almost all cases. In the period-
mass diagrams, stronger mass losses bring the star to smaller
final masses and longer orbital periods. At solar metallicity,
even when starting with a high initial rotation for the He-rich
star, most of the cases studied here end with slowly rotat-
ing BHs. The only exception is for the least massive He-rich
stars considered here, for which the mass loss is much less
important.

5.1.5. Summarizing the effects of different initial properties
on the evolution of the binary

These computations show how the effects of mass loss and tides
impact the final spin of the second-born compact object. The
following results have been obtained:

– Independent of the initial rotation of the He-rich star and its
metallicity, fast spin at the end of the evolution (a∗ > 0.9) is
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Fig. 6. As in Fig. 4, but for the metallicity Z = Z⊙.

obtained for short orbital systems, below about 0.3 days, and
for initial masses below about 30 M⊙. In those systems, tides
are the key players in determining the final spin.

– For orbital periods above about 0.3 days and at low metallic-
ities, the initial rotation of the He-rich star is the main factor
impacting the final spin. The faster the initial rotation is, the
faster the final BH spin.

– For orbital periods above about 0.3 days and at solar metal-
licity, stellar winds have a major impact on the final rota-
tion for stars with masses above about 25 M⊙. Mass losses in
these cases efficiently slow down the He-rich star and modest
final spins are obtained.

– The mass of the compact-object companion only has an im-
pact in cases where tides are sufficiently strong, that is, for
orbital periods below about 1 day. In general, a more mas-
sive companion produces a smaller final spin. This comes
from the fact that when the star contracts at the end of
the core He-burning phase, and therefore spins faster and
faster, tides tend to slow it down. The more massive the
compact-object companion is, the more efficiently the He
star slows down.

As was already envisioned from the order-of-magnitude esti-
mates presented in Sect. 4, the whole range of final spins can
be reached for a given He-rich star at low metallicity depending
on the initial orbital period and rotation (the mass of the com-
pact object has little influence on the range of values that can be
reached). At solar metallicity and for the most massive stars, this

statement is no longer true. For these stars, only low spin param-
eters are obtained independently of the initial orbital period, the
initial rotation or the mass of the companion.

5.2. Mass loss enhanced by rotation

Squares in Figs. 4–6 indicate rotating models in which the total
mass lost is more than 1.1 times the total mass lost by the corre-

sponding model without rotation. At low initial rotation and for
Z = 0.01 Z⊙, squares appear for small orbital periods, that is,
for those cases where tides are efficient enough to spin-up the
star. For faster initial rotation, squares, cover a larger zone of the
period-mass diagram.

Comparing models with binary component masses, metallic-
ity and initial rotation, but with different initial orbital periods,
where in some cases the stars experience enhanced mass loss
while in others they do not we see that the final He-rich star
masses are not significantly different. Therefore, we infer that
these enhancements in mass loss should also have little effects
on the final rotation as well as the orbital evolution.

5.3. Systems with mass transfer

Diamonds indicate those systems encountering the Roche limit

during their evolution. Only models with initial MZAHeMS = 4 M⊙
and initial orbital periods of 0.5 days or less, overfill their Roche
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lobes. This is because low-mass He-rich stars (.4 M⊙) expand
towards the end of their evolution.

However, since this mass transfer occurs at the very end of
the evolution, the effects on the evolution of the binary and the
final angular momentum of the second-born BH progenitor are
negligible. We performed tests where we compared results ob-
tained with and without accounting for this mass transfer and
the differences concerning the spin of the second-born BH are
very small. We therefore conclude that this effect is negligible.

5.4. The Darwin instability

Pentagons indicate that a Darwin instability is encountered. This
occurs only for the tightest systems and for those systems with
an initial low rotation except for one case (systems with a 1.4 M⊙
NS with an initial rotation 0.9ωcrit for all the metallicities con-
sidered here). This instability requires that a large amount of the
orbital angular momentum be transferred into the spin angular
momentum of the He-rich star. Obviously this can only occur for
tight systems because only tides can transfer angular momentum
between the orbital and the spin angular momentum reservoirs.
The transfer from the orbital to the spin reservoir is the most ef-
ficient when the difference between the low spin and the high
orbital spin is the greatest, meaning those cases that start from
a low initial rotation rate. The conditions are more favorable for
low-mass compact stars because the orbital angular momentums
in these systems are the lowest.

The domain where the Darwin instability is reached disap-
pears at high initial rotations. This is because when one starts
from a high rotation, tides tend to slow down the star and thus
to transfer angular momentum from the star to the orbit making
the system evolve away from the conditions needed for this in-
stability to occur. There is however, as already indicated above,
one exception: systems with a 1.4 M⊙ NS and an initial rotation
of 0.9ωcrit. In this case, from the beginning of the evolution, the
spin angular momentum of the star is larger than one third of the
orbital angular momentum. This is therefore not an evolutionary
effect but is rather due to the initial binary configuration.

5.5. The long gamma ray bursts

He-rich stars that are potential progenitors of lGRBs are shown
by a star in Figs. 4–6. According to the collapsar model, lGRBs
are formed on the condition that enough kinetic energy is avail-
able to launch a jet during the core collapse from massive stars
(Woosley 1993). In this work, we follow the procedure suggested
in Yoon et al. (2006) to decide whether the collapse of the core
would produce a lGRB or not. More specifically, a lGRB is pro-
duced if any part of the carbon/oxygen core has a specific an-
gular momentum larger than the one at the last stable orbit jLSO

around a black hole with a mass equal to the enclosed mass of
the specific shell (Bardeen et al. 1972; Novikov & Thorne 1973;
Cantiello et al. 2007; Detmers et al. 2008; Wu et al. 2013).

At Z = 0.01 Z⊙, and for low initial rotation periods (see up-
per left panel of Fig. 4), the domain of the lGRBs is relatively
limited to the most extreme cases, that is, those suffering the
strongest tidal interactions while not encountering the Darwin
instability. Models with an overly low initial mass produce a neu-
tron star and are therefore discarded as possible progenitors of
lGRBs. The conditions favorable for lGRBs in the period-mass
diagram are in general more extended in the case of faster ini-
tial rotations. This is expected since the reservoir of spin angular
momentum is larger. Looking at the middle and right columns
of Fig. 4, we also note that the domain for lGRB reduces when

the mass of the compact object increases. Also, in the case, for
instance, of a 30 M⊙ BH, the most favorable cases are in the up-
per and lower parts of the orbital range considered here. When
the metallicity increases, the extent of the initial parameter space
leading to lGRBs generally reduces and nearly completely dis-
appears at solar metallicity.

Overall, we see that the most favorable conditions for obtain-
ing lGRBs from close binary systems are a high initial rotation
for the He-rich star, a low-mass compact-object companion and
a low metallicity.

6. Merging timescales and comparisons with

observed merging systems

After the second-born BH forms, gravitational wave (GW) emis-
sion removes angular momentum from the orbit of the two com-
pact objects, shrinking it, and eventually leading to the merger
of the two compact objects. The timescale for the merger of a
binary compact object due to GWs is given by Peters (1964)

Tmerger =
5

512

c5

G3M3

2q−2

1 + q−1
a4, (11)

where M is the mass of the second-born BH, q the mass ratio
of the companion to the second-born BH and a is the orbital
separation. In Fig. 7, the color bar indicates Tmerger due to GW
emission assuming that the He-rich star at the end of its evo-
lution can collapse directly to form a BH. Figures 8 and 9 are
similar to Fig. 7, but correspond to metallicities of 0.1 Z⊙ and
Z⊙, respectively. When the merging timescale is for instance
equal to 10% the age of the Universe, and assuming that the
merger of this binary is observed today in the local universe (i.e.
zobserved ∼ 0), this binary compact object must have formed at
redshift zformation = 0.1035. In all these three figures, black trian-
gles refer to the systems whose merging timescale is longer than
the Hubble time (∼13.8 Gyr).

The initial orbital separation a, or the initial orbital period, is
the most important factor in determining Tmerger (Tmerger ∝ a4).
The mass of the He-rich star is also an important parameter. De-
creasing the mass of the He-rich star, and keeping all other pa-
rameters equal, makes the merging timescale longer (Tmerger ∝

M−3). Due to this dependence on orbital period and the mass
of the He-rich stars, merging timescales shorter than the Hubble
time are obtained for small initial orbital periods and/or massive
He-rich stars. At high metallicity (Fig. 9), one can see clearly that
the upper limit of the initial orbital period below which merging
timescales are inferior to the Hubble time increases when the
mass of the compact companion increases. This also occurs for
the lower metallicities but is less apparent in the figures. This
is a rather obvious consequence of the fact that increasing the
mass of the compact remnant implies stronger tides and therefore
shorter final orbital periods. One also notes that at high metallic-
ity, decreasing the initial mass of the He-rich star, starting from
a given initial orbital period, decreases the merging timescale.
This is likely due to the fact that lower-mass He-rich stars lose
less mass by stellar winds. This in turn implies less widening of
the orbit and thus stronger tidal forces.

Interestingly we find that, generally, the shortest merging
timescales are obtained for those systems that predict fast-

5 In this paper, we adopt the standard spatially flat ΛCDM cosmol-
ogy with Hubble constant H0 = 67.8 km s−1 Mpc−1, a matter density
parameter ωm = 0.308, and vacuum density parameter ωΛ = 0.692
(Planck Collaboration XIII 2016), to calculate the redshift correspond-
ing to the timescale of merger events.
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Fig. 7. As in Fig. 4, but the color bar refers to the merger timescale of the two compact objects due to gravitational wave emissions. Black triangles
refer to the systems whose merger timescales are longer than the present age of the Universe (∼13.8 Gyr). zformation refers to the redshift of the
formation of the binary compact object, assuming that the merger took place at redshift ∼0 and adopting the standard cosmological parameters
(Planck Collaboration XIII 2016).

rotating BHs. Indeed, systems in which the second-born BH is
spun up or keeps a high rotation rate are those in which the
tides are the strongest, which in turns translates to the shortest
merging timescales. From the discussion in Sect. 2, the main
contribution to χeff (see Eq. (2)) is from the spin a∗ of the second-
born BH. χeff therefore decreases when the merging timescale
increases. In other words, systems with small observed values
of χeff have a larger merging timescale, which can be seen in
Fig. 10. Finally, this trend implies that merging systems with a
low χeff are formed at high redshifts.

An anti-correlation between χeff and the merging timescale
was already predicted by the analytic models of Kushnir et al.
(2016) and Zaldarriaga et al. (2018). However, our detailed cal-
culations show that this anti-correlation is both more complex
and weaker, as the relation of merging timescale to χeff is also
a function of the masses of the two binary components and the
metallicity of the He-rich stars. It is interesting to see, in Fig. 10,
how χeff varies with the chirp mass and the merging timescale.

The chirp mass, Mchirp, is defined by

Mchirp =
(m1m2)3/5

(m1 + m2)1/5
, (12)

where m1 and m2 are the masses of the two BHs, respectively.
Consistently with the discussion in Sect. 2, we have calculated

χeff assuming that the spin of the first-born BH is 0. A few inter-
esting points can be noted. First, at solar metallicity, there is no
possibility to produce chirp masses larger than about 17–18 M⊙,
even assuming that the first-born BH is 30 M⊙, which is unreal-
istic. In contrast, at low metallicities, provided the mass of the
first born BH is high enough, there is no difficulty in producing
chirp masses up to values around 30 M⊙.

As already underlined above, high χeff values are obtained
only for short merging timescales. At low metallicities, it is eas-
ier to form BBHs with higher values of χeff . At the same time,
these BBHs will likely have higher chirp masses, as the lower
metallicity results in weaker wind mass-loss and larger overall
final compact-object masses (e.g., Belczynski et al. 2010). How-
ever, low-metallicity star-formation environments are more com-
mon at high redshift (e.g., Zahid et al. 2014). The combination
of these correlations implies that BBHs with high χeff and Mchirp

values have formed at high redshift (i.e., high zformation), but given
their inferred short merging timescales, they have also merged
at high redshift (i.e., high zobserved). Given the current sensitiv-
ity of AdLIGO in the science runs O1 and O2, these merging
BBHs are not detectable, as the highest observed redshift of a
GW event is that of GW170104 at zobserved ≃ 0.18. Future im-
provements in the sensitivity of GW observatories will allow the
detection of GWs for BBH mergers at higher redshifts, and con-
firm or disprove the predicted complex correlation between χeff ,
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Fig. 8. As in Fig. 7, but for the metallicity Z = 0.1 Z⊙.

Mchirp, merging timescale and metallicity implied by the “CE”
isolated binary formation channel.

Five confirmed and one candidate GW event are believed to
stem from the merger of two stellar mass BHs. In the “CE” chan-
nel, combining our results with the current six events, we draw
the following conclusions.

– The masses of the two BHs for GW150914 are around
30 M⊙. Such “heavy” BHs are expected to form in metal-
poor environment. We see that models with 0.1 Z⊙ may pro-
vide a good match with the observed properties, at least
as good as the one at Z = 0.01 Z⊙. Such metallicities are
encountered in the present day Universe within the Small
Magellanic Cloud. Thus per se, a low metallicity does not
strictly require a high redshift. On the other hand, low χeff

values imply a long merging timescale and thus imply that
the merging occurred at high redshift. This illustrates how
the information on the masses and the spin complement
each other for constraining the metallicity and the redshift.
From the events GW170104 and GW170814, although less
extreme in term of BH masses, similar conclusions can be
drawn.

– The event LVT151012 has a lower chirp mass, nearly allow-
ing solar metallicity models with a 30 M⊙ BH to be compat-
ible with its observed properties. However, even if it were
possible to form a 30 M⊙ BH at solar metallicity, present
models predict a merging timescale longer than the Hubble
time. The measurement of χeff consistent with zero allows
for long merging timescales and hence, again, the formation

of this BBH at high redshift seems to be the most likely sce-
nario.

– The event GW151226 may be explained at all metallicities
considered here and in particular by solar metallicity models.
Furthermore, taking at face value the statistically significant
positive value for χeff , our models favor merger times shorter
than a few Gyr. This implies that the system was formed at a
redshift when most of the star formation occurs at solar-like
metallicity.

– GW170608 is the lowest-mass BBH merger yet reported. It
is found that χeff has a slight preference to be positive. There-
fore, the same arguments hold as for GW151226.

7. Discussion

The present results show that the spin parameter of the second-
born BH can span all values between 0 and 1. Especially at
lower metallicities, the dynamic range of initial orbital periods
that lead to a final spin for the second-born BH between 0 and 1
is relatively large. This result is different from those obtained by
Zaldarriaga et al. (2018) and Hotokezaka & Piran (2017b) who
concluded that the spin parameter of the second-born BH will
be either very low, around 0, or very high, around 1 (bimodal-
ity). The differences between the present results and those of
the aforementioned studies stem from different assumptions con-
cerning mass losses and tides. The bimodality results are based
on the approach explained in Kushnir et al. (2016). Compared to
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Fig. 9. As in Fig. 7, but for the metallicity Z = Z⊙.

the present approach, the impact of mass loss on a∗ is much less
pronounced, and the impact of tides is much stronger. This is
why, in their model, when tides are important, the He-rich star is
tidally locked and the maximum spin is always reached. In our
model, even if the orbit is tight at the beginning and tides are im-
portant, the star often cannot remain tidally locked indefinitely.

A major uncertainty of the “CE” isolated binary formation
channel concerns the way the CE phase is accounted for. In the
present work, we did not study this phase directly since we be-
gan our investigation after the CE phase. We however implicitly
assumed that the star has lost its complete H-rich envelope and
that the system is tight. These are features commonly assumed
as resulting from a CE phase and in that respect this work fol-
lows the present common wisdom. Of course, should these facts
be challenged by future studies, it would imply a very strong re-
vision of the global scenario for the evolution of isolated close
binary systems.

Mass loss due to the stellar winds of the He-rich star is
another source of uncertainty. We used here the most recent
estimates for these mass loss rates and we did not explore the
impact of changing these values. However, since we studied the
evolution of systems at three metallicities, and since changing
the metallicity has a deep impact on the mass loss rates, compar-
ing the results at a range of metallicities gives an idea of what
would be obtained by changing the mass loss rates. As discussed
above, the effects are large and this underlines the fact that ac-
curate mass loss rates are indeed needed to obtain reliable stellar
evolution models.

The physics of the angular momentum transport inside stars
is still uncertain. The present results have been obtained as-
suming a strong coupling between the core and the enve-
lope mediated by a strong magnetic field (Spruit 1999, 2002;
Heger et al. 2005). In cases angular momentum is transported
mainly by meridional currents, the coupling is less efficient (e.g.,
Georgy et al. 2012) allowing the core to retain more angular mo-
mentum. All the other physical ingredients kept the same, this
produces faster-rotating BHs and NSs.

Under the adopted direct core-collapse model, we assume
that the helium stars evolving up to the carbon depletion will
soon directly collapse to BHs without any additional mass and
angular momentum loss. On the one hand, If the lGRB was pro-
duced by the Blanford–Znajek mechanism (Blandford & Znajek
1977), most of the angular momentum would be lost to launch a
jet. This will decrease the spin a∗ of the second-born BH and the
corresponding χeff will be lower. For binaries where the helium
star at the end of its evolution rotates fast enough to produce a
lGRB, these assumptions are inaccurate (systems denoted with
star symbols in Figs. 4–9). On the other hand, if the lGRB was
associated with a supernova explosion, the resulting BH mass
would be smaller than the mass of the BH from direct core-
collapse without mass loss. Based on the expression in Eq. (12),
Mchirp will be smaller. Combining the two factors above, the
χeff and Mchirp shown in Fig. 10 will be shifted to the lower
left. In addition, Tmerger will also be changed, becoming longer
or shorter depending on the degree of anisotropy of the mass
ejection.
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Fig. 10. Tmerger as a function of χeff and Mchirp. The first row including three panels corresponds to the binary systems in which the companions
are 10 M⊙ BHs and there is no initial rotation for the He-rich stars. The other three rows are similar to the first row, but with different companions
and initial rotation of the He-rich stars. The three columns refer to different metallicities of the He-rich stars, i.e., 0.01 Z⊙, 0.1 Z⊙ and Z⊙. The
colored dots correspond to the Tmerger. Three gravitational events and one candidate with specific χeff and Mchirp from the observation of AdLIGO
are shown on each panel. Black triangles correspond to binary systems whose Tmerger is longer than the Hubble time.

8. Conclusions

Since the first GW event, GW150914, was discovered by
AdLIGO, research in the field of BBH-formation channels has
been very active. The “CE” channel is one of the main pro-
posed formation channels and likely the most widely studied.
The aim of this work is to investigate the final phase in the forma-
tion of BBH through this channel, namely the evolution of close
binaries consisting of a He-rich star and a compact object. In
doing so, we employed detailed binary evolution models that
self-consistently take into account the effects of tidal interac-
tions, wind mass loss and the evolution in the structure of the
He star, including stellar rotation, and we explored a multidi-
mensional parameter space. Our main findings are summarized
in the following.

– Based on detailed stellar structure information, we computed

the tidal coefficient E2 for both H-rich and He-rich stars in a large
range of masses and at three different metallicities (Z⊙, 0.1 Z⊙
and 0.01 Z⊙). Based on those calculations, we derived fitting for-
mulae that relate the value of E2 to the ratio of the convective
core radius to the total radius of the star.

– We estimate that the spin of the first-born BH should be low

(a∗,1 . 0.1), as the progenitor star of the first-born BH evolves

to the giant phase before loosing its envelope and collapsing to
form a BH. During this expansion phase, most of the primordial
angular momentum that the star might have had is transferred to
its outer layers and subsequently lost due to Roche-lobe over-
flow mass transfer and wind mass loss. Hence, the first-born BH
is expected to have a negligible contribution to the χeff of the
BBH, which in turns sets an upper limit to its possible value at
χeff . 0.5.
– The tidal synchronization timescale becomes comparable to or
shorter than the lifetime of the He star at orbital periods below
about ∼2 days, with the exact value depending on the mass of the
He star and the binary mass ratio, but independent of metallicity.
However, wind mass-losses are strongly dependent on metallic-
ity, and hence the overall orbital evolution of the binary, which
is determined by the interplay between tides and wind mass loss,
does depend on metallicity.
– Although we find that the initial rotation of the He star does
affect our estimates for the resultant BH spin, arguments sim-
ilar to the ones presented for the first-born BH imply that the
expected initial rotation of the He star should be small (ωinit ≃

0 − ωinit,orb). Limiting the possible initial rotation of the He star
in this range results in a weak dependence of our findings on that
parameter.
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– A systematic exploration of the initial parameter space shows
that the spin a∗ of the second-born BH covers the whole range
(0–1, i.e from non-rotating to maximally rotating), and that es-
pecially at lower metallicities, the dynamical range of initial or-
bital periods that lead to BH spin with non-extreme values, i.e.
between 0 and 1, is quite large.
– Furthermore, we find an anti-correlation between the merging
timescale of the BBH, Tmerger, and the spin of the second born
BH, a∗, or the observable quantity χeff . This is a natural conse-
quence of the fact that in order to form a fast rotating second-
born BH, tides should be strong, and therefore the orbital sepa-
ration between the He-star (progenitor of the second-born BH)
and its compact-object companion should be small. The latter
also leads to short merging timescales of the resulting BBH. We
should note, however, that this anti-correlation is not a one-to-
one relation between Tmerger and χeff , as it also depends on other
factors such as the masses of the two BHs, or the chirp mass
Mchirp of the BBH, and the metallicity of the BH progenitor star.
In that sense, simultaneous and precise estimates of Mchirm, χeff

and the redshift at which the merger happened carry information
about the time and environment at which the BBH was formed.
– Our models present many possibilities for the formation of
BBHs with non-zero, positive χeff . This at first glance is in con-
trast to the currently observed sample where 5 out the 6 detected
merging BBHs have χeff consistent with 0. However, one should
also take into account the current sensitivity of GW observato-
ries that limit us to mergers that happened in the local universe
(zobserved ∼ 0) and show a strong preference to high chirp masses.
Combining this with the star-formation and metallicity evolution
of the Universe as a function of redshift, we conclude that, most
likely, the currently observed sample of merging BBH mainly
originates from BBHs that formed at low-metallicity environ-
ments and zformation & 2–3. Hence, these BBHs must have had long
merging timescales and thus lowχeff . As the sensitivity of GW ob-
servatories improves and we are able to probe more BBH mergers
at high zobserved and/or lower chirp masses, our models predict that
those BBHs will have preferentially positive, non-zero χeff .
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Appendix A: Tidal coefficient En

Dynamical tides are dominant for stars with radiative envelopes
and convective cores (Zahn 1977). The synchronization and cir-
cularization timescales depend on the tidal torque coefficient En

(only n = 2 is considered, as the contributions from larger n are
negligible). The complete set of equations to calculate En are as
follows (Zahn 1977):

En =
38/3[Γ(4/3)]2

(2n + 1)[n(n + 1)]4/3

ρ f R
3

M

[

R

gs

(

−gB

x2

)′

f

]−1/3

H2
n , (A.1)

where Γ is the usual gamma function, f and s refer to the bound-
ary of the convective core and surface, respectively. x denotes the
normalized radius coordinate of the star, that is, x = r/R. Primed
symbols denote derivatives with respect to x, R is the stellar ra-
dius, M the stellar mass, g the gravity, and −gB is the square
of the Brunt–Väisälä frequency. B is the difference between the
actual density gradient and the adiabatic one:

B =
d

dr
lnρ −

1

Γ1

d

dr
lnP, (A.2)

where Γ1 is the adiabatic exponent
(

dlnP
dlnρ

)

ad
. The coefficient Hn is

given by

Hn =
1

X(x f )Y(1)

∫ x f

0

[

Y ′′ −
n(n + 1)Y

x2

]

Xdx, (A.3)

where X and Y are found by solving the following second order
differential equations:

X′′ −
ρ′

ρ
X′ −

n(n + 1)

x2
X = 0,

Y ′′ − 6(1 −
ρ

ρ̄
)
Y ′

x
−

[

n(n + 1) − 12

(

1 −
ρ

ρ̄

)]

Y

x2
= 0, (A.4)

where ρ̄ is the mean density inside radius r of the star and the
primes on X and Y indicate derivatives with respect to x. More
details about the initial conditions for solving the differential
equations above can be found in Siess et al. (2013).

A fourth-order adaptive stepsize Runge–Kutta method is
used to solve the two differential equations for X and Y . We
find that the derivative of the Brunt–Väisälä frequency divided
by x2 in Eq. (A.1) is sensitive to the boundary of the convec-
tive core. For determining the boundary of the convective cores,
which define f and s in Eq. (A.1), we used the Schwarzschild cri-
terion. Overshooting above the Schwarzschild boundary of the
convective core is considered with an extension given by αp =

0.1Hp, where Hp is the pressure scale height estimated at the
Schwarzschild boundary limit.

In Fig. A.1 we show the evolution of E2 for a 5 and 10 M⊙
H-rich star at solar metallicity, as computed by the method
described above. We compare our results with calculations by
Siess et al. (2013) and Claret & Cunha (1997). As it was pointed
out by Zahn (1977), E2 is sensitive to the exact structure of the
star, something which was also confirmed by Claret & Cunha
(1997). Different treatments for the boundary of the
convective core may lead to slight differences in the size of the
convective core, but also, even when using the same physical cri-
terion, the numerical implementation may differ (Gabriel et al.
2014). The adopted overshooting parameter αov, which affects
the extent of the convective core, may also be responsible for
differences in the evolution of E2. Compared with our value of

0.0 0.2 0.4 0.6 0.8 1.0

t[tMS]

−14

−12

−10

−8

−6

lo
gE

2

Siess : 5M⊙
Claret : 5M⊙
MESA : 5M⊙
Siess : 10M⊙
Claret : 10M⊙
MESA : 10M⊙

Fig. A.1. Comparison of E2 coefficients computed by different authors.
Solid lines and dashed lines correspond to 5 and 10 M⊙ main sequence
stars, respectively. Red: data from Siess et al. (2013); blue: data from
Claret (2004); green: results from this study.

0.1Hp, Siess et al. (2013) used a value for αov in the range of
0.23–0.3Hp, while Claret & Cunha (1997) adopted a value of
0.2Hp.

For stars on the main sequence, E2 depends strongly on
the radius of the convective core Rconv. In Fig. A.2, the rela-
tion between E2 and the ratio of Rconv to the total radius of
the star is shown for star with masses between 2 and 40 M⊙
and for metallicity Z = 0.01 Z⊙, 0.1 Z⊙ and Z⊙. Our estimates
of E2 are offset by about one magnitude above the relation
given by Yoon et al. (2010), but in closer agreement with calcu-
lations by Claret & Cunha (1997). Figure A.3 shows the fitting
formulae that can be deduced from our calculations of H-rich
stars. We note that for a given initial mass, some points corre-
spond to long time-steps of our stellar evolution code and other
points correspond to very short ones. To account for this effect
when deriving our fitting formulae, we weight each of the data
points by:

weight =
dt

T
∗

1

N
, (A.5)

where dt is the time step, N number of the steps and T the life-
time of the star during the core H-burning phase. On each panel
corresponding to one specific metallicity, we have used three fit-
ting methods. First, in order to have a comparison with the result
of Yoon et al., we fixed the exponent relating E2 with Rconv to
8, and performed a separate fit for each metallicity. This result
is shown by the green solid line in Fig. A.3. Second, we directly
fitted the data allowing for the exponent to vary freely. This is
shown as a red dashed line in Fig. A.3. Third, we fitted the com-
bined data for all metallicities together. This is shown as a cyan
dashed line. We find only small differences between the three
fitting methods and a negligible dependence on the metallicity.
Therefore the same fitting formula is suggested for use across
metallicities. For reference, we also provide Yoon et al.’s fitting
formula as a black, dashed line.

We have also investigated the relation of E2 and Rconv/R
for He-rich stars at different metallicities. The masses of He-
rich stars in our investigation cover the range from 4 to
50 M⊙ with a mass interval of 2 M⊙. Similarly, the results for
He-rich stars are shown in Figs. A.4 and A.5. On these fig-
ures, we can see some “jumps” in the calculated values of
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E2 which are due to the unstable boundary of the convec-
tive core. However, the fitting results are not significantly in-
fluenced by these jumps when the weights of the data points
are considered. Given the insensitivity of our calculations to
the metallicity, we again suggest that the same fitting for-
mula should be used for all He-rich stars irrespective of their
metallicity.

Ideally, E2 should be calculated at every time step since its
value depends on the structure of the star which evolves as a
function of time and also depends on the important physical in-
gredients that vary from one set of models to another. Hence,

it is not advisable to use a published formula without at least
checking the conditions that have been used to obtain it.

Here we have established new fitting formulae that corre-
spond to the physics of the present stellar models. We have
shown that our fitting formulae differ significantly from the one
proposed by Yoon et al. (2010). The difference comes mainly
from the treatment of convective criterion, the boundary of the
convective core, as well as the overshooting. We show that the
fitting formula for the H- and He-rich stars are somewhat dif-
ferent; however these formulae do not strongly depend on the
metallicity of the star.
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Fig. A.2. E2 as a function of Rconv/R for H-rich stars at different metallicities. The different colors of the points correspond to various masses of
the stars. Black dotted line corresponds to the formula from Yoon et al. (2010). Left panel: Z⊙, middle panel: 0.1 Z⊙, right panel: 0.01 Z⊙.
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Fig. A.3. E2 as a function of Rconv/R for H-rich stars at different metallicities. Black dotted line corresponds to the formula from Yoon et al. (2010);
red dashed line refers to the free fitting; green solid line refers to the fitting data with the fixed exponent of Rconv/R = 8.0, cyan dotted line refers to
the fitting data with all three different metallicities. Different color bar points correspond to the weights of E2 defined in Eq. (A.5). Left panel: Z⊙,
middle panel: 0.1 Z⊙, right panel: 0.01 Z⊙.
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Fig. A.4. As in Fig. A.2 for He-rich stars.
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Fig. A.5. As in Fig. A.3 for He-rich stars.
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