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Summary

Vascular endothelial growth factor (VEGF) is a secreted
mitogen highly specific for cultured endothelial cells. In
vivo VEGF induces microvascular permeability and plays
a central role in both angiogenesis and vasculogenesis.
VEGF is a promising target for therapeutic intervention
in certain pathological conditions that are angiogenesis
dependent, most notably the neovascularisation of growing
tumours. Through alternative mRNA splicing, a single gene
gives rise to several distinct isoforms of VEGF, which differ
in their expression patterns as well as their biochemical and
biological properties. Two VEGF receptor tyrosine kinases

might act predominantly as a ligand-binding molecule,
sequestering VEGF from VEGFR-2 signalling. Several
isoform-specific VEGF receptors exist that modulate
VEGF activity. Neuropilin-1 acts as a co-receptor for
VEGF1e5 enhancing its binding to VEGFR-2 and its

bioactivity. Heparan sulphate proteoglycans (HSPGs), as
well as binding certain VEGF isoforms, interact with both

VEGFR-1 and VEGFR-2. HSPGs have a wide variety of
functions, such as the ability to partially restore lost
function to damaged VEGHF5 and thereby prolonging its

biological activity.

(VEGFRs) have been identified, VEGFR-1 (Flt-1) and
VEGFR-2 (KDR/FIk-1). VEGFR-2 seems to mediate
almost all observed endothelial cell responses to VEGF,
whereas roles for VEGFR-1 are more elusive. VEGFR-1
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Introduction factors, the proliferative action of VEGF is predominantly

Angiogenesis is the complex process by which new blood vessépstricted to endothelial cells. Although VEGF is mitogenic for
arise from the pre-existing vasculature (reviewed by Folkmarymphocytes (Praloran et al., 1991), retinal pigment epithelial
1997). Localised breakdown of the extracellular matrix (ECM)Cells (Guerrin et al., 1995) and Schwann cells (Sondell et al.,
precedes the proliferation, migration and tissue infiltration of999), binding of VEGF to other non-endothelial cells seems
capillary endothelial cells. In time these cells remodel back inté have alternative functions, such as the induction of monocyte
capillary structures, and a new ECM is deposited. Angiogenesiigration (Clauss et al., 1990). _ _
is essential in embryonic development and wound healing as well VEGF is essential to vasculogenesis, the de novo formation
as in the female reproductive cycle and the formation and grow@f blood vessels from vascular precursor cells: loss of a single
of bone. However, its dysregulation contributes to severaf EGF allele in mouse models leads to gross developmental
pathological conditions, such as diabetic retinopathy, rheumatoféeformities in the forming vasculature and embryonic death
arthritis and the development of solid tumours (Folkman, 199@€tween days 11 and 12 (Carmeliet et al., 1996; Ferrara et al.,
Folkman and Hanahan, 1991). 1996). Mice lacking either VEGFR-1 or VEGFR-2 die even
The switch from the normal quiescent vasculature tdarlier, between embryonic days 8.5 and 9.5 (Fong et al., 1995;
angiogenesis is induced by factors released predominantly §halaby et al., 1995). _ o
surrounding pericytes and lymphocytes. Such angiogenic factorsAs Well as inducing endothelial cell proliferation and
include acidic fibroblast growth factor (aFGF), basic fibroblasfigration VEGF has several other pro-angiogenic activities.
growth factor (bFGF) and thymidine phosphorylase (TP), whictit induces endothelial expression of proteases such as
are directly angiogenic, as well as transforming gr@RGF- mterst_ltlal collage;nase and the urokinase-type and tissue-type
B) and tumour necrosis factar(TNF-a), which act indirectly. ~ Plasminogen activators (UPA and tPA) (Pepper et al., 1991;
However, the only growth factor that is observed almostnemori et al., 1992). These proteases release cells from
ubiquitously at sites of angiogenesis and whose levels correla@@chorage, allowing migration, and can generate by-products
most closely with the spatial and temporal events of blood vessélat themselves affect angiogenesis. VEGF also stimulates

growth is vascular endothelial growth factor (VEGF). microvascular leakage (which allows tissue infiltration of
plasma proteins — hence the alternative name vascular

) ) ) permeability factor (VPF); Senger et al., 1983; Connolly et al.,
Roles of VEGF in angiogenesis 1989; Keck et al, 1989) and hexose transport (to meet
VEGF receptor expression is almost exclusive to vasculdancreasing energy demands; Pekala et al., 1990). In addition
endothelial cells. Therefore, in contrast to other angiogeniVEGF participates in the continued survival of nascent
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residues) and the exons from which they derive are
shown at the foot of the figure. Sites of interaction Signal
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cleavage sites. Note that it is not known where VEGEos l [ Y |
uPA cleaves the exon-6-encoded region in relation VEGFR1 VEGFR-2 | 7 NRPL |
to the truncation point of this domain within T H ‘S;G; """""
VEGF183(*). The potentiaN-glycosylation site is (Signal
indicated by ‘Y’, whereas ‘?’ represents binding toExons 1 Pepide) 2-5 6a 6b 7 8
unknown components at the cell surface and in the 1 1 1 L | L
ECM. 26 aa 115aa 24aa 1l7aa 44aa 6Gaa

endothelial cells (Alon et al., 1995; Benjamin and Keshethomodimers. Monomers associate initially through
1997). hydrophobic interactions and are then stabilised by disulphide
Most tumour types overexpress VEGF mRNA. Thisbonding between Cys51 of one chain and Cys61 of the other
expression directly correlates with regions of angiogenesis ar{@otgens et al., 1994). The signal peptide (exon 1 and four
high vascular density (see Ferrara and Davis-Smyth, 199®esidues of exon 2), which includes an amphipathirelix
High levels of VEGF are generally associated with hypoxia(residues 12-19) essential for this dimerisation, is cleaved off
an excess of soluble inducing factors or unregulated VEGHuring secretion (Leung et al., 1989; Keck et al., 1989,
expression. Vascular endothelial cells in the tumour vicinitySiemeister et al., 1998b). A potentislglycosylation site
also appear to upregulate expression of VEGF receptors. Theeists at Asn74 that appears to have no effect on VEGF
newly formed blood vessels are inherently leaky, whicHunction but is required for efficient secretion (Peretz et al.,
enhances the likelihood of metastasis. Studies relating VEGER92; Claffey et al., 1995).
expression to tumour aggressiveness, metastatic potential andSite-directed mutagenesis identified three acidic residues
the probability of relapse indicate that high levels of VEGHAsp63, Glu64 and Glu67) in exon 3 and three basic residues
expression correlate with poor prognosis (Toi et al., 1994(Arg82, Lys84 and His86) in exon 4 essential for binding to
Maeda et al., 1996). VEGFR-1 and VEGFR-2, respectively. Three highly flexible
loops are clustered at each pole of VEGF at the dimer interface.
) Loop Il contains the VEGFR-1 binding determinants and lies
The VEGF gene and protein structure close to loop Il of the opposing monomer, which binds to
The human gene for VEGF resides on chromosome 6p21\BEGFR-2 (Keyt et al., 1996a). The positioning of these
(Vincenti et al., 1996). The coding region spans ~14 kb anteceptor-binding interfaces at each pole of VEGF seems to
contains eight exons (Houck et al., 1991; Tischer et al., 1991facilitate receptor dimerisation, which is essential for
Alternative splicing of a single pre-mRNA generates severaransphosphorylation and signalling, because mutant dimers
distinct VEGF species (Fig. 1). that have only one receptor-binding site antagonise native
X-ray crystallography of a VEGF fragment (residues 8-109VEGF activity (Siemeister et al., 1998a).
to 1.9A resolution showed that VEGF belongs to the dimeric
cysteine-knot growth factor superfamily (Muller et al., 1997). .
Each monomer is characterised by an intrachain disulphidéEGF expression
bonded knot motif at one end of a four-strandedheet Many cytokines and growth factors upregulate VEGF mRNA
(McDonald and Hendrickson, 1993; Murray-Rust et al., 1993¢r induce VEGF release. These include PDGF, TiNF-GF-
Sun and Davies, 1995). The superfamily is subdivided; VEGE, TGF{3, FGF-4, keratinocyte growth factor (KGF/FGF-7),
belongs to the platelet-derived growth factor (PDGF) familyepidermal growth factor (EGF), ILed IL-1(3, IL-6 and
in which the monomers are held in a ‘side-by-side’ orientationinsulin-like growth factor 1 (IGF-1). Several lack direct
the twof3 sheets lying perpendicular to the twofold-symmetryangiogenic effects but exert angiogenic activity through VEGF
axis. The structure of the VEGds heparin-binding region and bFGF (Brogi et al., 1994; Pertovaara et al., 1994). The
(residues 111-165) has been solved separately by NMR awggitoplasmic tail of tissue factor, a receptor for coagulation
represents a novel type of heparin-binding domain (Fairbrothdactor VII/Vlla, also regulates VEGF production and may be
et al., 1998). important at sites of wound healing (Abe et al., 1999).
All VEGF isoforms are secreted as covalently linked Hypoxia induces a rapid and strong increase in VEGF
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MRNA levels, which is particularly noticeable around necroticcomparatively rare, seemingly restricted to cells of placental
areas of tumours (Shweiki et al., 1992; Plate et al., 1992yrigin (Anthony et al., 1994; Cheung et al., 1995). Bacic et al.
Minchenko et al., 1994). Interestingly, the other VEGF familydemonstrated tissue-specific VEGF mRNA splicing in rats but
members and bFGF are not induced by hypoxia; therefothe mechanisms that determine the relative expression levels
VEGF might be the main mediator of hypoxia-inducedare as yet undetermined (Bacic et al., 1995). Interestingly
neovascularisation (Brogi et al., 1994; Enholm et al., 1997human skin mast cells normally express VE&FVEGF 65
Adenosine released by hypoxic cells binds adenosipe Aand VEGhsgg but can be induced to express VEgdas well
receptors and upregulates VEGF through the cAMP-dependelny incubation with phorbol myristate acetate (PMA), which
protein kinase (PKA) pathway (Takagi et al., 1996). stimulates PKC activity (Grutzkau et al., 1998).

A hypoxia response element (HRE) acts upstream of the Through alternative mRNA splicing, the VEGF isoforms
VEGFgene as an enhancer (Levy et al., 1995; Liu et al., 1995liffer by the presence or absence of sequences encoded by
This HRE contains a consensus binding site for hypoxiaexons 6 and 7 (Tischer et al., 1991). VE&Hs secreted as
inducible factor 1 (HIF-1), a heterodimer of the bHLH-type~46-kDa homodimers, which have a basic character and
transcription factors HIFd and ARNT (Madan and Curtin, moderate affinity for heparin, owing to the presence of 15 basic
1993; Forsythe et al., 1996). Low oxygen tension increasemmino acids within the 44 residues encoded by exon 7 (Ferrara
HIF-1 levels at a post-transcriptional level and increases itand Henzel, 1989; Gospodarowicz et al., 1989; Plouet et al.,
DNA-binding ability (Jiang et al., 1996; Salceda et al., 19961989). In contrast, VEGE1, which lacks this region, is a
Semenza et al., 1997). weakly acidic protein and does not bind heparin. VEGB

The von Hippel-Lindau tumour suppressor (VHL) freely released from producing cells, whereas 50-70% of
negatively regulates hypoxia-induced genes, incluBGF  VEGFiesremains cell and ECM associated, probably owing to
(Siemester et al., 1996; lliopoulos et al., 1996). VHLheparan sulphate proteoglycan (HSPG) interactions (Houck et
cytoplasmically sequesters PK@nd PK®, preventing their  al., 1992). VEGkggand VEGkog contain additional sequence
translocation to the cell membrane, subsequent MAPKncoded by exon 6 and bind heparin strongly. These isoforms
activation and induction of VEGF (Pal et al., 1997). Changeare completely sequestered in the ECM and to a lesser extent
in cell signalling through differentiation might also influenceat the cell surface (Houck et al., 1992; Park et al., 1993).
VEGF expression through control of PKC and cAMP/PKA The exon-6a-encoded sequence of VEfsFconfers an
pathways (Claffey et al., 1992; Garrido et al., 1993). ME&F  affinity for heparin similar to that of the exon-7-encoded
promoter contains potential binding sites for the transcriptiosequence of VEGIkss (Poltorak et al., 1997). However, this
factors Spl, AP-1 and AP-2, through which PKC and PKA casequence also mediates binding to components of the ECM that
influence gene expression (Tischer et al., 1991). is independent of heparin or heparan sulphate. ECM-bound

Hypoxia increases the half-life of VEGF mRNA, which is VEGFw45 remains active as an endothelial cell mitogen
intrinsically labile owing to the presence of three synergisti¢Poltorak et al., 1997). The 24-residue exon 6 peptide contains
sequence elements within the @hd 3 untranslated regions 12 basic amino acids, including the sequeté&-R-K-R-K-
(Dibbens et al., 1999). Binding of a hypoxia-induced stabilityk 13! identified as a cell surface retention consensus sequence
factor (HUR) increases the half-life of this mRNA three- to(CRS). 60-72-kDa high-affinity CRS-binding proteins have
eight-fold (Levy et al., 1998). An alternative transcription-been identified on the cell surface that appear to be derived
initiation site allows VEGF mRNA translation from a from the same gene product, CRS-BP1; however, their
downstream ribosomal entry site. This might be advantageowsggnificance is unknown (Boensch et al., 1995). Since Vilk$5F
under hypoxic stress, when cap-dependent translation can isefreely released from producing cells, it is thought that a
inhibited (Stein et al., 1998; Akiri et al., 1998). combination of CRS-BP1 binding and heparan sulphate

Several specific transformation events can also ind&€&F  interactions with the extended region derived from exons 6 and
expression, such as inactivation of tHdL gene (Stratmann et 7 is responsible for the cell-surface retention of VifgBnd
al., 1997; Mukhopadhyay et al., 1997), activatory mutations 0¥EGFxoe (Poltorak et al., 1997; Jonca et al., 1997). Recently
p53 (Kieser et al., 1994, Mukhopadhyay et al., 1995) anthe sequence encoded by exon 6 has also been shown to release
oncogenic mutation or amplification BAS(Rak et al., 1995; bioactive bFGF from the ECM and cell surface and thus
Grugel et al., 1995: Mazure et al., 1996). confers on VEGkgg the ability to exert some of its biological

effects through bFGF signalling pathways (Jonca et al., 1997).

_ ) VEGF isoforms in the ECM constitute a reservoir of growth
The VEGF splice variants factor that can be slowly released by exposure to heparin,
To date, six isoforms of human VEGF have been identified (sdeeparan sulphate and heparinases or more rapidly mobilised by
Fig. 1), which range in length from 121 to 206 amino acidspecific proteolytic enzymes such as plasmin and urokinase-
residues (VEGE1-209 (Leung et al., 1989; Tischer et al., type plasminogen activator (uPA) (Houck et al., 1992; Plouet
1991; Houck et al., 1991; Poltorak et al., 1997; Lei et al., 1998kt al., 1997). These enzymes already contribute to angiogenesis
Murine immortal fibroblasts encode a shorter form, VEGF through ECM depolymerisation and, as well as releasing
which has a novel 37-residue C terminus, but no humasequestered VEGF from the cell surface and ECM, might also
homologue has been isolated (Sugihara et al., 1998). Mostgulate VEGF bioactivity. Recombinant VEGEF and
VEGF-producing cells appear preferentially to expres$/EGFxosare unable to stimulate endothelial cell mitogenesis
VEGF121, VEGF6s and VEGhRse. VEGFig3 also has a wide (Houck et al., 1991), because protein folding in these larger
tissue distribution and may have avoided earlier detectioisoforms obscures regions responsible for receptor binding.
through confusion with VEGIgse (Lei et al., 1999; Jingjing VEGFig9binds VEGFR-1 but requires enzyme maturation by
et al, 1999). In contrast, VEGs and VEGREes are  uPA or plasmin to bind VEGFR-2 and exert its mitogenic
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effects on endothelial cells (Plouet et al., 1997; Fig. 1). uPAubfamily of the VEGF-related proteins (Orlandini et al., 1996;
cleavage towards the C-terminal end of the exon-6-encodetmada et al., 1997; Achen et al., 1998). Both proteins bind
region generates a truncated factor (UPA-VEdgRhat has an and activate VEGFR-3 (Flt-4; a member of the VEGFR family
endothelial cell mitogenicity equivalent to that of VE@$  that does not bind VEGF) as well as VEGFR-2, and are
Although not all VEGF isoforms contain a site for uPA mitogenic for cultured endothelial cells (Lee et al., 1996;
cleavage, they can all be cleaved by plasmin. This PI-VEGBoukov et al., 1996; Achen et al., 1998). They are synthesised
(VEGF110), by comparison with VEGfes and uPA-VEGksgs, as precursor proteins requiring proteolytic processing at the C-
elicits a 50-fold reduced mitogenic effect on endothelial cellsand N-termini to release the VEGF-homology domain (Joukov
which is similar to that observed for VEGHK (Keyt et al., et al., 1996). This might control receptor specificity, because
1996b; Plouet et al., 1997). This demonstrates that the VEGRcompletely processed VEGF-C binds VEGFR-3 with lower
sequences encoded by exons 6 and 7 do more than just reguktanity but does not bind VEGFR-2 at all (Joukov et al.,
the bioavailability of VEGF through HSPG binding: they 1997a). VEGF-C is thought to participate in both vascular and
actually enhance mitogenic signalling. lymphatic development, but in adult tissues probably acts
as a paracrine factor involved in lymphangiogenesis and
] maintenance of the lymphatic vessels (Kukk et al., 1996;
VEGF-related proteins Jeltsch et al., 1997; Dumont et al., 1998). Although much less
VEGF shares ~20% amino acid sequence identity with PDGRiitogenic than VEGF, VEGF-C might also regulate
Members of the PDGF/VEGF family contain eight conservedngiogenesis (Witzenbichler et al., 1998; Cao et al., 1998;
cysteine residues and therefore have a common mode BEpper et al., 1998). Less is known of VEGF-D functions, but
dimerisation and a similar structure within their receptor-expression patterns in mice indicate an important role in lung
binding domains (see above). Several growth factors that hadevelopment (Farnebo et al., 1999).
significant sequence homology to VEGF share the same VEGF-E is the collective term for a group of proteins having
receptors as VEGF and often impinge upon VEGF activity. significant homology to VEGF that are encoded by certain
Placenta growth factor (PIGF) (Persico et al., 1999) sharestrains of theorf virus, a pathogen of sheep, goats and
53% amino acid sequence identity with the PDGF-like regiomccasionally humans (Lyttle et al., 1994; Meyer et al., 1999).
of human VEGF (Maglione et al., 1991). Its expression ifPresumably th& EGFgene was acquired from a host genome
restricted to the placenta, where alternative mRNA splicingnd has subsequently undergone genetic drift. Some biological
generates three isoforms: PIGF-1 (Pi&); PIGF-2 (PIGks2)  functions appear to be retained, because viral infection results
and PIGF-3 (PIGEs3) (Maglione et al., 1993; Cao et al., 1997).in skin lesions with acute microvascular proliferation and
Exon 6 encodes a highly basic 21 amino acid sequence uniqgd#ation. All VEGF-E variants studied bind VEGFR-2, but not
to PIGF-2, which confers binding to both heparin and th&/EGFR-1 or VEGFR-3 (Ogawa et al., 1998; Meyer et al.,
neuropilin-1 receptor (Hauser and Weich, 1993; Park et al1999; Wise et al., 1999). One variant was further shown to bind
1994; Migdal et al., 1998). The only signalling receptorneuropilin-1. These viral proteins seem to be as potent as
identified for PIGF is VEGFR-1 (Park et al., 1994; Kendall etVEGFy65 at stimulating endothelial cell proliferation despite
al., 1994). VEGF-PIGF heterodimers exist in vivo but havdacking heparin-binding ability.
weaker mitogenic activity than VEGF homodimers and might
represent a mechanism for modulating VEGF bioactivity
(DiSalvo et al., 1995; Cao et al., 1996). The VEGF receptors
VEGF-B/VEGF-related-factor (Joukov et al., 1997b) VEGFR-1 and VEGFR-2 are both high-affinity receptors for
resembles PIGF in many aspects. VEGF-B has a wide tissMEGF that, along with VEGFR-3, form thé subfamily of
distribution but is particularly abundant in the heart andeceptor tyrosine kinases. These are characterised by seven
skeletal muscle (Olofsson et al., 1996a). Two isoforms exisgxtracellular immunoglobulin (Ig)-like domains followed by a
owing to the use of alternative splice acceptor sites within exomembrane-spanning region and a conserved intracellular
6 that utilise different reading frames (Grimmond et al., 1996tyrosine kinase domain interrupted by a kinase insert sequence
Olofsson et al., 1996b). The VEGR& C terminus retains (Fig. 2) (Shibuya et al., 1990; Matthews et al., 1991; Terman
homology to VEGF and mediates binding to ECM and celkt al., 1991; Pajusola et al., 1992).
surface HSPGs. However, VEGR48 contains a novel The ~180-kDa glycoprotein VEGFR-1, the first VEGFR to
hydrophobic sequence, rich in proline, serine and threoninige identified {mslike tyrosine kinase receptor/Flt-1; Shibuya
residues andO-glycosylated, possibly to aid its solubility et al., 1990; de Vries et al., 1992), has the highest affinity for
(Olofsson et al., 1996b). The VEGF-B isoforms bind andvEGF (Kg 10-30 pM; de Vries et al., 1992; Quinn et al., 1993;
activate VEGFR-1 (Olofsson et al., 1998) and can also bin#altenberger et al., 1994). VEGFR-1 is also shared by the
the neuropilin-1 receptor (Makinen et al., 1999). VEGF camelated growth factors PIGF and VEGF-B. Its expression in
heterodimerise with both VEGF-B isoforms when coexpressenhice is localised to the endothelium in adult and embryonic
(Olofsson et al.,, 1996a; Olofsson et al.,, 1996b). VEGFtissues, as well as to the neovasculature of healing skin wounds
B167~VEGF heterodimers remain cell-surface associatedPeters et al., 1993). The presence of VEGFR-1 mRNA in
perhaps indirectly controling VEGF release andquiescent as well as proliferating endothelial cells suggests a
bioavailability. continued role in endothelial maintenance. VEGFR-1 is
VEGF-C/VEGF-related protein contains a region sharinggessential during vasculogenesMEGFR-I/~ mice die at
~30% amino acid identity with VEGBEs (Lee et al., 1996; embryonic day 8.5 (Fong et al., 1995). In these mice,
Joukov et al., 1996However, it is more closely related to endothelial cells form normally at both embryonic and extra-
VEGF-D/cfosinduced growth factor, with which it forms a embryonic sites but fail to assemble correctly into organised
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Tyrosine kinase receptors Neuropi lins

VEGFR-1 VEGFR-2  VEGFR-3 NRP1 NRP2
VEGF VEGH,; 165 VEGF-C VEGFRss  VEGE
PIGF  uPAJ/PI-VEGF VEGFD PIGF-2 SemaV
VEGF-B VEGF-C* Heparan s ulphate VEGFB  SemaE

VEGF-D* proteo glycans VEGFE

VEGRE VEGH;5 206 Semalll

VEGFB,g SemaE

Fig. 2. The cell surface receptors for VEGF. Known examples of each receptor type are indicated and
identified ligands listed below. Where particular ligand isoforms are not specified, the receptor is believed
*2  to bind all identified variants. VEGF tyrosine kinase receptors consist of seven extracellular Ig-like
domains (numbered), a transmembrane region and an intracellular tyrosine kinase domain interrupted by
a kinase-insert sequence. Potential truncation positions of VEGFR-1 to produce sFlt-1 (*1) and of

VEGFR-2 observed in the rat retina (*2) are shown. Heparan sulphate proteoglycans are represented here

by glypican-1, an endothelial cell HSPG known to interact with VEs&Eigands are bound through electrostatic interactions with specific
sequences of sulphation within the HS chains (shown in green). In the case of glypican-1 these HS chains are all atimcived pydlkein at
a site close to the cell membrane (shown in red). The neuropilins are isoform-specific receptors for certain VEGF family MNitibacss
as a co-receptor for VEGFR-2, enhancing the binding and biological activity of MdEGReal-a2 region has homology to components of
the complement systerfil-32 shares homology with coagulation factors V and VIII, whereag dloenain contains a MAM (Meprin,
A5/neuropilin, Mu) domain, a protein sequence also found in the meprin metalloproteinases and receptor tyrosine phosphatase

blood vessels. This defect appears to be a consequencedefelopment of endothelial and haematopoietic precursors
increased commitment of mesenchymal cells to becominfShalaby et al., 1995). VEGFR-2 is normally expressed in
hemangioblasts, the common precursors of both blood celsich precursors, as well as in endothelial cells, nascent
and endothelial cells (Fong et al., 1999). haematopoietic stem cells and the umbilical cord stroma.
Tyrosine phosphorylation of VEGFR-1 in response to VEGHHowever, in quiescent adult vasculature, VEGFR-2 mRNA
stimulation is hard to detect, and, in endothelial cells, no dire@ppears to be downregulated (Millauer et al., 1993; Quinn et
proliferative, migratory or cytoskeletal effects mediated by thisl., 1993; Eichmann et al., 1997). Although VEGFR-1 has
receptor are apparent (Park et al., 1994; Waltenberger et ghe greater affinity for VEGF, VEGFR-2 is tyrosine
1994; Seetharam et al., 1995). However, VEGFR-1 has beg@hosphorylated much more efficiently upon ligand binding and
implicated in upregulated endothelial expression of tissuen endothelial cells leads to mitogenesis, chemotaxis and
factor, urokinase-type plasminogen activator and plasminogerhanges in cell morphology (Quinn et al., 1993; Waltenberger
activator inhibitor 1 (Clauss et al., 1996; Landgren et al., 199&t al., 1994).
Olofsson et al., 1998). In other cell types VEGFR-1 has Recent work has begun to elucidate the specific roles of
different roles, such as tissue factor induction and chemotaxisdividual Ig-like domains in VEGFR function. The second
in monocytes, and enhancing matrix metalloproteinasand third Ig-like domains of both receptors appear to be
expression by vascular smooth muscle cells (Barleon et ahgecessary for high-affinity ligand binding (Davis-Smyth et al.,
1996; Clauss et al., 1996; Wang and Keiser, 1998). 1996; Barleon et al., 1997a; Wiesmann et al., 1997; Fuh et al.,
VEGFR-2 (also known as kinase-insert-domain-containind998; Shinkai et al., 1998; Piossek et al., 1999). Deletion of
receptor, KDR) is a 200-230-kDa high-affinity receptor forthe second Ig-like domain in VEGFR-1 abolishes ligand
VEGF (Kd 75-760 pM; Terman et al., 1992; Quinn et al., 1993 pinding, whereas in VEGFR-2 the third Ig-like domain is most
Waltenberger et al., 1994), as well as for VEGF-C and VEGFeritical. The fourth Ig-like domain is believed to mediate
D. Identified in humans through screening endothelial cDNAeceptor dimerisation in VEGFR-1 (Barleon et al., 1997a); this
for tyrosine kinase receptors (Terman et al., 1991), this receptoray also apply to VEGFR-2. The fifth and sixth Ig-like
shares 85% sequence identity with the previously discoveratbmains of VEGFR-2 seem to be required for VEGF retention
mouse fetal liver kinase 1 (Flk-1) (Matthews et al., 1991after binding, whereas the first Ig-like domain might regulate
Millauer et al., 1993; Quinn et al., 1993)EGFR-2/~ mice  ligand binding because its removal improves VEGF
die by embryonic day 9.5, exhibiting defects in theassociation (Shinkai et al., 1998). Both VEGF receptors are
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glycosylated; this is not essential for VEGFR-1 ligand bindinghrough transphosphorylation (Wiesmann et al., 1997; Fuh
(Barleon et al., 1997a), but only the mature glycosylated formet al., 1998). VEGFR-1 and VEGFR-2, as well as forming
of VEGFR-2 can efficiently autophosphorylate (Takahashi anthomodimers, might also heterodimerise: sFlt-1 and VEGFR-2
Shibuya, 1997). can form non-signalling complexes (Kendall et al., 1996),
A soluble truncated form of VEGFR-1 (sFlt-1) that containsand PIGF-VEGF heterodimers that are both mitogenic and
only the first six Ig-like domains has been cloned from ahemotactic for endothelial cells exist in vivo (Cao et al.,
HUVEC cDNA library (Kendall and Thomas, 1993; Kendall 1996).
et al., 1996). sFlt-1 binds to VEGF as strongly as does full- VEGFR-2 seems to mediate almost all observed endothelial
length VEGFR-1 and inhibits VEGF activity by sequesteringcell responses to VEGF. In contrast, although VEGFR-1 can
it from signalling receptors and by forming non-signallinginduce monocyte migration (Barleon et al., 1996), endothelial
heterodimers with VEGFR-2. Particularly high levels of sFlt-cell migration in response to VEGFR-1 has not been
1 occur in the placenta, where it might control VEGF activitydemonstrated unequivocally. The lack of significant
at particular stages of pregnancy (Clark et al., 1998; He et abndothelial cell responses to VEGFR-1 stimulation has led
1999). A truncated form of VEGFR-2, lacking the C-terminalsome to speculate that its main role is as a decoy receptor that
half of the kinase domain, is expressed in normal rat retinsequesters VEGF from signalling through VEGFR-2 (Park et
(Wen et al., 1998). This truncated form is expressed at lowe., 1994). Indeed mice embryos expressing VEGFR-1 that
levels than full-length VEGFR-2 in these cells, but seems to blacks the tyrosine kinase domain show normal development
activated by VEGF at least as efficiently. and angiogenesis; only VEGF-mediated macrophage
VEGFR-3 (Flt-4) is also a member of tHesubfamily of  migration is affected (Hiratsuka et al., 1998). If VEGFR-1 acts
receptor tyrosine kinases, but its expression becomes restricggedominantly as a ligand-binding molecule, PIGF and VEGF-
mainly to the lymphatic endothelium of adult tissues (Pajusol& might exist mainly to free VEGF for VEGFR-2 binding.
et al., 1992; Finnerty et al.,, 1993; Kaipainen et al., 1995)Such competition would explain the potentiating activity of
VEGFR-3 binds VEGF-C and VEGF-D, but not VEGF, and isPIGF on the bioactivity of low concentrations of VEGF (Park
thought to control lymphangiogenesis (see above). et al.,, 1994). However, VEGFR-1 signalling should not be
dismissed, because site-directed mutagenesis has identified
) several specific phosphorylated residues capable of interacting
Receptor expression with SH2-domain proteins (Igarashi et al., 1998).
Upstream control elements confer endothelial-cell-specific Signal transduction events associated with VEGF have been
transcription on botWEGFR-1landVEGFR-2(Morishita et al.,  difficult to elucidate, owing to cell-specific and species-specific
1995; Patterson et al., 1995). Not surprisingly, hypoxia, as wetlifferences in expression of VEGFRs and signal transduction
as inducing VEGF release, is also a potent stimulator afomponents. The presence of potential modulatory species,
VEGFR-1 and VEGFR-2 expression in vivo (Tuder et al.such as HSPGs and the neuropilins, further complicates the
1995; Li et al., 1996). In common WiMEGF, VEGFR-1has picture. Current understanding of VEGF signalling is beyond
a HIF-1 consensus in its promoter region (Gerber et al., 1997%he scope of this Commentary, but details can be found
VEGFR-2has no similar sequence and transcription might belsewhere (Zachary, 1998; Petrova et al., 1999; Larrivee and
slightly downregulated by hypoxia (Thieme et al., 1995;Karsan, 2000).
Gerber et al.,, 1997). However, VEGFR-2 is thought to be
upregulated at the post-transcriptional level by an unidentified - o
paracrine factor released from ischaemic tissues (Brogi et aNeuropilin-1 and other VEGF-binding molecules
1996; Waltenberger et al., 1996). Crosslinking experiments usingd-labelled VEGF indicate
Several growth factors, including VEGF (Wilting et al., receptors for VEGF that do not correspond to the VEGFRs
1996; Barleon et al., 1997b), affect VEGF receptor expressioexist (Gitay-Goren et al., 1996; Soker et al., 1996; Omura et
VEGF stimulation of VEGFR-2 both upregulates expression oél., 1997). These receptors recognise the exon-7-encoded
the VEGFR-2gene and increases cellular VEGFR-2 levelsdomain of VEGF and therefore bind VEGE but not
(Shen et al., 1998). bFGF is known to synergise with VEGF iVEGF121 (Soker et al., 1996). One such receptor is neuropilin-
inducing angiogenesis and one mechanism for this is through (NRP1) (Fig. 2; Soker et al., 1998), a 120-130-kDa
upregulation of VEGFR-2 in endothelial cells (Pepper andyjlycoprotein previously characterised as a neuronal receptor
Mandriota, 1998). Interestingly cell-cell and cell-matrix for certain secreted members of the collapsin/semaphorin
contact might also affect VEGF receptor expression: VEGFRfamily (He and Tessier-Lavigne, 1997; Kolodkin et al., 1997).
2 levels vary according to cell density and the geometry dRP1 has a wide tissue distribution that includes some tumour-
the culture conditions (Pepper and Mandriota, 1998b), anderived cells and endothelial cells (Soker et al., 1998). NRP-1
expression of both VEGFRs is influenced by the levels obn embryonic neurons is implicated in the control of axon
platelet endothelial cell adhesion molecule 1 (PECAM-1growth and guidance as a consequence of binding certain
Sheibani and Frazier, 1998). members of the semaphorin family (Kawakami et al., 1996;
Takagi et al., 1995). Studies on mouse embryos suggest it also
) ) has a role in angiogenesis and vasculogenesis. NRP1
Signal transduction overexpression causes death at day 17.5 with an excessively
Separate but overlapping VEGFR-1-binding and VEGFR-2high density of blood vessels, which are dilated and prone to
binding sites exist at each pole of VEGF at the dimer interfacéiemorrhaging (Kitsukawa et al., 1995)RP17~ mice die at
The interaction of receptor monomers at these sites on VEG#nbryonic day 10.5-12.5 from cardiovascular anomolies
induces receptor dimerisation and subsequent activatigiiKitsukawa et al., 1997).
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NRP1 acts as a co-receptor for VE@4 enhancing its Gitay-Goren et al. demonstrated that binding of VEdsto
binding to VEGFR-2 and its bioactivity (Soker et al., 1998).its receptors on vascular endothelial cells is dependent on cell-
Interestingly both VEGFR-2 and NRP1 on endothelial cells arsurface-associated heparin-like molecules (Gitay-Goren et al.,
upregulated by the indirectly acting angiogen TéNEsiraudo  1992). Low concentrations (0.1-1@/ml) of heparin strongly
et al., 1998). NRP1 has only a very short intracellular domairpotentiate VEGkss binding, whereas higher concentrations
and no reponses to VE@&Js were observed on cells without are inhibitory. Depletion of cell surface heparin/HS by
VEGFR-2 (Soker et al., 1998). However, Cai and Reed (1999)eparinase treatment severely reduces such binding but can be
recently identified a widely expressed NRP1-interactingestored by the addition of exogenous heparin. These results
protein (NIP) that was previously implicated in membranewere subsequently found also to apply when Vigsbinds
trafficking. NRP1 signaling might also contribute toto VEGFR-2 or NRP1 (Tessler etal., 1994; Terman et al., 1994;
hematopoiesis, given that VEG5 binding leads to increased Soker et al., 1996; Soker et al.,, 1998). In contrast, the
erythropoietin and Flt-3 ligand expression in bone marrow/EGF2—VEGFR-2 interaction is unaffected by exogenous
stromal cells (Tordjman et al., 1999). heparin or heparinase (Gitay-Goren et al., 1996). The possible

Other VEGF-related growth factors also share the NRPparticipation of HS in VEGEs-VEGFR-2 complexes might
receptor (Fig. 2). Both PIGF-2 and VEGRkeBbind NRP1 and explain why some groups report this isoform as a more potent
HSPGs through regions homologous to the exon-7-encodeshdothelial cell mitogen than VEGH (Keyt et al., 1996b).
domain of VEGF. However, the non-heparin-binding VEGF-Interestingly, rather than affecting the dissociation constant for
B1igs requires proteolytic cleavage of its unique C-terminaMEGFes binding, heparin/[HS seems to have a receptor-
region to expose a short proline-rich sequence for NRP&nmasking effect, increasing levels of VEGFR-2 available for
interaction (Makinen et al., 1999). The biological role of bindingVEGFe5 (Gitay-Goren et al., 1992; Terman et al., 1994).
of NRP1 to VEGF-B and PIGF-2 is unclear, because these The VEGFR-1 receptor behaves quite differently: both
growth factors bind only to VEGFR-1, not VEGFR-2. PIGF-2VEGFe5 and VEGHR21 binding are potently inhibited by
has no effect upon the proliferation of endothelial cellsexogenous heparin, even at concentrations lower than those
expressing NRP1 and is no more efficient than PIGF-1 atquired for potentiation of VEGEsVEGFR-2 binding
stimulating VEGFR-1-mediated migration (Migdal et al., 1998).(Terman et al., 1994; Cohen et al., 1995). However, heparin-

The NRP1 receptor plays roles in the diverse processes life molecules are essential for VEGFR-1 function, because
angiogenesis, vasculogenesis and the development of theparinase treatment of cells abolishes the ability of VEGFR-
nervous system. Interestingly VE@E might act as a 1 to bind both VEGE1 and VEGHses Interestingly, whereas
neurotrophic factor stimulating axonal growth along with theexogenous heparin partially restores VEgsBinding to such
proliferation and survival of cells in the peripheral nervouscells, VEGHR21 binding remains lost (Cohen et al., 1995). Since
system (Sondell et al., 1999). Likewise the chemorepulsiv€ EGFie5 unlike VEGHR21, is a heparin-binding protein,
semaphorin Sema lll, which binds NRP1 and inhibits axonaheparin bound to VEGIks must be able to complement the
motility, also inhibits endothelial cell motility and competesloss of cell surface HS in a way that free heparin cannot to
with VEGFe5 for NRP1-binding (Miao et al., 1999). allow some VEGkss-VEGFR-1 binding. It seems that HSPGs

NRP1 can homomultimerise or form heteromultimers withare essential for VEGF binding to VEGFR-1, and presumably
neuropilin-2 (NRP2), although the functional significance ofexogenous heparin interferes with the normal functioning of
these complexes is not clear (Giger et al., 1998). NRP2 (Ché#SPGs at this receptor. Changes in local heparin concentration
et al., 1997) was identified during expression cloning of NRPbr the levels and composition of cell surface HS might
from breast carcinoma cells, and therefore represents a sepanatedulate the interactions of the VEGF isoforms with VEGFR-
cell-surface VEGkssreceptor (Soker et al.,, 1998). Further 1.
receptors might also exist, given that Omura et al. identified a Since VEGHk21 has no affinity for heparin/HS, some of these
190-kDa VEGHses-specific receptor expressed on a glioma celeffects of exogenous heparin and heparinase on VEGFR-1
line (Omura et al., 1997). Like NRP1, the binding of VE&F must be mediated at the receptor level (Cohen et al., 1995).
to this receptor does not seem to lead to tyrosin€ell-surface heparin receptors are thought to exist and may
phosphorylation. influence VEGFR functions (Gitay-Goren et al., 1992).

However, VEGFR-1 is a heparin-binding protein itself,

] containing a potential heparin-binding domain in its fourth Ig-
Heparin and heparan sulphate proteoglycans like extracellular loop (Kendall et al., 1993; Park and Lee,
Heparin is a highly sulphated linear polysaccharide released B99). Interestingly, this domain is implicated in VEGFR-1
mast cells that has well documented procoagulant activitgimerisation, and heparin/HS interactions might account for
Heparan sulphate (HS) is a closely related molecule that hagte observed effects of these species on VEGF binding.
much lower sulphate content and is found on the cell surfac®EGFR-2 also appears to interact directly with heparin/HS
and in the ECM of almost all mammalian cells as a componeii€hiang and Flanagan, 1995; Dougher et al., 1997), perhaps
of heparan sulphate proteoglycans (HSPGs). The structurestbfough the hexapeptide sequence RKTKKR between the sixth
heparin and HS are key to their biological function becausand seventh Ig-like domains. Clearly the regulatory effects of
distinct patterns of sulphation upon the polysaccharide chairgeparin/HS on VEGF binding to its receptors depend both
are recognised and bound by specific protein ligands. This cam the particular receptor subtype and the VEGF isoform
serve simply to immobilise or protect bound ligands. Howevetinvolved.
in several cases, such binding has been shown to modulate theédeparin/HS affinity can also affect VEGF function through
biological activity of proteins directly (Stringer and Gallagher,several other mechanisms. HSPGs affect VEGF bioavailability
1997; Lindahl et al., 1998). through sequestration at the cell surface/ECM. This VEGF
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reservoir may be protected from enzymatic degradatiooontrol and coordinate VEGF activity. Such an understanding
(Houck et al., 1992), although ECM-bound VE@ddoes not  will be vital in the future design of therapeutic agents to control
appear to be protected from uPA or plasmin maturation (Plou@ngiogenesis.

et al., 1997). VEGF can displace other HSPG-bound growth

factors from the ECM, most notably bFGF, which can then

synergise with VEGF in stimulating angiogenesis (Asahara @EFERENCES
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