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Abstract—We present a split radix fast Fourier transform
(FFT) algorithm consisting of radix-4 butterflies. The major
advantages of the proposed algorithm include: i). The proposed
algorithm consists of mixed radix butterflies, whose structure
is more regular than the conventional split radix algorithm. ii).
The proposed algorithm is asymptomatically equal computation
amount to the split radix algorithm, and is fewer operations
than the radix-4 algorithms. iii). The proposed algorithm is in
the conjugate-pair version, which requires less memory access
than the conventional FFT algorithms.

I. INTRODUCTION

The fast Fourier transform (FFT) algorithm has been widely

adopted in digital signal processing and multimedia applica-

tions. With the widespread utilization of FFT, many techniques

have been proposed to speed up the FFT algorithm in recent

years. The major metrics to measure the performance of

FFT structure include the arithmetic complexity, the recursive

structure of FFT algorithm, and the overhead for memory

access. Based on Cooley-Tukey algorithm [1], the radix-2

algorithm is proposed for the input sequence with length 2i.
To further reduce the cost of multiplying twiddle factors, a

number of FFT algorithms, such as mixed-radix and split-

radix [2]-[7], have been proposed. The mixed-radix 4 and

split-radix 2/4 are two well-known algorithms for the input

sequence with length 4i. The radix-4 algorithm is constructed

based on 4-point butterfly units. The 4-point butterfly consists

of four 2-point butterflies without any multipliers. Hence

the radix-4 takes fewer operations than the ordinary radix-2

does. Furthermore, the split-radix 2/4 algorithm requires fewer

operations than radix-4, but its irregular recursive structure

hinders the efficiency on general-purpose computers. Table I

summarizes the arithmetic complexities of those algorithms

and the proposed algorithms. Based on the two perspectives

described above, this work proposes to design a new FFT

algorithm with combining the advantages of radix-4 and split-

radix. The proposed FFT algorithm is built from radix-4

butterflies, and it has the same asymptotic complexity as split

radix algorithm. Based on the conjugate-pair split-radix [6] and

mixed-radix [8], the proposed FFT algorithm is formulated as

the conjugate-pair version to reduce the overhead of loading

twiddle factors. Furthermore, we also propose a modified FFT

algorithm taking the same operation counts as the radix-2/4,

but requiring a special 4-point butterfly in the recursive flow

graph. The rest of this paper is organized as follows. Section

II introduces the proposed FFT algorithm. Section III gives

TABLE I
THE ARITHMETIC COMPLEXITIES OF RADIX-2, -4, 2/4 FFTS AND THE

PROPOSED ALGORITHM

FFT algorithms Operation counts

Radix-2 5N lgN − 10N + 16
Radix-4 4.25N lgN − 43/6N + 32/3
Radix-2/4 4N lgN − 6N + 8

Proposed alg. 4N lgN − (88/15)N − 0.58 ∗ (−1)log4 N + 20/3
Modified alg. 4N lgN − 6N + 8

the operation counts of the proposed algorithm. Section IV

introduces a 4-point special butterfly to reduce the arithmetic

complexity. Section V discusses related issues, such as the

overhead of loading twiddle factors, and the implementation

of the proposed algorithm. Section V summarizes this work.

II. PROPOSED SPLIT-RADIX ALGORITHM WITH RADIX-4

BUTTERFLIES

Given a complex data sequence x(k), k = 0, 1, . . . , N − 1
with length N , the discrete Fourier transform (DFT) is defined

as

X(k) =
N−1
∑

i=0

x(i)W ik
N , for k = 0, 1, . . . , N − 1, (1)

where WN = exp(j2π/N), and j =
√
−1. Through-

out this paper, we define that a complex multiplication

operation requires four real multiplications and two real

additions. Furthermore, it is noted that multiplying by

{W 0
4 ,W

1
4 ,W

2
4 ,W

3
4 } is treated as free of calculation, and

multiplying by {W 1
8 ,W

3
8 ,W

5
8 ,W

7
8 } only requires two mul-

tiplications and two additions. In the following, we firstly

introduce the modified radix-4 FFT proposed by Bouguezel

et al. [8], and then introduce the proposed algorithm derived

from [8]. Assuming N being the power of four, then (1) can

be reformulated as

X(k) =

N/4−1
∑

l=0

3
∑

i=0

x(N/4× i+ l)W
(N/4×i+l)k
N

=

N/4−1
∑

l=0

W lk
N

3
∑

i=0

x(N/4× i+ l)W lk
4 .

(2)



We substitute (2) with k = 4p+ q for q = 0, 1, 2, 3 to obtain

X(4p+ q) =

N/4−1
∑

l=0

W
l(4p+q)
N

3
∑

i=0

x(N/4× i+ l)W
l(4p+q)
4

=

N/4−1
∑

l=0

W
l(4p+q)
N

3
∑

i=0

x(N/4× i+ l)W lq
4 .

(3)

To emphasize the recursive structure, we define

ỹ2q (l) =
3

∑

i=0

x(N/4× i+ l)W lq
4 . (4)

Then (3) can be expressed as

X(4p+ q) =

N/4−1
∑

l=0

W
l(4p+q)
N ỹ2q (l)

=

{

∑N/4−1
l=0 W lp

N/4(W
lq
N ỹ2q (l)) if q ∈ {0, 1, 2};

∑N/4−1
l=0 W

l(p+1)
N/4 (W−l

N ỹ2q (l)) if q ∈ {3};

=

{

∑N/4−1
l=0 W lp

N/4y
2
q (l) if q ∈ {0, 1, 2};

∑N/4−1
l=0 W

l(p+1)
N/4 y2q (l) if q ∈ {3};

(5)

where

y2q (l) =

{

W lq
N ỹ2q (l) if q ∈ {0, 1, 2};

W−l
N ỹ2q (l) if q ∈ {3}. (6)

For q = 3, the standard radix 4 uses the twiddle factor W 3l
N ,

as opposed to W−l
N shown in (6). This variant calculates the

same DFT outputs with a different order. As the W−l
N can be

obtained by reversing the sign of imaginary part of W l
N , the

loading cost can be saved.

By (4), the matrix form of {ỹ20(l), ỹ21(l), ỹ22(l), ỹ23(l)} is

expressed as








ỹ20(l)
ỹ21(l)
ỹ22(l)
ỹ23(l)
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1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

















x(l)
x(N/4 + l)
x(2N/4 + l)
x(3N/4 + l)









(7)

The (7) is computed via the 4-point butterfly shown in Fig.

1(a). Since the multiplication by j is free, the 4-point butterfly

only requires eight times of complex additions. As shown in

[7], the radix-4 algorithm takes N lgN complex additions and

3/8N lgN −N + 1 complex multiplications.

To further reduce the complexities of above radix-4 algo-

rithm, the term X(4p+ 2) of (5) is decomposed into

X(4p+ 2) =

N/4−1
∑

l=0

W
l(4p+2)
N ỹ22(l)

=

N/16−1
∑

k=0

3
∑

l=0

W
(N/16×l+k)(4p+2)
N ỹ22(N/16× l + k)

=

N/16−1
∑

k=0

W
k(2p+1)
N/2

3
∑

l=0

W
l(2p+1)
8 ỹ22(N/16× l + k)

(8)

We substitute (8) with p = 4p1+q1, q1 ∈ {0, 1, 2, 3} to obtain

X(16p1 + 4q1 + 2)

=

N/16−1
∑

k=0

W
k(8p1+2q1+1)
N/2

3
∑

l=0

W
l(8p1+2q1+1)
8 ỹ22(N/16× l + k)

=

N/16−1
∑

k=0

W
k(8p1+2q1+1)
N/2

3
∑

l=0

(W l
8ỹ

2
2(N/16× l + k))W lq1

4 ,

(9)

To emphasize the recursive structure in (9), we define

ỹ4q1(k) =

3
∑

l=0

(W l
8ỹ

2
2(N/16× l + k))W lq1

4 (10)

Then (9) is formulated as

X(16p1 + 4q1 + 2) =

N/16−1
∑

k=0

W
k(8p1+2q1+1)
N/2 ỹ4q1(k)

=

{

∑N/16−1
k=0 W kp1

N/16[W
k(2q1+1)
N/2 ỹ4q1(k)] if q1 ∈ {0, 1};

∑N/16−1
k=0 W

k(p1+1)
N/16 [W

k(2q1−7)
N/2 ỹ4q1(k)] if q1 ∈ {2, 3};

=

{

∑N/16−1
k=0 W kp1

N/16y
4
q1(k) if q1 ∈ {0, 1};

∑N/16−1
k=0 W

k(p1+1)
N/16 y4q1(k) if q1 ∈ {2, 3};

(11)

where

y4q1(k) =

{

W
k(2q1+1)
N/2 ỹ4q1(k) if q1 ∈ {0, 1};

W
k(2q1−7)
N/2 ỹ4q1(k) if q1 ∈ {2, 3}.

(12)

For q1 ∈ {2, 3} in (9), the y4q1(k) is multiplied by the twiddle

factors W−3k
N/2 and W−k

N/2, rather than W 5k
N/2 and W 7k

N/2 adopted

in conventional split radix. The W−3k
N/2 and W−k

N/2 are the

complex conjugates of W 3k
N/2 and W k

N/2, so the values can

be easily obtained without computations or table lookup. In

(10), multiplying by W l
8 = (1 ± j)/

√
2 only requires two

multiplications and two additions, so the proposed algorithm

has fewer operations than radix-4. In summary, Figure 2

illustrates the general flow graph of the proposed FFT. The 16-

point input is given as {x(k+ iN/16)}15i=0, and the output are

the 12 points {y2q (k + iN/16)|q ∈ {0, 1, 3}, i ∈ {0, 1, 2, 3}}
defined by (6), and 4 points {y4q1(k)}3q1=0 defined by (12).

There exists a special case k = 0. In this case, for q ∈ {1, 3}
in (6), we have several specific twiddle factors: for l = 0, the

twiddle factor is one; and for l = 2N/16, the twiddle factor

is W±1
8 . For q1 ∈ {0, 1, 2, 3} in (12), all the twiddle factors

are turned into one. Evidently, there are six twiddle factors

turned into 1 and two twiddle factors turned into W±1
8 , so

we can save several operations at k = 0. In summary, the

proposed algorithm is constructed from a general flow graph

for k ∈ {1, 2, . . . , N/16− 1}, a special flow graph for k = 0,

and the 4-point butterfly.

An important issue is the order of the output values. The

order is different from the conventional radix-4 algorithms. For

example, for q=3 in (5) and q1 ∈ {2, 3} in (11), the order of

output is shifted cyclically by one. Table II gives an algorithm

to calculate the location of each X(k).



(a)

(b)

Fig. 1. Radix-4 butterfly. (a). The radix-4 butterfly constructed with radix-2
butterflies. (b). A simplified representation.

Fig. 2. General flow graph of the proposed split-radix algorithm based on
radix-4 butterflies.

TABLE II
THE ALGORITHM OF CALCULATING THE POSITION OF X(K) IN THE

OUTPUT SEQUENCE.

III. OPERATION COUNTS OF THE PROPOSED ALGORITHM

It can be shown that the general flow graph depicted in Fig.

II takes 52 real multiplications and 108 real additions, and the

special flow graph for k = 0 takes 24 real multiplications and

96 real additions. Let M(N) and A(N) respectively denote the

amount of used multiplications and additions in the proposed

N -point algorithm. Given a sequence with N points, the first

stage of the proposed algorithm decomposes the N -point DFT

into three N/4-point DFTs and four N/16-point DFTs as

shown in Fig. II. The first stage employs (N/16− 1) general

flow graphs for k = 1, 2, . . . , (N/16− 1), and a special flow

graph for k = 0. Thus, the recursive function is given by

M(N) = 3M(N/4) + 4M(N/16) + (N/16− 1)52 + 24;

M(1) = M(4) = 0.
(13)

A(N) = 3A(N/4) + 4A(N/16) + (N/16− 1)108 + 96;

A(1) = 0;A(4) = 16.
(14)

The solutions of the recurrence are shown to be

M(N) = 1.3N lgN − (296/75)N − 0.72(−1)log4
N + 14/3.

(15)

A(N) = 2.7N lgN − 1.92N − 0.08(−1)log4
N + 2. (16)



(a)

(b)

Fig. 3. The sub-flow graph for the case k = N/32. (a). The original butterfly.
(b). The modified version.

Thus, the total of operations is

T (N) = M(N) +A(N)

=4N lgN − (88/15)N − 0.8(−1)log4
N + 20/3.

(17)

As listed in Table I, the proposed algorithm takes the

same asymptotic complexity as the radix-2/4. Notably, the

[9] presents a FFT with fewer arithmetic operations (about

34/9×N lgN ). However, the butterfly structure of [9] is more

complex, and the output have accuracy problem (see Sec. V

of [9]).

IV. THE CUSTOMIZED 4-POINT BUTTERFLY FOR K=N/32

For k = N/32, the operation amount can be reduced further

by using a special butterfly. In this case, Fig. 3(a) depicts

the butterfly for (12) at k = N/32, and Fig. 3(b) depicts

the modified butterfly. It can be verified that the customized

butterfly outputs the same values as the original butterfly does.

As shown in Fig. 3(a)(b), the modified butterfly saves two

complex multiplications. Thus, the number of operations of

the modified algorithm is

M̂(N) = 3M̂(N/4) + 4M̂(N/16) + 3.25N − 32;

M(4) = 0;M(16) = 24.
(18)

Â(N) = 3Â(N/4) + 4Â(N/16) + 6.75N − 16;

A(4) = 16;A(16) = 144.
(19)

It is noted that the case k = N/32 occurs when N ≥ 32, so

the recurrences (18)(19) start from N = 4 and N = 16. The

solutions are

M̂(N) = 1.3N lgN − (301/75)N − 0.32(−1)log4
N + 5.33.

(20)

Â(N) = 2.7N lgN − (149/75)N + 0.32(−1)log4
N + 2.67.

(21)

Then the arithmetic complexity is

T̂ (N) = M̂(N) + Â(N) = 4N lgN − 6N + 8, (22)

which is the same as radix-2/4 listed in Table I. Consequently,

the number of operations of the modified version is exactly

the same as the radix-2/4 algorithm, but it requires a special

butterfly for the case k = N/32. In summary, the customized

butterfly saves about (2/15×N) operations.

V. DISCUSSIONS

A. Number of times of loading twiddle factors

In counting the times of loading twiddle factors by table

lookup, it is assumed that the constant twiddle factors are

available in the registers of processors during the FFT calcu-

lation, so we only count the number of non-constant twiddle

factors used in the flow graph. A complex number consists of

a real part and an imaginary part, so loading a twiddle factor

requires two times of table lookup. When a complex number

is loaded to a register, its conjugate can be easily obtained

through reversing the sign of imaginary value, so the loading

of conjugate value is free. Based on the above assumptions, it

can be shown that the general flow graph requires 12 inevitable

times of table lookup. For the special flow graph k = 0, all

the twiddle factors are constants, so the table lookup is not

needed. Thus, we have the following recursive function:

S(N) = 3S(N/4) + 4S(N/16) + (N/16− 1)× 12

S(1) = S(4) = 0.
(23)

The solutions is

S(N) = 0.3N lgN − 1.28N − 0.72(−1)log4
N + 2. (24)

B. Benefits of proposed FFT algorithms in parallel computing

The proposed algorithm has another advantage in parallel

computing. Let the G denote a flow graph constructed by the

proposed N -point algorithm. As the 4-point butterfly has no

multiplication operation in its middle stage (see Fig. 1(a)), the

G does not require multiplications in its odd stages. Thus, in

hardware design, the G does not need the clock cycles for

multiplications in odd stages, and the computing time can be

reduced further. In contrast, the radix-2/4 has multiplication

operations in all stages, except for the first and the last

stages, so the radix-2/4 cannot save the clock cycles for the

multiplications.

VI. CONCLUSIONS

This paper presents a split-radix FFT algorithm based

on radix-4 butterfly units. The arithmetic complexity of the

proposed algorithm achieves the same asymptotic complexity

as split radix algorithm. We also propose a modified algorithm

to exactly achieve the same number of operations as the

radix-2/4, but it should employ a special 4-point butterfly.

The proposed algorithm can be efficiently implemented upon

elaborate 4-point butterfly units. The theoretical perspective is

also discussed to show that the proposed algorithm explores

the relationships between radix-4 and radix-2/4 algorithm.
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