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Abstract. We show that a non-conformal harmonic map from a Riemann surface
into the Euclidean n-sphere can be considered as a component of minimal surfaces in
higher dimensional spheres. In the same principle, we show that the generalized Gauss
map of constant mean curvature surfaces in the 3-sphere globally splits into two
non-conformal harmonic maps into the 2-sphere. Using this, we obtain examples of
non-trivial harmonic map deformations for compact Riemann surfaces of arbitrary
positive genus. In particular, we give a lower bound for the nullity (as harmonic maps)
of the generalized Gauss map of compact CMC surfaces in the 3-sphere. Furthermore,
we obtain an affirmative answer to Lawson’s conjecture for superconformal minimal
surfaces in 4m-spheres.

1. Introduction. In this paper, we are interested in constant mean curvature
surfaces including minimal surfaces in the 3-sphere, which we call CMC surfaces for
short.

A harmonic map ¢ from a Riemann surface M into the Euclidean sphere S” or
into the complex projective space CP" is associated with two important families of
maps, the harmonic sequence {¢;} and the associated S'-family {¢?}. Using the latter,
we construct a harmonic map ¢ into higher dimensional spheres or complex projective
spaces, by taking direct product S"(c¢,) x - -+ x S"(¢)= STV~ or C"*1 {0} x -+ - x
C""'—{0}/~ = CP*"* D1 and defining a map by ¢=(1//c; 9", ..., 1/, d?)=
(—D;f;l $%//c; where Y 1/¢c;=1, or by ¢=[(f", ..., £*)] using local sections f°’s of
¢ s (cf. [L2], [M]). In [M], we investigated superconformal harmonic maps in this
method, while we now apply it to the CMC surface theory.

Choosing suitable 0,’s, we find a harmonic map ¢ having the isotropy dimension
larger than that of ¢ (Theorem 3.4). An easy application of this yields conformal
harmonic maps from a non-conformal harmonic map (Corollary 3.5). Even the simplest
case implies an interesting result:

COROLLARY 3.2. Let ¢ be a non-conformal harmonic map into S*. Then
G=(d® ¢™)//2 is a minimal surface in S°.

This turns out to be the splitting of the bipolar surface in [L1] of a minimal
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surfacein S (see Theorem 5.3). In fact, because of Gr, (R*)= S? x §2, the global splitting
of the generalized Gauss map of a surface in R* would be obvious (cf. [HO]). We
clarify this splitting for CMC surfaces in S* by connecting directly the generarized
Gauss map with the adapted secondary Gauss map (for the definition, see §4).

THEOREM 6.2. For a CMC-h surface y: M — S?, there exists a pair of non-con-
formal harmonic maps ¢, $*°: M — S? such that the generalized Gauss map  of Y splits
into (¢ @® (]529)/\/7 . In fact, ¢ is the adapted secondary Gauss map of W, and 0 is given
by cos” LR [(h®+1). Moreover, y can be deformed into ¢ andlor ¢3*° through
harmonic maps ¢2° =cossp@sins¢? into S°.

The deformation of harmonic maps is important in investigating the moduli spaces.
For harmonic maps from a compact Riemann surface with genus greater than one,
nothing is known except some existence theorems (cf. [L1], [K1], [K2]). When we
apply the theorem to the generalized Gauss map of Lawson’s compact minimal surfaces
in $°, we obtain examples of non-trivial global deformations of harmonic maps from
a compact Riemann surface of arbitrary positive genus. As an application, we show
that the nullity (as harmonic maps) of the generalized Gauss map of CMC surfaces (of
positive genus) in S3 is at least 16. The classifying problem of surfaces having Gauss
map with small Killing nullity would be interesting.

Recently, Aiyama and Akutagawa [AA] obtain Kenmotsu-Bryant type represen-
tation formula of CMC surfaces in S?, using the framing matrix and the secondary
Gauss map. After we obtain our theorem, we know that the first statement of Theorem
6.2 independently follows from their argument. However, our idea comes from the
splitting of harmonic maps in various dimensional spheres as in Theorem 3.4.

Eventually, a global correspondence between CMC surfaces in RP* and a pair of
associated non-conformal harmonic maps into S? is obtained in [AAMU].

Another application of our argument is to show:

THEOREM 7.3. A full superconformal minimal surface in S*™ cannot be isometric
to a minimal surface in S>.

This generalizes the result by Sakaki [S] for minimal surfaces in $* and gives a
partial answer to Lawson’s conjecture [L2], together with the odd dimensional case
given in [M, Corollary 6.6].

The author is very grateful to the referee for his useful suggestions.

2. Preliminaries. For details in this section, see [M, Part IT]. We denote by S”(c)
the n-dimensional Euclidean sphere of radius 1 /\/? and S"=S"(1). Let ¢: M —>S" be
a harmonic map from a Riemann surface M into S”. Let U be a simply connected open
domain of M with a complex parameter z, and put d=25/0z. Then we have

(2.1) (p,p>=1, <3¢, d>=<0¢, p>=0,



GENERALIZED GAUSS MAP 37

(2.2) 30 =—|041%¢,

where { , > is the complex-linearly extended inner product. Moreover, defining

¢0=¢
2.3
@3 {¢j+1=a¢j—alogl¢j[2¢j,
we obtain

= [¢;1°
2.4 op=—" . .
29 ERRNTYCACE

When we put w;=log] ¢;[, the integrability condition 66—¢j=56¢j is given by

(2.5 200w;—e?Miri W) 42T =( . jeZ,

which is known as the 2-dimensional affine Toda equations. Periodic solutions to this,
(for instance, a solution to the sinh-Gordon equation (4.9), (7.1)), correspond to

superconformal harmonic maps into odd-dimensional spheres (cf. [M, §67).
Because of the reality of ¢, we get inductively:

®;
|1
The quadratic differential ¢,dz2={¢,, ¢,>dz? is holomorphic by (2.1), and is called
the (first) Hopf differential. The isotropy dimension r of ¢ is defined by
(pi:<¢ia ¢i>EOa for ISIS}’, and <¢)r+15 ¢r+1>¢0'

Then, ¢, ,dz***Y is a holomorphic differential by (2.3) and (2.4), and is called the
(r+1)-st Hopf differential. Note that ¢ is conformal if #>1, and recall that a full
map ¢ is superminimal if r = co, and superconformal if r=m 1, when n=2m or 2m—1.

(2.6) ¢ j=(~1y jez

3. Construction of minimal surfaces from a non-conformal harmonic map.

Fact 3.1 (¢f. [M, Theorem 10.1]). Let ¢p: U—S?" be a full superconformal
harmonic map. Then g=(¢(—9¢")/ﬁ: U—S**Y js g harmonic map whose isotropy
dimension is 2m—1.

A non-conformal harmonic map into $? is superconformal, hence we get im-
mediately:

COROLLARY 3.2. From a non-conformal harmonic map ¢ M — S?, we obtain an
S'-family of minimal surfaces ¢°=(¢°® ¢p°* ™/ /2 : U~S>, 0€[0,2n), of isotropy
dimension 1.

To obtain more general results, we show:

ProposITION 3.3. Let ¢p: M — S" be a non-superminimal harmonic map of isotropy
dimension r with the (r+ 1)-st Hopf differential ¢. Let U be a contractible domain of M.
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Then the associated S'-family consists of harmonic maps ¢p°®: U— S" of isotropy dimension
¥ with the (r + 1)-st Hopf differential ¢°, satisfying
(3.1 lpj1=19;1, JjeZ,
(3.2) e’=e"p .
If this is shown, we obtain:
THEOREM 3.4. Let ¢: M — S" be a non-superminimal harmonic map of isotropy

dimension r and let {¢°} be the S*-family of harmonic maps of isotropy dimension r. Then
for any k=2,

k
$=ﬁl>) @ ¢l: U__)Sun+1)-1
\/1: =1
¢'=0",  O,=2nlk,
is a harmonic map of isotropy dimension at least r+ 1.
COROLLARY 3.5. From a non-conformal harmonic map ¢: M — S*, we obtain an
S-family of minimal surfaces

50: 1 é ¢l: U—‘)Sk(n+l)_l

ﬂ I=1

for any k=2, where ¢'=¢%, 0,=042nl/k, 0[O0, 27).

REMARK. (1) A non-conformal harmonic map into a sphere is thus characterized
as a component of a minimal surface of higher-dimensional spheres.

(2) The image of ¢ lies in S"(k)x - - - x S"(k)c S¥** D=1 but is not necessarily
full.

(3) A similar argument implies that we can construct harmonic maps into
complex projective space, having larger isotropy dimension than the original one.

Proor oF THEOREM 3.4. By Proposition 3.3, we have

4. ¢>=0, j=1...r
and @°dz?"*V=¢®pdz?"* 1 Since each ¢* satisfies the harmonic map equation
00¢°=—1¢117¢’,
and since | $¢|>=e2*' does not depend on 0, ¢ satisfies the harmonic map equation.

Moreover,

~ 1 K .
¢j—7fl@1 ¢J

implies
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<$j’¢j>:0a j:1:---ar9
” - 1 .
<¢r+15 ¢r+1>:7lg Z 610,-9020 »

j=1
which means that the isotropy dimension of ¢ is not less than r+1. O
Proposition 3.3 might be well-known, but we show the proof for completeness.

Proor ofF ProrosiTiON 3.3. Let n: SO(n+1)—S" be the orthonormal frame
bundle of §”, and take a framing of ¢ by orthonormalizing (¢,, Ro,, Id;, ..., R,
£3¢,,), where n+1=2m+¢, =0 or 1, and Re; (J¢;, respectively) denotes the real part
(the imaginary part, respectively) of ¢, Extending SO(n+1) to SO(n+1)¢ and
orthonormalizing (¢, 1, P -1, P2 b2y ...s P €¢_,), we obtain the SO(n+1)¢
framing &= (u,, Uy, ..., u,). Recall that any 2r+2 consecutive maps in the harmonic
sequence are mutually orthogonal (cf. [BW, Theorem 2.4}). When r=0, putting
p=<¢;, ¢y, we have

¢1 |¢1|2 ( q;l @1 )
Ug=o, U=—""—, U= | — +—— Uy ), ...
[¢1] 1o 1 —1 o

Thus we get Jug=|¢u,, and {0u,,i,>=—<u,, duyy=—¢/|¢p,|, and hence
so(n+ 1)¢-valued 1-form o=@ 'dd= Adz+ Bdz, B= —'A is given by

0 —@fr, + - x
(3.3) A={0 " ,

0

{3 o)

Let o =a,+a,+a, be the decomposition of o into the p™***, Iy and p‘>! components,
respectively. Then the extended framing @, is given by integrating

(3.4) a;=A" o, +ay+ A, AeSh,

yyyyy

S”, where p is given by

where
0 —Ardz—(A " Yo/r)dz « o %
A7 rdz 4 (Apry)dz
A o)+ Aoy = *
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Using
-1
U=</1 0)eU(rz+1),
0o I
we obtain
0 —rdz—( " 2p/r)dz * - %
ridz 4+ (A@/r)dz
Ad UA™ ’oc;, +Axy )= %
.
or
0 —A %p/r = *
ry
3.5) AdUMAd)=4 0 *
0

By this, the harmonic map ¢*=nro®, satisfies |¢p{|=r,=|¢,|. Since all |$}|* are
determined from two consecutive ones by (2.5), and we have | ¢/ |* =1, we obtain (3.1).
Comparing (3.3) and (3.5), we know that ¢* is non-conformal and has the Hopf
differential A~ 2¢. Thus putting A" 2=¢?, ¢?=¢* satisfies (3.1) and (3.2).

When r>1, ¢ is lifted up to a unique primitive map ¥ into the flag manifold
F'(S")=SO(n+ 1)/(SOQ2) x - - -SO2) x SO(n—2r)) (cf. [B, Theorem 3.2]), by ¥ =(}, <
Y, - cy,) where

¥ (z)=span {¢;(2), 1 <i<j} = (Ty,,SMC, zelU, j=1,...,r.

A primitive map exists in an S'-family ° (cf. [BP, 3.3, p. 247]), and by [BP, Theorem
3.7], using the projection w: F'(S")— S", we obtain an S!-family of harmonic maps
¢°=w-y?, which, by construction, has isotropy dimension r. We show that ¢? satisfies
(3.1) and (3.2). The SO(n+1)¢ framing ¥ = (uy, 4, . . ., u,) satisfies

¢, _ ¢ ) Pr1

(B.6) uy;_,=—1, u,;= =(—1¥ , 1<j<r, U= .
T Y A N |5 AR
CLAamM.  We have
(3.7 Oupj 1 =TjpqUajy+0Wilg; J=1...,r,
(3.8) OUy ;=T Uy 1)— Wty , j=1,...,r,

{0ty 11y Uy =0 for 1<i<n-2r, 0<k<2r—1,
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(p e —
A

Indeed, the first two are easily obtained from (3.6) using (2.3) and (2.4). Note that
uy;=(—1iy;_y, j=1,...,r. For 1<k=2j—1<2r—1, we have

J
{Ouy, s L_‘sz1> ={0up sy (— l)ju2j>=(— l)j+ 1<u2r+i5 6u2j>

=(— 1)j+1<u2r+is rj”l(j—l)—awju2j>

Oy, 4y, Hpp ) =(— l)rH

={Uspyis rjﬁzj_3+6wj122j_l>=0
by (3.8), and for 0 <k =2j<2(r—1),

(U vy ) =0ty iy (— Vttgy > =(—= 1Y " 1ty sy Ut 1)
=(= 1Y " Wtgy iy Py thgje s+ OWithy; 1)
=y iy T 1+ 1y—OWjidz; > =0

by (3.7). Finally,
COuzps 1y ) = (= 1) " Htpp s 1y Frg aUaps y +0Wlo, 1)

¢
|¢r”¢r+1|

___(_1)r+1

and we obtain the claim.
Put ¥~ 'd¥ =Adz+ Bdz, B= —'A. Then we get

0 M, 0 - - .. 0
Ny K, . - :
0 N, . M, :
A=| 1 K ’
N, M, 0
. K, M,,,
0 0 N, K,

where

00 .
M,=0 ry)), Mj:<0 r>’ j=2,...,r
j

Mr+1=< 0 0 O>,
(=1 o/l ppar] * o %
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rr+l 0
r 0 0 r; 0
N, = i s Nr: . A , N,= j*t >, ':l,...,r——l
° <0> T ! < 0 0 /
0 0

ow;, 0
Kj=< Wi ), j=1...,r,
0 —ow;

and K, is an (n—2r) x (n—2r) matrix, N, is an (n— 2r) x 2 matrix.

Let g=m@®*¥ be the homogeneous decomposition of so(n+1) for F'(S"), and
decompose the g-valued 1-form a=¥ " 'd¥ =a/,+ o+, into the m*?, f and m©®!
components, respectively. Then the T component of 4 consists of K, ..., K, and the
rest is the m component. ¥, is given by integrating

1. " 1
X, =p Oy + Ol + (U /“‘ES ’

which yields ¢*=n"o ¥, where n": SO(n+ 1) —» F'(S") is the coset projection, and further
p*=woy* Let

1 0 0
0o u . :
U=|: - . . |eUn+1
: U, 0
0 - - 0 U,,
where
j O r+1 0
U]:<ﬂ ->a j:1!'~~5r’ Ur+1:<'u )’ #GSI.
0 u J 0 In*Zr*l
Then we get
0 M, 0O 0
N, K,
0 N M;
AdUA,)= K; e ’
N; . M, 0
: c. . Kr le+1
0o -« - - 0 N K.
where

0 0 .- 0
M',H:( rEL =204 1) >
(=" u NPl psa | % - %
Comparing M, with M/ ,, we obtain | ¢! |=|¢;|, and ¢* has the (r+1)-st Hopf
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differential u~ 2" Yep. Then for e¥=p"2*D %= satisfies (3.1) and (3.2). Finally
comparing ¢; given by integrating (3.4) with ¥, we obtain Ad U¥,=Ad V®,, where

I 0 - .- 0
0oV, - : .
| o leUn+), Vj=<0 21), j=1,...,r,
: LV, 0
0 -« -« 0 V.,
A 0
Vr+l:< >,
0 In*Zr—l
and A=p""leS. O

COROLLARY 3.6. The S'-family of harmonic maps obtained by projecting the
St-family of primitive maps coincides with the S'-family obtained from the extended
framing (3.4).

4, CMC-surface theory and the natural Lawson correspondence. A non-conformal
harmonic map ¢: M — S? is locally the Gauss map of a CMC surface in R*. More
generally, by [L1, Theorem 8], we obtain S*-families of isometric CMC-/H* — ¢ surfaces
{(Yly: U>S3c), 0€[0, 2n)} for any H#0 and c<H? from ¢ (we do not treat the
hyperbolic case ¢ <0 here).

We briefly review this fact. We fix the orientations of M and R*, and use the star
operator * of R* to identify R*= A3R*, * A’R*>~ A2R*. For an isometric immersion

{WO:M—>R3
.o M- S3%c), >0,

with metric ds?=2F|dz|*, we define its unit normal vector by

Yg=-—~—0yoA g'ﬁo

1
l//c*zVti VA ABY., ¢>0.

The CMC-H, surface equation for ¥, where H(:\/ITZ: is given by
@.1) o0y + Fop, = HFy* .
Define the quadratic differential Q= fdz? by

1
(4~2) ﬁ:<92‘//c= l//;k>zz(ﬁ11_ﬂzz_2iﬂ12),
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where f;; is the coefficients of the second fundamental form with respect to z=x, +ix,.
We have

oF
(4.3) 52%—7 oy =By *
(4.4) ovr=—Hap—L 5y,
F

12 | B
(4.5) oY= 7
(4.6) Ok, opr>=2Hp
@.7) oY * = —<H2F+ Ll >¢c* +HcFy,.

Note that when H.c=0, y* is harmonic by (4.5) and (4.7). As is well-known, f is
holomorphic for any ¢ by (4.1), (4.2) and (4.4). Now, taking an oriented framing

{¢o=(5%, o, Y&)
¢c=(¢c’ alpc’ glpc’ lpc*) > c>0 s

consider the system of ordinary differential equations

0o.=9 A,
(4.8) N
0P.=d.B..
From (4.1), (4.3) and (4.4), we easily obtain
0 0 —cF O 0 —cF O 0
4= 1 0F/F 0 —H, B 0 o0 0 =B/F
V0 0 0 —p/F > " \1 0 @FF —-H |
0 B HF 0 0 HF § 0

where we ignore the first column and row when ¢=0. The integrability condition of
(4.8) is 0A,—O0B.—[A,, B.]=0 which turns out to be

(4.9) 200w+ (c+ H2)e® —|BPe 2 =0,

where we put F=|0y,|>=¢?". When either one of H=H, and B does not vanish
identically, @, can be rewritten as a framing of a harmonic map ¢:=y§: M —S? by
(4.4). This means that when we are given a non-conformal harmonic map ¢: M - S?
with a real number H? and a holomorphic function f satisfying {é¢, 6¢> =2Hp, and
if we define F by

(4.10) |0 |2 = H2F+ 11 'ﬁ'z
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w=(log F)/2 must be a solution of

4.9) 200w+ H?e® —|Bl%e =0 .

Then putting H?>=H?+c¢ and B%=¢"B, we obtain an S'-family of CMC-/H?—c
surfaces 2y in S3(c), ce[0, H*], 6€[0, 2n), having the metric ds®>=2F|dz|* and the
differential Q%=p%dz>. We call ¢, the associated CMC-/H?—c surfaces of ¢.
(Note: Fis chosen in two ways. The corresponding CMC surfaces form a Bonnet pair.)

REMARK. By the homothety x> Ax in R*, the mean curvature of a surface changes
h— h/. Thus a different choice H' instead of H yields a CMC-,/(H’)* ~c¢’ surface Y 4.
in $3c’) which is homothetic to a CMC-\/H?—c surface ¥’y in S3(c), where
c/c’=(H/H)*.

We do not treat the case where ¢ is holomorphic or anti-holomorphic, which
occurs when H =0, hence for the moment, we put H*=1 and ¥ =y/¢ . The associated
surfaces {¢} have two parameters ¢ and 0. We define a one-parameter subset {y?,
o=cos "1 /1—c} consisting of surfaces naturally corresponding to each other in the
following sense. When y,: U— R?®is a CMC-1 surface having the second fundamental
form (,;), we define the naturally corresponding minimal surface in S? by

" U-S3.

Then, the differential Q™* is given by iB=(28,,+ (81, — B2,))/4, so that ¥ ? has the
second fundamental form

1y Biz —(By1—B22)2
(Bij)= .
—(ﬁll—ﬁZZ)/2 —BIZ
Similarly, we define the naturally corresponding CMC-,/1 —c surface in S3(c) by
we: U—-S3c), o=cos ' Jl—c,
which has the second fundamental form

pp=cona 1 7 Jesing(_ P2 R

of which the mean curvature is given by

1
aF Tr(B;)=coso=./1—c.

We say elements in {{7, 0 =cos™',/1 —¢} are in natural Lawson correspondence. In
this paper, we call ¢ the adapted secondary Gauss map of 7 for each c, i.e. the Gauss
map ¢ of ¥ is called the adapted secondary Gauss map of ¥ for 0<c<1.

5. A local behavior. Put ¥, =y for simplicity. When ¢>0, we define the
generalized Gauss map of ¥, by
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Jo=y/ cUnpd: M-S,
Since *, = (Y. A Oy ,)/iF, we may put
Vo=¢: M—S?.
The map ¥, is a map into the oriented Grassmannian Gr; (R*) = S§2(2) x S*2) (cf. [HO]),

but we consider it as a map into S° because:

Lemma 5.1. t/jcz\/?ll/c A U—S?® is a harmonic map satisfying

L
(5.1) |0 [P =F-
(e 1B,
(5.2) oY, = <F+ 7 )://C
(5.3) (O, 0 y=2Hp, H.=\1-c
(54) <52l/7c,62$c>=4ﬁ2(1—20)—2Hcﬂ<f>2

(5.5) <03, 03> =8H(1—4c)B>+4(2c— 1)/32(&;5%2(; >F>+2Hcﬁ62F62<;:> ,

where in (5.5), we use coordinates so that B is constant.

REMARK. (1) By (5.1)~(5.3), ¥, is regularly minimal with respect to the induced
metric (the bipolar surface in [L17), and ¥, is non-conformal harmonic for 0<c<1.
In this paper, we occasionally regard the generalized Gauss map as a harmonic map
into S°.

(2) For ¢, (5.1)~(5.5) hold if we replace 8 by e”B.

ProoF. When ¢=0, (5.1)~(5.3) follows from (4.5)~(4.7), while for (5.4) and
(5.5), see the proof of Lemma 5.2. When ¢>0, put .=y, Ay*. Using (4.1) and
(4.3) ~(4.7), we obtain,

(56) al/;czall’c/\l/’c*—Hclpc/\awc_%l//c/\gl//c
2)j —ﬁ *_Eli o
(57) a '}bc_ F awc/\l/,c F alpc/\a!zbc
. OF B -
_2Hcﬁ¢C~Hc?l//c/\awc_a<F>lpc/\a¢/c
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. [0F
3 _
(5.8) & l//c—( r

+ ( —2cf—H, 6;F +2H}ﬁ)lpc A 61//C+<2;I“ —52<~f;>>lllc AOY,,

where in (5.8), we use coordinates so that § is constant. Thus noting that .=/ ¢ ¥,
we obtain (5.1)~(35.5).

Because of Corollary 3.2, it is natural to ask the relationship between ¥, and
P =(d ®$*)//2 : U—S*for ¢, ¢ belonging to the S*-family of the secondary Gauss
map of .

Lemma 5.2, Let ¢: M — S? be the Gauss map of a CMC-1 surface Y. M — R?>
with F=|0y |* and B=<{0%, ¢>. Then $°=(p® ¢*)/\/2 : US> we[0,2n), is a

harmonic map satisfying

—Eii,i wc* A 5‘/’(

- 4Hcﬁ>awc A l//c*

2 2 lﬂl2
(5.9) [0 2 =|0¢|*= 7
(5.10) 0¢* = — < m]Z)(ﬁ‘”
(5.11) 0P°, 0> =p(1 +e'®)
- N . [ B8F\?
(5.12) <62¢“’,02¢‘“>=2l32(1+e2’“)-ﬁ(1+e””)<7>

(5.13) 03¢, 07¢ ) =4 (1 +e™) =21 +e2f“’)<Faz<‘FI‘>+ aj)

+ ﬂ62F62<%>(1 Loy,

where we use coordinates so that  is constant.

Proor. Differentiating

@4) o= —apo—" 3y

and using (4.1) and (4.3), we obtain

676 = —fgawo—zw-a@)wo

a3¢=<-a;F +2ﬂ>awo—<62<§> 2 )awo,
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from which follows

2
@%, 02¢>=2{2ﬂ2—ﬁ<6§) }

3 30N 3_9p2 2 .L O*F 2 2 i
3%, 0 <f>>_2{4ﬁ 28 (Fa <F)+ F >+ﬁ(6 F)<6 <F>>}

Then noting {3¢*, 6¢“) =2e'B, we obtain the lemma.

THeoREM 5.3. Let ¢: U— S? be a non-conformal harmonic map with the Hopf
differential 2Pdz*=<{8¢, d¢>dz*. Take ce[0,n/2] satisfying cosa=./1—c, and let
W2 U— S3(c)be an isometric CMC-,/1 —c surface associated with ¢ having Q° = e fdz>.
Let (y2)* be the unit normal vector. Then the harmonic map

e NEL NN E
is congruent to the harmonic map
- 1
F= = (D> U~S*.
V2
Proor. This follows from Bolton and Woodward’s congruence theorem in [BW,

Theorem 4.1] and from Lemmas 5.1 and 5.2. Indeed, by (5.1) and (5.9), and by the
congruence theorem, it is sufficient to prove that

(QI2, 00y =<0/, 3>y for j=1,2,3.
Noting Remark (2) after Lemma 5.1 and 2 cos ae'®*=1+e>™, we obtain from (5.3) and
(5.11),
(5.14) oYe, 0yly=2He " B=2cosae " f=(1+e?")f=<3P>°, dd>") .
From (5.4) and (5.12), using (5.14), we get
2.7 2T a 2i 2 1 aF 2
{02, 097> =4e*"cos 20 —2e" " H.p v
4io\R 2 2io aF 2
=2(1+e*)p*—(1+e*)p 3
=<62$Za, 62$20> .
Similarly, from (5.5) and (5.13), we get
1

o " . ) . 0*F
O3, 032> =8cosa(l —4sin? g)e3“B3 —4cos 20e2”’ﬁ2<T+ 62(F>F>
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io 2 2 1
+2cosge”f0*F0 7

=4(1+€6i”)ﬂ3——2 410)'8 < F 2<;>F>+(1+62ia)ﬂ621762<_;_>

:<63$2U’ 63$ZG> .
O

6. A global behavior. Let ¥.: M — S>c) be a CMC-,/1 —c surface. Then the

Gauss map

V.. M—S?3
is defined globally, which is a harmonic map into S°. Let ¢ be the adapted secondary
Gauss map of i, such that y,=y?. By Theorem 5.3, we have a local congruence of ¢
with $2°=(¢p ® $2°)//2 : U— S*>. In this section, we show the global congruence. By
an isometry of S3(c), if necessary, we may assume that

l;ca I v= 5 27
in a coordinate neighborhood U of M. Then using this splitting, we define

=RI®R;
so that
¢: U>S*cR}, ¢°: U-S?’cR;.

Let 7, be the projection R®— R?, i=1, 2, and define maps /' =./2 nf7, i=1, 2. Noting
that npl ¢ and ¥ 2=¢*° on U, we obtain:

PROPOSITION 6.1. ! and §j? are global non-conformal harmonic maps from M into
S2,

This proposition is obvious from Gr; (R*)=S%(2) x $2(2).

ProOF. Note that the coordinate functions (!, ..., y°) of 7 satisfy
(6.1) GEAE S VARTZR

so are real analytic. Thus the same is true for coordinate functions of y' =(!, Y2, ¥?)
and Y2 =%, >, ¥°). Since
(6.2) P P=§*P=1 on U,

this holds all over M, and hence ' is a global map from M into the unit sphere S2 of
R?. In particular on U, we have

(6.3) | P =P =|0p> >=|7 1>,  i=1,2
because of Theorem 5.3. By analyticity of /' again, (6.3) holds in any coordinate
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domains. This fact and (6.1) imply
00y =~ 1 =—1oy' 17y, on M,
that is, ': M — S?, i=1, 2 are global harmonic maps from M into S2. 0

THEOREM 6.2. For a CMC-h surface W: M — S3, there exists a pair of non-
conformal harmonic maps ¢, p2°: M — S? such that the generalized Gauss map \§ of Y
splits into (¢ @ ¢2°)//2. In fact, ¢ is the adapted secondary Gauss map of \, and 0 is
given by cos ™' /h?/h* +1. Moreover, \j can be deformed into ¢ andjor ¢>° through
harmonic maps $2°=cos s @sinsp?? into S°.

Proor. Put H?=h?+1. Then by the Remark in §4, ¥ is homothetic to a CMC-
J1—c surface ¢, in Sc), where c=1/H?. Since the generalized Gauss map of Y,
coincides with that of ¥, we may consider y, instead of i in the proof. Take the adapted
secondary Gauss map ¢ of ¥, such that ¥, =y7, then 6 =0 satisfies the first statement.
We may prove the last part. Since

02 =cossdp @sinsdp>,
we obtain |042% |2 =cos?s|0¢ |* +sin?s| 042 |>=|0¢|* and
083 =~| 0§ g
which implies that ¢2? is a harmonic map into S°. Then the theorem follows from
d=03° 9> =d25 and Y7 =3¢ O
ExamMpLE. When : 72— S?® is the Clifford torus, each of ¢ and ¢” degenerates

to a map onto a geodesic of S*. In this case, § is congruent to ¥, and Y =(d @ ¢")/1/2 :
T? > §5'(2) x S(2)= S3. The deformation @7 is essentially the one in [Mu].

A deformation of a harmonic map ¥ : M — S yields a Jacobi field along . When
M is compact, we call the dimension of the space of Jacobi fields the nullity of .,
which is finite because Jacobi fields are solutions of an elliptic partial differential
equation. Because the dimension of the Killing Jacobi fields is 15 and because we have
another non-Killing Jacobi field by Theorem 6.2, we obtain:

COROLLARY 6.3. The generalized Gauss map of a compact CMC surface of positive
genus in S3, has nullity (as harmonic maps) at least 16.

ReEMARK. (1) When we define the Killing nullity to be the dimension of the ficlds
given by the normal component of the Killing fields of S>, the classification of CMC
surfaces of which Gauss maps have small Killing nullity (= big homogeneity) would be
interesting. The generalized Gauss map of the CMC surface S%(a), @> 1 has the smallest
Killing nullity 3, and of S*(a) x S'(a/(a— 1)), a> 1 (parallel surfaces of the Clifford torus)
has Killing nullity 4.

(2) When ¢ and 6 tend to 0 independently, ¢ tends to



GENERALIZED GAUSS MAP 51

1
J2
and hence gives a local harmonic map deformation from ¢ to ¢ which is different
from the global deformation through ¢2°.

(3) Examples of compact CMC-,/1 — ¢ surfaces in S3(c) are given in [L1] for c=1
and [K1], [K2] for ¢=0, but we do not know examples of 0 <c<1 except those of
genus 0 and 1.

(4) We call a harmonic map reducible if it splits into harmonic maps into lower
dimensional spheres (cf. [M]). Harmonic maps from a compact Riemann surface seem
irreducible, but the splitting occurs in the bipolar surface case.

¢= P@P=¢p: M>S?

7. Lawson’s conjecture.

LemMA 7.1. A minimal surface ¢ : M — S* is isometric to a minimal surface in S3,
if there exists a local coordinate z in which the induced metric is given by ds*>=2e%"|dz|?,
where w is a solution of the sinh-Gordon equation:

(7.1 00w +sinh 2w=0 .
In this coordinate, w;=log| ¢;| satisfies w,;=0 and w=w,;, = —Wyj43, je Z.

Proor. This follows from wy,=0 and (4.9), where c+ H?=1 and we choose the
parameter satisfying f=1.

Note that this is a special expression of the (spherical) Ricci condition (cf. (6.6),
[M, §6]). A superminimal minimal surface fully lies in S*™ and satisfies ¢,,. , =0, hence
we get immediately:

COROLLARY 7.2. A superminimal minimal surface in S*™ cannot be isometric to a
minimal surface in S3.

In [M, Lemma 9.4], we showed that a superconformal harmonic map into S
exists when w;=log| ¢;| satisfies

(1) we=0

(2) 200w;— e i) L2 =0 = 1,2, ... m—1

(3) 200w, +r(1—G)—|s|*=0,
where r,=e" """ 1 G=|9,|*/|¢,|* and |s|*=|8G|*/4G(1 —G), for any coordinate.
Suppose that there exists a coordinate in which the induced metric satisfies (7.1). In
this coordinate, when m =2k, (3) is rewritten as

e 2 l—lo)=|dlp**/4 o 1—]e %), O=0Q,
so that
(7.2) e mt=|00 |7/4(1—| @ ).
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Since d¢ is holomorphic, we obtain
(7.3) 200w, ,=208log(1—| @)= =230 1/(1 —| @ |2 = —8e™2"m-1.

On the other hand, by assumption and by Lemma 7.1, w= +w,,_, satisfies (7.1), and
we get e =3 or 1/3. This contradicts both (7.1) and (7.3). Hence we obtain:

THEOREM 7.3. A full superconformal minimal surface in S*™ cannot be isometric
to a minimal surface in S°.

Full minimal surfaces in S* are either superminimal or superconformal, thus we
obtain:

COROLLARY 7.4 (cf. [S]). Full minimal surfaces in S* cannot be isometric to a
minimal surfaces in S3.
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