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ABSTRACT

Context. Precise localization and characterization of active regions (AR) and coronal holes (CH) as observed by extreme ultra violet
(EUV) imagers are crucial for a wide range of solar and helio-physics studies.
Aims. We introduce a set of segmentation procedures (known as the SPoCA-suite) that allows one to retrieve AR and CH properties
on EUV images taken from SOHO-EIT, STEREO-EUVI, PROBA2-SWAP, and SDO-AIA.
Methods. We build upon our previous work on the Spatial Possibilistic Clustering Algorithm (SPoCA), that we have improved
substantially in several ways.
Results. We apply our algorithm on the synoptic EIT archive from 1997 to 2011 and decompose this dataset into regions that can
clearly be identified as AR, quiet Sun, and CH. An antiphase between AR and CH filling factor is observed, as expected. The SPoCA-
suite is next applied to datasets from EUVI, SWAP, and AIA. The time series pertaining to ARs or CHs are presented.
Conclusions. The SPoCA-suite enables the extraction of several long time series of AR and CH properties from the data files of
EUV imagers and also allows tracking individual ARs or CHs over time. For AIA images, AR and CH catalogs are available in
near-real time from the Heliophysics Events Knowledgebase. The full code, which allows processing any EUV images, is available
upon request to the authors.
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1. Introduction

Accurate determination of active region (AR) and coronal hole
(CH) properties on coronal images is important for a wide range
of applications. As regions of locally increased magnetic flux,
the ARs are the main source of solar flares. For example a cat-
alog of ARs describing key parameters, such as their location,
shape, area, mean intensity, and integrated intensity, would allow
us to relate those properties to the occurrence of flares. Having
a bounding box of ARs can prove useful when studying several
thousands of ARs together, for example, when performing a sta-
tistical analysis on oscillations of coronal loops.

Precise localization of CHs on the other hand is important
because of the strong association between CHs and high-speed
solar wind streams (Krieger et al. 1973). Finally, solar EUV flux
plays a major role in solar-terrestrial relationships, and there-
fore, an accurate monitoring of AR, quiet Sun (QS), and CH is
desirable as an input into solar EUV flux models.

In this paper, we present the SPoCA-suite, a set of algorithms
that allows separation and extraction of AR, QS, and CH on
EUV images. The SPoCA-suite includes the specific algorithms,
Fuzzy C-means (FCM, Bezdek 1981), Possibilistic C-means
(PCM, Krishnapuram & Keller 1993, 1996), PCM2, Spatial
Possibilistic Clustering Algorithm (SPoCA), and SPoCA2, and
histogram-based versions thereof. A detailed account is pro-
vided in Sect. 2. We also indicate how to select the parame-
ters to optimize the segmentation of images taken by SOHO-
EIT (Delaboudinière et al. 1995), STEREO-EUVI (Wuelser
et al. 2004), PROBA2-SWAP (Berghmans et al. 2006; De Groof
et al. 2008; Seaton et al. 2012), and SDO-AIA (Lemen et al.
2012). Combining these algorithms with pre- and postprocessing

routines, the SPoCA-suite provides a powerful tool for consis-
tent automatic detection of AR, QS, and CH, enabling system-
atic studies of their properties.

The SPoCA-suite serves as a module of the Feature Finding
Team1 (FFT; Martens et al. 2012), which is the main source of
modules for the SDO Event Detection System (EDS; Hurlburt
et al. 2012). While several EDS modules are run at the
Smithsonian Astrophysical Observatory (with a lag time of a few
days), SPoCA is one of the EDS modules that are run in near-real
time at Lockheed Martin Solar and Astrophysics Laboratory.
Every four hours, the EDS generates and uploads the SPoCA
entries into the AR and CH catalogs of the HEK or Heliophysics
Events Knowledgebase (Hurlburt et al. 2012).

The HEK is further linked through an API to the graphical
interface isolsearch2, the ontology software package of Solarsoft
(SSW)3, and the JHelioviewer visualization tool4 (Müller et al.
2009).

Another option to access both solar images and metadata (in-
cluding the HEK) through web user interfaces and the command
line in IDL and Python is offered by the VSO or Virtual Solar
Observatory (Hill et al. 2004; Gurman et al. 2012)5. The SPoCA-
suite is written in C++ and contains wrappers in Python. The
code is available upon request to the contact author.

1 See http://solar.physics.montana.edu/sol_phys/fft/
2 See http://www.lmsal.com/hek/hek_isolsearch.html for
the HEK graphical interface and the link to the tutorial of the HEK.
3 See http://sdoatsidc.oma.be/web/sdoatsidc/spoca_hek

for explanation on how to use the SPoCA-suite within SolarSoft.
4 See jhelioviewer.org
5 See http://sdac.virtualsolar.org
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The present paper is intended as a reference for the users
of the SPoCA-suite, which builds upon our previous work on
the Spatial Possibilistic Clustering Algorithm (Barra et al. 2009)
and has seen major improvements. At its core lies a multichan-
nel, unsupervised, fuzzy clustering method that segments EUV
images into different regions according to their intensity level.

Development of automated solar feature detection and iden-
tification methods has increased dramatically in recent years due
to the growing volume of data available. An overview of the
fundamental image-processing techniques used in these algo-
rithms is presented in Aschwanden (2010). These techniques
are tailored to detect features in various types of observations
at different heights in the solar atmosphere, as in Martens et al.
(2012); Pérez-Suárez et al. (2011). For example, regions of lo-
cally intense magnetic flux are observed as dark spots (sunspots)
in white light, CaII, or continuum images, as a concentration
of strong positive and negative magnetic field values (magnetic
AR) in magnetograms and as patches of enhanced brightness in
both chromospheric imagery (plages) and coronal images (AR).

Image segmentation methods are typically classified into
three broad categories: region-based methods, edge-based meth-
ods, and hybrid approaches. Region-based methods seek a parti-
tion of the image satisfying an homogeneity criterion on mono-
or multispectral gray levels, or higher level attributes, such as
texture or feature vectors that model pixels and their neighbor-
hood. The dual edge-based approaches aim at characterizing im-
age discontinuities and thus, locating region boundaries. Primal
edge-based methods seek maximum intensity gradients, using
either spatial filters, frequency filters, or zeros in the Laplacian
of the image, and are often preprocessed by low pass Gaussian
filtering, courtesy of the Laplacian’s sensitivity to noise. Finally,
the hybrid methods either consider a cooperation between region
and contour approaches, or process some other original method.

Region-based methods for the detection of sunspots in-
clude thresholding against background (Pettauer & Brandt
1997; Colak & Qahwaji 2008), histogram-based thresholding
(Steinegger et al. 1997), a region-growing method (Preminger
et al. 1997), or a Bayesian approach (Turmon et al. 2002).
Colak & Qahwaji (2008); Nguyen et al. (2005) combine thresh-
olding and machine learning techniques to extract and clas-
sify sunspots according to the McIntosh system. Curto et al.
(2008) and Watson et al. (2009) both use an edge-based approach
based on mathematical morphology. Zharkov et al. (2005) uses
an edge detection method combined with morphological oper-
ations, whereas Lefebvre & Rozelot (2004) present a singular
spectrum analysis to detect sunspots and faculae at the solar
limb.

The ARs, as observed by magnetograms, can be ex-
tracted and characterized by means of region growing tech-
niques (Benkhalil 2003; McAteer et al. 2005; Higgins et al.
2011), thresholding in intensity (Qahwaji & Colak 2006; Colak
& Qahwaji 2009), or wavelet domain (Kestener et al. 2010).
Verbeeck et al. (2011) provide a detailed comparison of outputs
from four automatic detection algorithms that detect sunspots,
magnetic, and coronal ARs using six weeks of SOHO-EIT
data. At the chromospheric level, network and plage regions
are separated using thresholding methods (Steinegger et al.
1998; Worden et al. 1999), which are possibly combined with
region-growing techniques (Benkhalil et al. 2006). Coronal ARs
are segmented using either local thresholding, region-growing
methods (Benkhalil et al. 2006), supervised techniques (Dudok
de Wit 2006; Colak & Qahwaji 2013), or unsupervised tech-
niques (Barra et al. 2009). Revathy et al. (2005) compares seg-
mentation results of pixelwise fractal dimension of EIT images

using thresholding, region-growing techniques, and supervised
classification.

Coronal holes are regions that have a lower electron density
and temperature compared to the typical QS and thus, appear
as dark regions in EUV and X-ray images. However, automated
detection of CHs by intensity thresholding in one wavelength
(for example, EIT 284 Å wavelength in Abramenko et al. 2009;
Obridko et al. 2009; or soft X-ray images in Vršnak et al. 2007;
Verbanac et al. 2011) is intrinsically complicated due to the pres-
ence of filaments and transient dimmings of a similar intensity
level.

To resolve this ambiguity, it is necessary to make use of addi-
tional information coming from other wavelengths, from magne-
tograms, or from the time evolution of the feature as a means to
check the consistency of a CH candidate with actual physical pa-
rameters. For example, Henney & Harvey (2005) first use a fixed
thresholding based on the two-day average of He I 10 830 Å
spectroheliograms and then check the unipolarity of the CH can-
didates using photospheric magnetograms. de Toma & Arge
(2005) use a combination of fixed thresholdings on multiple
wavelengths (the four SOHO-EIT bandpasses, He I 10 830 Å,
magnetograms, and Hα images) to determine stringent criteria
for a region that belongs to a CH, whereas de Toma (2011) uses
a similar technique on synoptic maps. The approach in Scholl
& Habbal (2008) is to first perform histogram equalization and
fixed thresholding to extract low intensity regions on the four
bandpasses of SOHO-EIT. In a second stage, statistics on mag-
netic field parameters measured by SOHO-MDI are evaluated to
distinguish between filaments and CHs.

A similar methodology is used in Krista & Gallagher
(2009); the difference is that it first detects low intensity re-
gions using local histograms of SOHO-EIT, STEREO-EUVI,
and Hinode-XRT images. Other methods include a watershed
approach (Nieniewski 2002); perimeter tracing for polar CHs
using morphological transform and thresholding (Kirk et al.
2009); and the use of imaging spectroscopy to separate QS from
CH emission (Malanushenko & Jones 2005).

Finally, the classification approach of Dudok de Wit (2006);
Colak & Qahwaji (2013); Barra et al. (2009) separates both
ARs and CHs using brightness intensity as observed in one or
multiple bandpasses. The output from other automated detec-
tion codes from the Feature Finding Team can be employed
to remove filaments (AAFDCC, Bernasconi et al. 2005) from
SPoCA’s CH detections and to remove bright points (BP Finder,
Saar & Farid 2011) from SPoCA’s AR detections. Additionally,
the polarity inversion line module (PIL Module, Martens et al.
2012; Jones 2004) can be used to separate out filaments again.

Here, we describe the SPoCA-suite and apply it to large
datasets from four different EUV imagers. Several fundamen-
tal improvements have been made to the SPoCA-suite with re-
spect to Barra et al. (2008) and Barra et al. (2009) in terms of
robustness, accuracy, and stability. We have developed solutions
for two fundamental problems that are native to the possibilis-
tic techniques discussed in Sect. 2: coincident clustering and the
stability of the ηi parameters. To enable automatic segmentation
on a continuous stream of data from such sources as AIA, the
smooth variation in center values has been accommodated. We
have also introduced a much smoother limb brightness correc-
tion, yielding more accurate AR and CH segmentations near the
solar limb. Dedicated routines have been written to take care of
proper region extraction, tracking, region statistics, and the cre-
ation of masks and overlay images. Whereas the SPoCA-suite in
Barra et al. (2008) and Barra et al. (2009) was applied to EIT
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data only, we now have made a detailed survey of datasets from
EIT, EUVI, SWAP, and AIA with a tailored algorithm for each.

The SPoCA-suite allows us to identify and characterize both
individual ARs or CHs and the total class of all AR or CH pixels
in an EUV image. Individual regions can also be tracked over
time. Output products include masks, contours, contour overlays
onto the original image, and movies. For any individual AR or
CH, the SPoCA-suite provides the location of its barycenter and
of the corners of a bounding box. For every individual region
and every total class, intensity moment statistics and properties,
such as area and filling factor, are computed.

The SPoCA-suite’s automatic detection scheme enables the
construction of large time series of properties that pertain to AR
or CH, which would be too large a task to perform on a manual
basis. Examples of derived AR and CH time series are presented
for each instrument in Sect. 3.

As part of the Feature Finding Team, programs have been
specifically written to run the SPoCA-suite in near-real time on
SDO-AIA images. The two corresponding modules that are in-
cluded in the SDO EDS are called SPoCA-AR and SPoCA-CH,
for ARs and CHs respectively. The corresponding catalogs of
ARs and CHs are included in the SSW/IDL software and as such
are widely available to the solar physics community6.

Section 2 describes the algorithms in the SPoCA-suite, in-
cluding pre- and postprocessing, region extracting, and tracking
of individual regions over time. In Sect. 3.1, the filling factors,
median and total intensity of the AR and CH classes are ex-
tracted over more than one solar cycle, employing SOHO-EIT
data from 1997 to 2011. The SPoCA-suite is applied to three
months of STEREO-EUVI data in Sect. 3.2 and to nine months
of PROBA2-SWAP data in Sect. 3.3. The evolution of twelve
months of SDO-AIA AR, QS, and CH filling factors in 2011 is
presented in Sect. 3.4.

A complete archive of several of these time series (up-
dated in near-real time) is available in the Solar Timelines
viewer for AFFects (STAFF7), a dedicated viewer for solar ac-
tivity, solar wind, and geomagnetic timelines developed at the
Royal Observatory of Belgium within the European FP7 project
AFFECTS (Advanced Forecast for Ensuring Communications
Through Space).

2. The SPoCA-suite

To segment an EUV image into AR, QS, and CH, we need to
attribute every pixel to one of these three classes, based on their
pixel values in the image. The pixels with highest intensity cor-
respond to AR, those with intermediate pixel values correspond
to QS, and the pixels with lowest pixel values correspond to CH.
We can also combine the information present in p correspond-
ing images in different EUV channels to obtain a segmentation
of the corona into AR, QS, and CH. In this case, every pixel
corresponds to exactly one p-dimensional vector of pixel values,
which we call a feature vector. Due to the physical differences
between AR, QS, and CH, it is expected that these classes nat-
urally form clusters in the space of feature vectors. Hence, we
need a mathematically sound way to classify the set of feature
vectors into three clusters. In a more general setting, we can con-
sider the number of classes to be C.

6 See https://www.lmsal.com/sdodocs/doc/dcur/SDOD0060.
zip/zip/entry/index.html for explanations on how to retrieve AR
and CH catalog using SSW/IDL.
7 http://www.staff.oma.be/

One of the most simple clustering techniques is called
K-Means. This is an iterative method, where every pixel at each
iteration is assigned to some class, and the center of each class is
determined. The initialization step consists of selecting an arbi-
trary but preferably well-chosen center bi ∈ Rp for every class i.
Every subsequent iteration consists of two steps. First, every fea-
ture vector is attributed to some class, based on the distance of
the feature vector to the class centers. Second, the class center
for every class is updated (it is the average of all feature vectors
belonging to that class). These two steps are repeated until the
subsequent class center values converge. K-Means is what we
call a crisp clustering technique.

A more general clustering scheme is offered by fuzzy clus-
tering. In this approach, a pixel is not assigned to exactly one
class, but every pixel obtains a membership value to each of the
classes. Similar to the K-Means method, the initialization step
consists of selecting a center bi ∈ Rp for every class i, and every
subsequent iteration consists of two steps: First, the membership
value of every feature vector to each class is calculated; second,
the class center for every class is updated. Again, these steps are
repeated until convergence of the class centers sets in with the
result being a final membership value of every feature vector to
every class. We can then apply some scheme to assign every fea-
ture vector to exactly one class, such as the class for which its
membership value is highest. Figure 1 provides an illustration of
several steps in this iterative process. Note that the pixel coordi-
nates are not considered in either of the above methods.

The SPoCA-suite implements three types of fuzzy clustering
algorithms that are specially tailored to the segmentation of solar
coronal EUV images: the Fuzzy C-means (FCM); a regularized
version of FCM known as Possibilistic C-means (PCM) algo-
rithm, and a Spatial Possibilistic Clustering Algorithm (SPoCA)
that integrates neighboring intensity values.

The description of the segmentation process in terms of
fuzzy logic was motivated by the facts that information provided
by an EUV solar image is noisy and subject to both observa-
tional biases (line-of-sight integration of a transparent volume)
and interpretation (the apparent boundary between regions is a
matter of convention). Fuzzy measures are able to represent ill-
defined classes (without a clear-cut boundary) in a natural way.
Furthermore, fuzzy segmentation methods more often reach a
global optimum, rather than merely a local optimum, as com-
pared to crisp clustering methods (Trauwaert et al. 1991). For
more details on data clustering, we refer to Gan et al. (2007).

The mathematical description below helps us introduce the
two most used algorithms of the SPoCA-suite. Let N be the
number of pixels in each image, and let x j ∈ Rp be a
p-dimensional feature vector that describes the Sun at a par-
ticular location. In our case, x j is a p−dimensional vector cor-
responding to the intensities recorded at pixel j in p different
channels. A fuzzy clustering algorithm searches for C different
compact clusters among the x j’s in the set X = {x j ∈ Rp|1 ≤ j ≤
N} of all feature vectors. It does so by computing both a fuzzy
partition matrix U = (ui j)1≤ i≤C,1≤ j≤N and the cluster centers
B = {bi ∈ Rp|1 ≤ i ≤ C}. The scalar ui j = ui(x j) ∈ [0, 1] is called
the membership value of feature vector x j to class i (Bezdek
1981).

2.1. Fuzzy C-Means algorithm (FCM)

Since its introduction by Bezdek (1981), the Fuzzy C-Means
(FCM) algorithm has been widely used in pattern recognition
and image segmentation in various fields, which include medi-
cal imaging (Philipps et al. 1995; Bezdek et al. 1997), remote
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(a) Initial class centers (b) First iteration of membership values

(c) Evolution of class centers (d) Final class centers and membership values

Fig. 1. Illustration of several steps in the iterative procedure of FCM on a simple synthetic 2D dataset containing three clusters of data points. a) An
initial center (red cross) is chosen for every class. b) In a first iteration, the membership values for every data point are calculated, considering
the class centers. The contours delineate a membership value of 0.8. c) In a next step, the new class centers are calculated, considering the new
membership values. After seven such two-step iterations, the class centers have converged to their final values, indicated by the blue triangles.
d) In the last step, the final membership values are calculated, considering the final class centers. Note that both the final position of the centers
and the final membership contours correspond much better to the three clusters than the initial ones.

sensing imaging (Rangsanseri & Thitimajshima 1998; Melgani
et al. 2000), and image segmentation in vision (Baker et al.
2003).

The idea behind both K-Means and FCM is the minimization
of the total crisp or fuzzy intracluster variance. In the crisp case,
the intracluster variance of class i is the sum of squared distances
between every point of class i and the class center bi. The fuzzy

intraclass variance of class i is defined as
N
∑

j= 1

um
i jd

2(x j, bi), where

d is a metric in Rp (typically, the Euclidean distance). Hence we
try to minimize the total fuzzy intracluster variance in FCM:

JFCM(B,U, X) =
C
∑

i= 1

N
∑

j= 1

um
i jd

2(x j, bi), (1)

which is subject to

∀i ∈ {1, · · · ,C} :
N
∑

j= 1

ui j < N and∀ j ∈ {1, · · · ,N} :
C
∑

i= 1

ui j = 1,

(2)

where m is a parameter that controls the degree of fuzzification
(m = 1 means no fuzziness). In practice, a value of m = 2 is
often chosen, as it allows for a fast computation in the iterative
scheme. In our application, we consider either one (p = 1) or
two channels (p = 2).

The minimization of (1) is reached when

ui j =
1

∑C
k= 1

(

d2(x j,bi)
d2(x j,bk)

)1/(m− 1)
and (3)

bi =

∑N
j= 1 um

i j
x j

∑N
j= 1 um

i j

· (4)

Formulas (3) and (4) are used in steps 1 and 2, respec-
tively, of every iteration and were obtained by gradient descent
of JFCM(B,U, X).

There are two types of shortcomings of FCM. First, it is
sensitive to noise and outliers (Krishnapuram & Keller 1993).
Second, it is theoretically not satisfying, since the membership
degree of a feature vector with respect to any class in (3) depends
on its distances to all other class centers.

Following our study, FCM yields the best results for extract-
ing CHs out of the (almost noise free) 193 Å AIA images. Given
the large size of AIA images, however, FCM is applied on the
histogram of normalized intensity values, rather than on individ-
ual values. In this approach, each feature vector is rounded to
the center of the histogram bin to which it belongs. In this way,
the number of feature vectors is reduced to the number of his-
togram bins, which considerably reduces computation time. The
normalization consists in dividing by exposure time, correcting
for limb brightness enhancement, and dividing by the median
value (see Sect. 2.5). A bin size of 0.01 DN/s for the histogram
provides the same precision as when individual values are used.
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2.2. Possibilistic C-means algorithm (PCM)

To obtain a formulation for ui j that depends only on the distance
of feature vector x j to the center of class i, Krishnapuram &
Keller (1993, 1996) proposed the minimization of the objective
function

JPCM(B,U, X) =
C
∑

i= 1

















N
∑

j= 1

um
i jd

2(x j, bi) + ηi

N
∑

j= 1

(1 − ui j)m

















, (5)

which is subject to

∀i ∈ {1, · · · ,C} :
N
∑

j= 1

ui j < N and∀ j ∈ {1, · · · ,N} : max
i

ui j > 0.

(6)

The first term of JPCM in (5) is the intracluster variance, whereas
the second term enforces ui j to depend only on d(x j, bi) and
stems from the relaxation of the probabilistic constraint in (2).

Parameter ηi in (5) is homogeneous to a squared distance.
It can be fixed, or updated at each iteration. Krishnapuram &
Keller (1993) proposed the computation of ηi as the intraclass
dispersion:

ηi =

N
∑

j= 1

um
i jd

2(x j, bi)

N
∑

j= 1

um
i j

· (7)

The solution of the minimization of (5) satisfies

ui j =

[

1 +
(

d2(x j, bi)/ηi

)
1

m−1
]−1

and (8)

bi =

N
∑

j= 1

um
i j x j/

N
∑

j= 1

um
i j. (9)

In practice, PCM is initialized by a run of FCM, which allows
for computation of ηi as in (7). Krishnapuram & Keller (1993)
proved the convergence of iteration (8)−(9) for fixed values of ηi.
PCM is more robust to noise and outliers than FCM and pro-
vides independent functions ui = {ui j| j = 1, . . . ,N}. It must be
corrected, however, from coincident clustering (Sect. 2.2.1), and
a proper choice of the parameter ηi must be made (Sect. 2.2.2).
The SPoCA-AR module of the HEK uses this corrected PCM al-
gorithm on the AIA 171 Å and 193 Å bandpasses. Similar to the
SPoCA-CH module, it is applied on histogram intensity values
rather than on individual pixel intensity values.

The Spatial Possibilistic Clustering Algorithm (SPoCA) that
integrates neighboring intensity values was described in detail in
Barra et al. (2008, 2009). It is basically a version of PCM, where
each contribution of a pixel x j in formulas (5), and (7)−(9) has
been replaced by the weighted average contribution of all pixels
in a small spatial neighborhood of x j.

2.2.1. Coincident clustering

The original PCM suffers from convergence to a unique center,
where there is often only one or two distinct clusters detected in-
stead of three. This is a typical feature of possibilistic clustering
algorithms called coincident clustering (Krishnapuram & Keller
1996). To circumvent this problem, we use special membership

Fig. 2. Comparison of membership functions ui j for bi = 200, when the
exponent is chosen equal to 1/(m − 1) (red line) and 2/(m − 1) (blue
dashed line). The blue dashed line is more compact, which leads to
distinct class centers.

functions ui j, which are more compact and hence, do not over-
lap so easily. More precisely, exponent 1/(m − 1) in (8) is re-
placed by 2/(m − 1); see Fig. 2 for a graphical representation.
We name PCM2 the algorithm where the exponent in the mem-
bership function ui j is equal to 2/(m − 1). The modified SPoCA
algorithm where the exponent in the membership function ui j is
taken equal to 2/(m − 1), is called SPoCA2.

2.2.2. Constraints on the parameter ηi

The dynamical range of intensities differs among the AR, QS,
and CH classes. In particular, the ARs show the largest spread in
intensities. The parameter ηi, as computed in (7), can be viewed
as a measure of dispersion or variance within a class. In the
case that ηAR becomes prohibitively large, the value of uAR, j for
dark pixels x j can be higher than uQS, j or uCH, j, as illustrated
in Fig. 3a. To avoid this situation, we enforce the following in-
equalities, as derived in Appendix A:

ηQS

ηCH
<

bQS,q

bCH,q
,
ηAR

ηCH
<

bAR,q

bCH,q
,
ηAR

ηQS
<

bAR,q

bQS,q
for q = 1, . . . , p, (10)

with bAR,q, bQS,q, and bCH,q as the values for the qth channel of
the class centers for AR, QS, and CH respectively. Figure 3
shows an example of a segmentation with and without con-
straints on ηi. Without constraints, some CH areas get classified
in the same class as the AR. This problem is solved, when con-
straints (10) are introduced.

For solar EUV images, the combination of the iteration
schemes (8), (9), and (7) tends to produce ηCH-values that con-
verge to zero. Due to the condition (10) on ηQS and ηAR, these
two parameters are also dragged along to converge to zero. Our
iterative scheme therefore freezes the value of ηi, when it has
changed by a factor α with respect to its starting value. In other
words, formula (7) is used until iteration it, where

η
(it)
i
/η

(1)
i
> α or η(1)

i
/η

(it)
i
> α.

For the next iterations, we keep ηit
i
. Satisfactory results have been

obtained on a variety of datasets and instruments with α = 100.

2.3. Smooth variation in center values

To have a smooth variation in the center values over time, the
centers chosen at time t in the HEK are the median of the last 10
centers obtained at previous time stamps t, t − 1, . . . , t − 9. To
get the membership map corresponding to this smoothed value
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(a) Membership function for AR and QS (b) EIT 195 Å image

(c) Original segmented map (d) Segmented map with constraints

Fig. 3. a) Illustration of membership functions ui j for AR and QS feature vectors x j in the case of a large value of ηAR. Because of the larger
spread in intensity values of the AR, small values of x j may have a larger AR membership than QS membership. b) EIT 195 Å image from
January 1, 2000 with limb brightness correction. c) Segmentation using original PCM algorithm: The darkest parts are classified as active regions.
d) Segmentation using PCM with constraints on ηi-values.

of the center bi, an attribution procedure using (3) or (8) is per-
formed. This means that the final segmentation is obtained by
applying (3) or (8) only once (using the smoothed center values)
instead of using iterations until convergence.

2.4. Segmented maps

Given the membership maps U and centers B, a segmented map
can be obtained using various decision rules.

Maximum. The most common rule is to attribute a pixel j to the
class c for which it has the maximum membership value:
uc j = maxi∈{1,...,C} ui j. This rule is used in the SPoCA-
CH module of the SDO EDS.

Threshold. On EUV images, the QS class contains typically the
largest number of pixels, and hence the center of the QS class
is the most stable over time. In contrast, the cardinality of
points belonging to the AR class varies a lot over time, re-
sulting in a high variation in the center of the AR class. To
have a stable segmentation of AR over time, the SPoCA-AR
module of the SDO EDS, therefore, uses a threshold on the
QS membership class to decide whether a pixel belongs to
the AR class. For the SPoCA-AR module, all pixels j whose
values are higher than bQS and for which uQS, j is lower than
0.0001 are attributed to the AR class.

Closest. This rule attributes a pixel to the class for which the
Euclidean distance to the class center is the smallest.

Merge. A more complex procedure using sursegmentation and
merging of classes has been described by Barra et al. (2009).
Sursegmentation consists of segmenting the image into a
number of classes strictly superior to the intuitively expected
number of classes in the image and then finding an aggrega-
tion criterion of the resulting partition to exhibit the relevant
classes.

Fix. This scheme applies the rule for the maximum as above
and then merges the C resulting classes according to a fixed
scheme. For instance, we can merge the inital C = 4 classes
into three classes (AR, QS, CH) using CH = {1}, QS = {2, 3},
and AR = {4}. This rule is used in the analysis of the EIT
archive in Sect. 3.1.

2.5. Preprocessing

Some preprocessing steps are needed to obtain an accurate seg-
mentation of EUV images.

First, images can be calibrated using Solarsoft 8 routines, and
intensities can be normalized by their median values. Second,
the limb brightening effect observed in solar EUV images should

8 http://www.lmsal.com/solarsoft/
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Table 1. Values of parameters, r1, r2, r3, and r4 used for the limb bright-
ness correction formula, expressed as percentage of the solar radius.

Instrument r1 r2 r3 r4

EIT 80 95 107 112
EUVI 70 95 108 112
SWAP 95 100 105 115
AIA 70 95 108 112

be corrected before any segmentation based on intensity can be
reliably applied. Finally, the SPoCA-suite can be applied on ei-
ther linear or square-root transformed images. For Poisson data,
Anscombe (1948) showed that a square-root transform induces
exact asymptotic normality and stabilizes the variance. This is
especially useful for the extraction of low-intensity regions, such
as CHs, which are affected by Poisson noise.

A first limb brightening correction has been proposed
by Barra et al. (2009). It consists of applying a polar transform
to represent the image I in a (ρ, θ) plane with the origin at the
solar disk center. The polar transform is a conformal mapping
from points in the Cartesian plane (x, y) to points in this polar
plane, as described by: ρ =

√

x2 + y2, θ = atan(y/x). We then

computed the integral F(ρ) = 1
2π

∫ 2π

0
I(ρ, θ)dθ, which specifies

the intensity distribution as a function of ρ.
Denoting m⊙ as the median value of intensities on the on-

disk part of the corona, the image Icorr corrected for the enhanced
brightness near the limb is computed as

Icorr(ρ, θ) = m⊙
I(ρ, θ)
F(ρ)

(11)

for values of ρ ranging between 0.95 R⊙ and 1.05 R⊙. Finally,
Icorr is remapped to the Cartesian plane.

This abrupt correction leads to discontinuities in the images
around these radial distances, as can be seen on the images in
Fig. 3. We instead propose to apply a correction Ismooth:

Ismooth(x, y) = (1 − f (ρ(x, y))) I(x, y) + f (ρ(x, y))Icorr(x, y), (12)

where f (ρ(x, y)) introduces a smooth transition between the
zones not corrected (when ρ is between 0 and r1 or above r4)
and the zones ρ ∈ [r2, r3] that are fully corrected as described by
Eq. (11). The transition function f (ρ) is defined as

f (ρ) =



































0 if ρ ≤ r1 or ρ ≥ r4
1 if ρ ∈ [r2, r3]
1
2 sin
(

π
r2−r1

(ρ − r1+r2
2 )
)

+ 1
2 if r1 ≤ ρ ≤ r2

1
2 sin
(

π
r4−r3

(ρ + r4−3r3
2 )
)

+ 1
2 if r3 ≤ ρ ≤ r4.

(13)

A parameter study has been performed to determine the optimal
values of r1, r2, r3, and r4 for EIT, EUVI, SWAP, and AIA, see
Table 1.

2.6. Region extraction and postprocessing

To extract individual regions (that are labeled as ARs or CHs)
from segmented maps, the following postprocessing steps are
implemented:

1. Compute a sinusoidal projection map (Snyder 1987). This
improves the determination of regions toward the limb.

2. Clean the segmented map by removing elements smaller
than 6 arcsec using a morphological erosion.

3. Aggregate neighboring blobs by performing a morphological
closing, which consists of a dilation by 32 arcsec followed by
an erosion.

4. Compute the inverse of the sinusoidal projection.

The reader is referred to (Barra et al. 2009) for an introduction
to mathematical morphology in this context. The equirectangu-
lar and Lambert cylindrical projections are also implemented in
the SPoCA-suite. Our test on SDO-AIA data shows that the si-
nusoidal projection provides the best results.

To remove bright points, a final cleaning can be performed as
follows. The ARs smaller than 1500 arcsec2 and the CHs smaller
than 3000 arcsec2 are discarded. Except for AIA, note that nei-
ther of the steps above was performed in the studies in Sect. 3,
since the AR, QS, and CH classes are investigated as a whole,
and hence, no individual regions were extracted.

A typical CH possesses relatively smooth boundaries.
Having an accurate estimation of its shape and localization is
important for space weather purposes, since CHs that are located
at the central meridian and near the equator provoke the most
intense geoeffective conditions (a few days later). We have com-
puted a chain code for the CHs using a maximum of 100 points
by default to describe the contour. The details of the algorithm
are described in Appendix B.

The SPoCA-suite offers the option to either extract regions
on the whole image, the solar disk (using a radius r = R⊙), or
another disk centered on the center of the Sun (e.g., choosing
a radius r = 1.3 R⊙). It also allows us to identify and charac-
terize both individual AR or CH and the total class of all AR
or CH pixels in an EUV image. SPoCA-suite output products
include (FITS) masks and contours, contour overlays onto the
original image, and overlay movies.

For any individual AR or CH, the SPoCA-suite provides
the Stonyhurst and Carrington longitude and latitude values
corresponding to its barycenter and the corners of a bound-
ing box. For every individual region and every total class, it
also calculates the raw and deprojected area, filling factor, and
statistics about the distribution of its pixel vales (minimum,
maximum, median, average, variance, skewness, kurtosis, and
total intensity)9. Hence, the SPoCA-suite’s automatic detection
scheme enables the construction of large time series of properties
pertaining to AR or CH, which would be too large a task to per-
form on a manual basis. Examples of derived AR and CH time
series are presented for each instrument in Sect. 3.

2.7. Tracking over time

Individual regions can also be tracked over time. Following the
aggregation of regions described in the previous section, an AR
is defined as a coherent group of corresponding AR blobs, and
a CH is defined as a coherent group of corresponding CH blobs.
The goal of tracking is to appoint the same ID number to a phys-
ical region (AR or CH) over time. A region observed at time
stamp t can correspond to a single region at the next time stamp,
but it can also split (and produce two children), or it can merge
with neighboring regions.

Our tracking scheme amounts to creating a directed
graph (N, E), where N is the list of nodes representing individ-
ual regions and E is the list of edges between regions. An edge
between a region observed at time t1 and another observed at
time t2 is created if their time difference t2 − t1 is smaller than

9 The list of all features computed can be found in http://www.
lmsal.com/hek/VOEvent_Spec.html
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Fig. 4. Overlay of a) (left) an AR map and b) (right) a CH map, created using EIT 171 and 195 Å, onto the corresponding EIT 171 Å image taken
on August 1, 2003 around 13h UT.

Table 2. Selected SPoCA-suite parameter values for the detection of
active regions.

Active regions EIT EUVI SWAP AIA

Image transformation sqrt sqrt linear linear
Bandpasses used (Å) (171, 195) 195 174 (193,171)
Number of classes C 4 4 6 4
Classifier SPoCA2 SPoCA2 SPoCA2 HPCM2
Center values avg(fix 42) med(all) raw med(last 10)
Segmentation Fix Max Fix Thresh

some value, if they overlap, and if there is not already a path be-
tween them. It is possible to first derotate the region maps before
comparing them. This is necessary, when large time differences
are involved.

CHs are long-lived. Preliminary analysis shows that a
CH candidate detected for more than three consecutive days ex-
hibits the expected magnetic properties characteristic of unipo-
lar regions. Hence, we include this temporal information in the
tracking and report it to the HEK only for those CHs that are
older than three days.

3. Results

In this paper, we are mainly looking for AR and CH features, and
we leave out QS as the complement of the AR and CH classes.
The SPOCA-suite allows us, however, to treat QS as a category
(or class) in itself. A parameter study has been conducted to de-
termine the optimal values of SPoCA-suite parameters for seg-
menting and extracting AR and CH properties on EIT, EUVI,
SWAP, and AIA images. Tables 2 and 3 present a summary of the
main parameters used in the extraction of AR and CH, respec-
tively. Though these dedicated parameters provide well-chosen
AR and CH detections on the imagers listed below, it should be
noted that it is impossible to have an exact correspondence be-
tween the AR or CH detected by two different imagers.

Table 3. Selected SPoCA-suite parameter values for the detection of
coronal holes.

Coronal holes EIT EUVI AIA

Image transformation sqrt sqrt sqrt
Bandpasses used (Å) (171, 195) 195 193
Number of classes C 4 4 4
Classifier SPoCA2 SPoCA2 HFCM
Center values avg(fix 42) med(all) med(last 10)
Segmentation Fix Max Max

3.1. Analysis of the synoptic SOHO-EIT archive

The Extreme Ultraviolet Telescope EIT (Delaboudinière et al.
1995) onboard SOHO delivers synoptic observations that con-
sist of 1k×1k images of the solar corona recorded in four differ-
ent wavelengths every six hours. The relatively small size of the
SOHO-EIT images allows fast computations. The SOHO space-
craft however is situated at the L1-Lagrange point and is thereby
exposed to cosmic ray hits (CRH) and to proton events, which
deteriorate the quality of the image. The spatial regularization
scheme SPoCA (or its improved version SPoCA2) proposed by
Barra et al. (2009) is thus necessary to treat EIT images. Note
that the SDO mission, on the other hand, operates in geosyn-
chronous orbit. The SDO-AIA images are therefore less con-
taminated by CRH and suffer less from proton events.

Figure 4 shows an example of overlays of AR and CH maps
onto the corresponding EIT images. Every color corresponds to
a different AR or CH as identified by the SPoCA-suite’s region
extraction algorithm.

For the present study, we have downloaded all available,
complete synoptic EIT FITS files (i.e., no missing blocks or
other artifacts) from March 1, 1997 to August 17, 2011 and
preprocessed them using the most current version of eit_prep
in the Solarsoft library to obtain absolutely calibrated level 1
FITS files. Note that until recently, absolute calibration was only
available for EIT FITS files dating from before 2006.
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Fig. 5. Median intensity of AR and CH pixels for a) (left) EIT 171 Å and b) (right) EIT 195 Å from March 1, 1997 until August 17, 2011.

Fig. 6. Total intensity of AR and CH pixels for a) (left) EIT 171 Å and b) (right) EIT 195 Å from March 1, 1997 until August 17, 2011.

For the entire dataset, we used the combined data from 171 Å
and 195 Å FITS files as input for SPoCA2. In a first stage, a
segmentation into four classes was run with the square root of
the pixels in the FITS files as input. The first class corresponds
to CH, whereas the fourth class corresponds to AR. The over-
all quality of the segmentations was checked and acknowledged
by human supervision on a representative subset of 112 pairs of
FITS files.

Employing the average center and ηi values obtained dur-
ing solar maximum (2000−2004, 42 pairs of FITS files) allowed
us to perform a fixed-center SPoCA2 attribution on the whole
dataset with the advantage that AR, QS, and CH are detected in
a consistent way over the entire solar cycle, even in a low min-
imum when there are virtually no AR around. For instance, an
AR or CH detected near the solar minimum would be detected in
identical fashion if it appeared near a solar maximum when the
whole image is brighter. The overall quality of these final seg-
mentations was again checked and acknowledged on the subset
of 112 pairs of FITS files. Statistics about pixel intensities and
areas for AR, QS, and CH were computed for the final segmenta-
tions on the whole dataset, which yielded several time series with
each one of them containing over 9500 data points. We present
some of these time series below.

To study the evolution of AR, QS, or CH properties over the
solar cycle, we can investigate time series of the median inten-
sity, the total intensity, and the raw area or filling factor of the

region. The raw area of a region is the area as measured in the
plane of the image, as expressed in Mm2. The filling factor of a
region is defined as the raw area of this region in units such that
the filling factor of the total solar disk equals 1. These filling
factors can be included into (semi-) empirical models of the so-
lar atmosphere, which can be employed to model the solar EUV
irradiance (Haberreiter 2012). The total intensity of a region is
the sum of all pixel values of the pixels inside that region. If the
total intensity of the AR increases over time, for instance, it can
be either due to an increase in the area of the AR or due to an in-
herent brightness variation in the loops in the AR. A measure of
the inherent brightness of the plasma in AR, QS, and CH is pro-
vided by the median intensity of pixels within the region (which
is a more robust version of the average intensity).

Figure 5 presents the median intensity (in DN/s) of all pix-
els belonging to AR and CH classes from March 1, 1997 until
August 17, 2011. We observe a slight solar cycle dependence for
the median intensity of the AR class. In the 171 Å channel, we
observe a clear minimum around solar minimum, while the rest
of the curve is rather flat. The 195 Å curve, on the other hand,
features a slight maximum around the solar maximum and no
notable trend in the rest of the curve. The median intensity of
the AR class varies substantially more than that of the CH class.

Figure 6 presents the total intensity (in DN/s) of all pixels
belonging to the AR and CH classes from March 1, 1997 until
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Fig. 7. Filling factor of AR, QS, and CH obtained by segmenting
EIT 171 Å and EIT 195 Å images from March 1, 1997 until August 17,
2011.

Fig. 8. Detail of the filling factor of AR, QS, and CH from January 1,
2000 until December 31, 2003.

August 17, 2011 (i.e., the sum of all those pixel values). The
solar cycle is very obvious in the total intensity of AR with a
clear double peak in 2000 and 2002 at 171 Å and 195 Å. The
total intensity of CH was in antiphase with the solar cycle, as
expected. The total intensity of AR displays a large variance.

Figure 7 presents the filling factor of all pixels belonging
to AR, QS, and CH, respectively, from March 1, 1997 until
August 17, 2011. The filling factor of the AR varies in clear cor-
relation with the solar cycle, whereas the filling factors of both
the QS and the CH vary in antiphase with the solar cycle, peak-
ing at solar minimum.

Figure 8 zooms in on the filling factor of all pixels belonging
to AR, QS, and CH in the period January 1, 2000−December 31,
2003. At these timescales, the solar rotation clearly shows up in
AR, QS, and CH filling factors. It also becomes clear that the
large variance in the AR intensity time series is mainly due to
the variation in AR size with the solar rotation.

3.2. Segmentation of STEREO-EUVI images

Next, we turn to full Sun synoptic images from the Extreme
Ultra Violet Imager EUVI (Wuelser et al. 2004) of the Sun Earth
Connection Coronal and Heliospheric Investigation (SECCHI)
imaging suite (Howard et al. 2008) onboard the STEREO space-
craft A(head) and B(ehind).

We have processed data from January 11, 2011 until
March 31, 2011 at a cadence of one image per hour. Since
the 171 Å dataset contained too many missing blocks, AR and
CH classification was performed using only the 195 Å channel.

Similar to EIT, EUVI is also exposed to CRHs, and hence,
the SPoCA2 algorithm also produces the best results. To improve
the consistency of the results, the segmentation was done using a
two-step approach. First, the SPoCA2 algorithm was run on the
individual images. Second, the median values of the class centers
and ηi parameters were computed, and an attribution was done
on the individual images using these values.

Figure 9 shows an example of overlays of AR and CH maps
onto the corresponding EUVI images. Every color corresponds
to a different AR or CH as identified by the SPoCA-suite’s region
extraction algorithm. During the selected period, the STEREO A
and B spacecraft were approximately 180◦ apart. Because of the
dominant role of long-lived ARs and CHs returning to the same
position after one solar rotation, the time series of filling factors
should thus show roughly a 13.5 day lag between spacecraft A
and B (corresponding to the observation of the same hemisphere
on the Sun, observed with a time difference of 13.5 days). As can
be seen from the plots in Fig. 10, this is indeed the case. In these
plots, the results for STEREO B have been shifted 13.5 days
ahead in time. Notice that some small periods of time were miss-
ing from the data for either of the spacecraft. For EUVI A, the
period February 13−17 was missing, and for both EUVI A and B
(before the time shift), the period February 27−March 2 was
missing.

In the AR plot in Fig. 10a, the correlation is most apparent
during the period from February 20 until March 31. The differ-
ence in magnitude of the filling factors for the two spacecraft
is due to the relatively long amount of time between the cor-
responding observations and the high variability of AR filling
factors.

In the CH plot in Fig. 10b, we can clearly see the solar ro-
tation from the peaks around the 6th of February and March.
These peaks were mostly due to a large CH in the northern hemi-
sphere that stretched from high to low latitudes. Around the 6th
of February, we can see that the filling factor, as observed by
EUVI A, increased slightly from the filling factor, as observed
by EUVI B 13.5 days earlier. The observations of the same set of
CHs after one solar rotation yield similar filling factors for both
spacecraft.

3.3. Segmentation of PROBA2-SWAP images

The Sun Watcher with Active Pixels and Image Processing
SWAP (Berghmans et al. 2006; De Groof et al. 2008; Seaton
et al. 2012) is a wide-field EUV solar imager onboard the
PROBA2 spacecraft in low-Earth orbit. The PROBA2-SWAP
observations consist of a series of images at 174 Å (Fe IX/X
at log T ≃ 6.0) taken with a cadence of roughly 100 s.
The SWAP images are 1k × 1k with a linear pixel size of
approximately 3.17 arcsec, meaning the instrument has a total
field of view of approximately 54 × 54 arcmin2.
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Fig. 9. Overlay of a) (left) an AR map onto the corresponding EUVI 195 Å image taken on February 19, 2011 around 11h UT; and b) (right) a
CH map onto the corresponding EUVI 195 Å image taken on February 6, 2011 around 12h UT.

Fig. 10. Filling factor for a) (left) AR and b) (right) CH on EUVI A and B at 195 Å from January 11 until March 31, 2011.

From the SWAP data archive10, we have selected one FITS
file every six hours from October 1, 2010 until June 30, 2011. A
SPoCA2 segmentation with six classes was run on this dataset
to create a time series of the total intensity and raw area of ARs.

Figure 11 shows an example of the overlay of an AR map
onto the corresponding SWAP image. Every color corresponds
to a different AR as identified by the SPoCA-suite’s region ex-
traction algorithm. Note that the SPoCA-suite parameters for
this analysis were selected in such a way that the detection of
AR yields smaller regions than in our EIT analysis and corre-
sponds to the AR core rather than the whole region.

Figure 12a shows the raw AR area and total AR intensity
as detected by the SPoCA-suite on 174 Å SWAP images from
October 1, 2010 to June 30, 2011. When comparing this to
the corresponding time series of the daily International Sunspot
Number (ISN) and the F10.7 radio flux in Fig. 12b, we observe
a clear correlation, especially between the total AR intensity and

10 http://proba2.sidc.be/data/SWAP

both ISN and F10.7. This suggests that the total intensity of ARs
in narrow-band EUV imager channels is a good indicator of so-
lar activity, which deserves to be studied in more detail.

3.4. Segmentation of SDO-AIA images

Since May 2010, the Atmospheric Imaging Assembly
AIA (Lemen et al. 2012) on board SDO delivers 4k × 4k
images of solar corona and continuum at a 10 s cadence and in
10 bandpasses. In this work, we consider the 171 and 195 Å
bandpasses.

The SPoCA-suite has been running in near-real time on
SDO-AIA data since September 2010 as part of the SDO Feature
Finding Project. The resulting AR events are automatically
ingested by the HEK, which provides catalogs of ARs and CHs
containing properties such as location (through a bounding box
or a chain code), area, and statistical moments of intensities.
Contours can also be visualized through the isolsearch inter-
face or within the JHelioviewer visualization software, as seen
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Fig. 11. Overlay of an AR map onto the corresponding SWAP 174 Å
image taken on June 5, 2011 around 18h UT.

in Fig. 13 which shows a screenshot from the ESA JHelioviewer
tool with AR and CH boundary overlay. A third way to access
the images and their metadata is offered by the VSO.

To avoid prohibitive computation time on the 4k × 4k AIA
images, iterations of the fuzzy clustering are done on the his-
togram of the preprocessed images rather than on the prepro-
cessed images themselves. A bin size of 0.01 DN/s was found
to be sufficiently small to produce accurate results. Histogram-
based FCM yields the best results for extracting CHs out of the
(almost noise free) 193 Å AIA images, whereas the histogram-
based PCM2 algorithm is employed to detect ARs on AIA 171 Å
and 193 Å images. The images were preprocessed by dividing by
exposure time, correcting for limb brightness enhancement, and
dividing by the median value.

Figure 14 shows an example of overlays of AR and CH maps
onto the corresponding AIA images. Every color corresponds to
a different AR or CH as identified by the SPoCA-suite’s region
extraction algorithm.

In Fig. 15, we present the AR, QS, and CH filling factor
computed on a dataset of 12 months ranging from January 1
until December 31, 2011 at a twelve hour cadence. The solar
rotation of about 27 days is noticeable (especially in the CH fill-
ing factor), but other periodicities (with a period of around 9
days) also seem to be present, similar to what was observed for
CH by Temmer et al. (2007) based on GOES-SXI images. In this
study, please note that we have selected SPoCA parameters such
that the AR detections correspond to the AR cores, which results
in much lower AR filling factors than in our EIT study.

4. Conclusions

We have introduced a set of segmentation procedures (called
the SPoCA-suite) that allows users to retrieve active region
(AR) and coronal hole (CH) properties from EUV images. The
SPoCA-suite consists of the algorithms FCM, PCM, PCM2,
SPoCA, and SPoCA2, and of histogram-based versions. The

main segmentation algorithms in the SPoCA-suite and their out-
put were described in detail in Sect. 2, along with pre- and post-
processing, region extracting, and tracking of individual regions
over time.

The SPoCA-suite is the result of major improvements and
extensions (see Sect. 2) on our previous work on the Spatial
Possibilistic Clustering Algorithm (Barra et al. 2009). The main
advances are robust solutions for two fundamental problems na-
tive to possibilistic algorithms (coincident clustering and the sta-
bility of ηi parameters), smooth variation in center values to en-
able automatic segmentation on a continuous stream of data,
and more accurate segmentations near the solar limb due to a
smoother limb brightness correction.

The SPoCA-suite provides a powerful tool for consistent au-
tomatic detection of AR, QS (quiet Sun), and CH. Moreover,
it was demonstrated that the SPoCA-suite’s automatic detection
scheme enables the construction of large time series of proper-
ties pertaining to ARs or CHs, as observed by EUV imagers.
We have presented and investigated such time series from four
different EUV imagers (SOHO-EIT, STEREO-EUVI, PROBA2-
SWAP, and SDO-AIA) in Sect. 3. These kinds of studies can be
performed for other EUV imagers as well and opens the way for
systematic large-scale surveys of AR and CH properties.

The SPoCA-suite allows users to identify and characterize
both individual ARs or CHs and the total class of all AR or
CH pixels in an EUV image. Individual regions can also be
tracked over time. Masks, contours, contour overlays onto the
original image, and overlay movies can be generated as output.

For any individual AR or CH, the SPoCA-suite provides the
location of its barycenter and the corners of a bounding box. A
number of characteristics (intensity moment statistics, area, and
filling factor) are computed for every individual region and every
total class.

The SPoCA-suite’s automatic segmentation allowed us to
construct long time series for EIT (1997-2011). The me-
dian 171 Å and 195 Å intensity in AR pixels (Fig. 5) shows a
slight dependence in phase with the solar cycle, suggesting that
ARs are slightly brighter in EUV in solar maximum than in solar
minimum. In the 171 Å channel, we observe a clear minimum
around the solar minimum, while the rest of the curve is flat.
The 195 Å curve, on the other hand, features a slight maximum
around solar maximum and no notable trend in the rest of the
curve. The median intensity in AR pixels showed a much larger
variance than the median intensity in CH pixels.

The total 171 Å and 195 Å intensity in AR pixels (Fig. 6)
was clearly in phase with the solar cycle, even showing a dou-
ble maximum in 2000 and 2002, whereas the total intensity of
CH was in antiphase with the solar cycle. The filling factor of
AR pixels (Fig. 7) shows a clear correlation with the solar cy-
cle, whereas the filling factors of both QS and CH feature an
anticorrelation with the solar cycle. Zooming in (2000−2003)
on the filling factors of AR, QS, and CH (Fig. 8), we clearly
observe the periodicity of the solar rotation. These filling fac-
tors can be included into (semi-)empirical models of the solar
atmosphere, which can be employed to model the solar EUV ir-
radiance (Haberreiter 2012).

For EUVI 195 Å, the SPoCA-suite was employed to
study the filling factors for ARs and CHs from January un-
til April 2011, when STEREO A and STEREO B were about
180 degrees apart. The signature of the solar rotation (due to
long-lived ARs and CHs returning to the same position after
one solar rotation) is obvious (Fig. 10). Shifting EUVI B’s AR
and CH filling factors by 13.5 days (about half a solar rotation)
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Fig. 12. a) (top) Raw AR area and total AR intensity from 174 Å SWAP images; and b) (bottom) Daily International Sunspot Number and F10.7
radio flux from October 1, 2010 to June 30, 2011.

Fig. 13. Screenshot from the ESA JHelioviewer tool. The picture on the right displays the AIA 171 Å image taken on February 12, 2012 at
9:15:56 UT with AR and CH location and chain code information that are recorded in the HEK. An event information window pops up when
clicking on an event or feature (here the large CH located in the Southern hemisphere).

results in filling factors very similar to those observed by EUVI
A, which was expected since EUVI A and the shifted EUVI B
correspond to the same hemisphere on the Sun, observed with a
time difference of 13.5 days.

For SWAP, the total 174 Å AR intensity and the total AR
area (Fig. 12) were extracted over the period October 2010−June
2011. The resulting time series are clearly correlated with both
the daily International Sunspot Number and the F10.7 radio flux,
and hence provide a novel and useful proxy for solar activity.

This kind of time series will soon be available in the Solar
Timelines viewer for AFFects (STAFF), a dedicated viewer for
solar activity, solar wind, and geomagnetic timelines developed
at the Royal Observatory of Belgium within the European FP7
project AFFECTS.

The SPoCA-suite was also applied to AIA 171 and 193 Å,
and the evolution of AR, QS, and CH filling factors was analyzed
for the period January–December 2011 on a twelve hour cadence
(Fig. 15). The effect of the solar rotation is again conspicuous in
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Fig. 14. a) (left) Overlay of an AR map created using AIA 171 and 193 Å onto the corresponding AIA 171 Å image taken on June 22, 2011
around 15h UT. b) (right) Overlay of a CH map created using AIA 193 Å onto the corresponding AIA 193 Å image taken on May 17, 2010
around 15h UT.
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Fig. 15. Filling factor of AR, QS, and CH obtained from segmenting
AIA 171 and 193 Å images from January 1 until December 31, 2011.

these data, but a period of around 9 days also shows up, which
is similar to what was observed for CH by Temmer et al. (2007)
based on GOES-SXI images.

One of the SPoCA-suite algorithms has also been imple-
mented in the modules of the HEK. It provides catalogs of ARs
and CHs containing properties, such as localization (through a
bounding box or a chain code), area, and moments of intensities,
based on AIA images. Contours can also be visualized through
the isolsearch interface, within the JHelioviewer visualization
software, or through the VSO.

Avenues for future research include improving criteria for
distinguishing between filaments and CHs, segmenting in 3D
(the third dimension being time) to improve the accuracy of

tracking, and, finally, tailoring the segmentation to the needs of
EUV irradiance reconstruction models.
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Appendix A: Constraints on the regularization

parameter ηi

All algorithms based on Possibilistic C-means strongly depend
on the choice of the regularization parameter ηi. A various num-
ber of elaborated procedures have been proposed in the liter-
ature, as seen in Krishnapuram & Keller (1996). An intuitive
choice is to compute ηi as the intraclass dispersion, as in Eq. (7).
Problems arise, however, when the underlying classes have a
widely different intraclass variance. For example, the highly
variable AR class on EUV images may include the darkest part
of what should be the CH class in the final segmentation.

To understand this phenomenon, consider two classes c1
and c2 with centers b1 and b2. Suppose b1q < b2q,∀q = 1, . . . , p,
where p is the dimension of the feature vectors. Under certain
circumstances, we show that u2 j can exceed u1 j for values of x j

where x jq < b1q,∀q = 1, . . . , p.
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Let us first determine the locus of points x j, where u1 j = u2 j.
From Eq. (8) we find that u1 j = u2 j if and only if

d2(x j, b1)

η1
=

d2(x j, b2)

η2
· (A.1)

If η1 = η2, the solution is a hyperplane through the middle of b1
and b2, and there are no undesired effects. In the case of η1 , η2
and for the Euclidean distance, the above is the equivalent to
saying that x j lies on a circle with center

c =
η2b1 − η1b2

η2 − η1
(A.2)

and radius

r =

√
η1η2

|η2 − η1|
d(b1, b2). (A.3)

We consider only the case η1 < η2, as this is the case for the
classes CH, QS, and AR when they arise in EUV images. In this
case, c lies relatively close to b1 at the opposite side from b2. All
points x j inside the circle satisfy u1 j > u2 j and hence, belong
to class 1. All points x j outside the circle satisfy u2 j > u1 j, and
hence, are classified as belonging to class 2 instead of class 1.
This is unwanted behavior for those points for which some
x jq < b1q. To avoid this situation, we can select ηi-values in such
a way that the circle center c lies below all coordinate axes. The
result is that for all points x j in the circle, all positive points be-
low it are also in the circle. Hence, whenever a point x j belongs
to class 1, all points below x j also belong to class 1. So we want
cq < 0, ∀q = 1, . . . , p, which is equivalent to the following con-
ditions on η1 and η2:

η2

η1
<

b2q

b1q

,∀q = 1, . . . , p. (A.4)

The same considerations apply to the situation where η1 <

η2 < η3 etc.

Appendix B: Computation of the CH chain code

Chain coding aims at representing the boundary of an object in
digitized images. It is based on the idea of following the outer
edge of the object and storing the direction when traveling along
the boundary (Freeman 1961). In the SPoCA-suite, we use a rep-
resentation of the chain code with eight directions, as is com-
monly done in the literature, see Castleman (1996). This has the
same length as the perimeter of the object under consideration,
which in many cases is too long.

In a second step, we thus find a polygonal approximation to
the perimeter that has a limited number of edges and for which
the distance from any point in the perimeter to the polygon does
not exceed a given accuracy.

We use the algorithm described in Douglas & Peucker
(1973), which proceeds as a recursive refinement. The main axis
of the contour is first extracted, providing the first two vertices.
Each polygon edge is then recursively split by introducing a new
vertex at the most distant associated contour point until the de-
sired accuracy is reached. More precisely, the algorithm runs as
follows:

1. Initialize the polygon with points p1 and p2 of the perimeter
that are farthest away from each other.

2. Let i = 3.

3. For each segment in the polygon, find the point on the
perimeter between the points that have the farthest distance
to the polygonal linesegment. If this distance is larger than a
threshold, mark the point with a label pi.

4. Renumber the points, so that they are consecutive.
5. Increment i by one.
6. If no points have been added, then break, otherwise go to 3.

Within the HEK, a maximal number of 100 points is considered
to be sufficient.
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