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The spread of low-credibility content by social bots
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The massive spread of digital misinformation has been identified as a major threat to

democracies. Communication, cognitive, social, and computer scientists are studying the

complex causes for the viral diffusion of misinformation, while online platforms are beginning

to deploy countermeasures. Little systematic, data-based evidence has been published to

guide these efforts. Here we analyze 14 million messages spreading 400 thousand articles on

Twitter during ten months in 2016 and 2017. We find evidence that social bots played a

disproportionate role in spreading articles from low-credibility sources. Bots amplify such

content in the early spreading moments, before an article goes viral. They also target users

with many followers through replies and mentions. Humans are vulnerable to this manip-

ulation, resharing content posted by bots. Successful low-credibility sources are heavily

supported by social bots. These results suggest that curbing social bots may be an effective

strategy for mitigating the spread of online misinformation.
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A
s we access news from social media1, we are exposed to a
daily dose of false or misleading news reports, hoaxes,
conspiracy theories, click-bait headlines, junk science, and

even satire2. We refer to such content collectively as “mis-
information.” The financial incentives through advertising are
well understood3, but political motives can be equally powerful4,5.
The massive spread of digital misinformation has been identified
as a major global risk6 and alleged to influence elections and
threaten democracies7. While such claims are hard to prove8, real
harm of disinformation has been demonstrated in health and
finance9,10.

Social and computer scientists are engaged in efforts to study
the complex mix of cognitive, social, and algorithmic biases that
make us vulnerable to manipulation by online misinformation11.
These include information overload and finite attention12,
novelty of false news2, the selective exposure13–15 caused by
polarized and segregated online social networks16,17, algorithmic
popularity bias18–20, and other cognitive vulnerabilities such as
confirmation bias and motivated reasoning21–23.

Abuse of online information ecosystems can both exploit and
reinforce these vulnerabilities. While fabricated news are not a
new phenomenon24, the ease with which social media can be
manipulated5 creates novel challenges and particularly fertile
grounds for sowing disinformation25. Public opinion can be
influenced thanks to the low cost of producing fraudulent web-
sites and high volumes of software-controlled profiles, known as
social bots10,26. These fake accounts can post content and interact
with each other and with legitimate users via social connections,
just like real people27. Bots can tailor misinformation and target
those who are most likely to believe it, taking advantage of our
tendencies to attend to what appears popular, to trust informa-
tion in a social setting28, and to trust social contacts29. Since
earliest manifestations uncovered in 20104,5, we have seen
influential bots affect online debates about vaccination policies10

and participate actively in political campaigns, both in the United
States30 and other countries31,32.

The fight against online misinformation requires a grounded
assessment of the relative impact of different mechanisms by
which it spreads. If the problem is mainly driven by cognitive
limitations, we need to invest in news literacy education; if social
media platforms are fostering the creation of echo chambers,
algorithms can be tweaked to broaden exposure to diverse views;
and if malicious bots are responsible for many of the falsehoods,
we can focus attention on detecting this kind of abuse. Here we
focus on gauging the latter effect. With few exception2,30,32,33, the
literature about the role played by social bots in the spread of
misinformation is largely based on anecdotal or limited evidence;
a quantitative understanding of the effectiveness of
misinformation-spreading attacks based on social bots is still
missing. A large-scale, systematic analysis of the spread of mis-
information by social bots is now feasible thanks to two tools
developed in our lab: the Hoaxy platform to track the online
spread of claims33 and the Botometer machine learning algorithm
to detect social bots26. Here we examine social bots and how they
promote the spread of misinformation through millions of
Twitter posts during and following the 2016 US presidential
campaign. We find that social bots amplify the spread of mis-
information by exposing humans to this content and inducing
them to share it.

Results
Low-credibility content. Our analysis is based on a large corpus
of news stories posted on Twitter. Operationally, rather than
focusing on individual stories that have been debunked by fact-

checkers, we consider low-credibility content, i.e., content from
low-credibility sources. Such sources are websites that have been
identified by reputable third-party news and fact-checking orga-
nizations as routinely publishing various types of low-credibility
information (see Methods). There are two reasons for this
approach11. First, these sources have processes for the publication
of disinformation: they mimic news media outlets without
adhering to the professional standards of journalistic integrity.
Second, fact-checking millions of individual articles is unfeasible.
As a result, this approach is widely adopted in the literature
(see Supplementary Discussion).

We track the complete production of 120 low-credibility
sources by crawling their websites and extracting all public tweets
with links to their stories. Our own analysis of a sample of these
articles confirms that the vast majority of low-credibility content
is some type of misinformation (see Methods). We also crawled
and tracked the articles published by seven independent fact-
checking organizations. The present analysis focuses on the
period from mid-May 2016 to the end of March 2017. During this
time, we collected 389,569 articles from low-credibility sources
and 15,053 articles from fact-checking sources. We further
collected from Twitter all of the public posts linking to these
articles: 13,617,425 tweets linked to low-credibility sources and
1,133,674 linked to fact-checking sources. See Methods and
Supplementary Methods for details.

Spreading patterns and actors. On average, a low-credibility
source published approximately 100 articles per week. By the end
of the study period, the mean popularity of those articles was
approximately 30 tweets per article per week (see Supplementary
Fig. 1). However, as shown in Fig. 1, success is extremely het-
erogeneous across articles. Whether we measure success by
number of posts containing a link (Fig. 1a) or by number of
accounts sharing an article (Supplementary Fig. 2), we find a very
broad distribution of popularity spanning several orders of
magnitude: while the majority of articles goes unnoticed, a sig-
nificant fraction goes “viral.” We observe that the popularity
distribution of low-credibility articles is almost indistinguishable
from that of fact-checking articles, meaning that low-credibility
content is equally or more likely to spread virally. This result is
similar to that of an analysis based on only fact-checked claims,
which found false news to be even more viral than real news2. The
qualitative conclusion is the same: links to low-credibility content
reach massive exposure.

Even though low-credibility and fact-checking sources show
similar popularity distributions, we observe some distinctive
patterns in the spread of low-credibility content. First, most
articles by low-credibility sources spread through original tweets
and retweets, while few are shared in replies (Fig. 2a); this is
different from articles by fact-checking sources, which are shared
mainly via retweets but also replies (Fig. 2b). In other words, the
spreading patterns of low-credibility content are less “conversa-
tional.” Second, the more a story was tweeted, the more the tweets
were concentrated in the hands of few accounts, who act as
“super-spreaders” (Fig. 2c). This goes against the intuition that, as
a story reaches a broader audience organically, the contribution of
any individual account or group of accounts should matter less.
In fact, a single account can post the same low-credibility article
hundreds or even thousands of times (see Supplementary Fig. 6).
This could suggest that the spread is amplified through
automated means.

We hypothesize that the “super-spreaders” of low-credibility
content are social bots which are automatically posting links to
articles, retweeting other accounts, or performing more
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sophisticated autonomous tasks, like following and replying to
other users. To test this hypothesis, we used Botometer to
evaluate the Twitter accounts that posted links to articles from
low-credibility sources. For each account we computed a bot
score (a number in the unit interval) which can be interpreted as
the level of automation of that account. We used a threshold of
0.5 to classify an account as bot or human. Details about the
Botometer system and the threshold can be found in Methods.
We first considered a random sample of the general population of
accounts that shared at least one link to a low-credibility article.
Only 6% of accounts in the sample are labeled as bots using this
method, but they are responsible for spreading 31% of all tweets
linking to low-credibility content, and 34% of all articles from
low-credibility sources (Supplementary Table 2). We then
compared this group with a sample of the top most active
accounts (“super-spreaders”), 33% of which have been labeled as
bot—over five times as many (details in Supplementary Meth-
ods). Figure 2d confirms that the super-spreaders are significantly
more likely to be bots compared to the general population of
accounts who share low-credibility content. Because these results
are based on a classification model, it is important to make sure
that what we see in Fig. 2d is not due to bias in the way Botometer
was trained—that the model did not simply learn to assign higher
scores to more active accounts. We rule out this competing
explanation by showing that higher bot scores cannot be
attributed to this kind of bias in the learning model (see
Supplementary Fig. 16).

Bot strategies. Given this evidence, we submit that bots may play
a critical role in driving the viral spread of content from low-
credibility sources. To test this question, we examined whether
bots tend to get involved at particular times in the spread of
popular articles. As shown in Fig. 3a, likely bots are more pre-
valent in the first few seconds after an article is first published on
Twitter than at later times. We conjecture that this early inter-
vention exposes many users to low-credibility articles, increasing
the chances than an article goes “viral.”

We find that another strategy often used by bots is to mention
influential users in tweets that link to low-credibility content. Bots
seem to employ this targeting strategy repetitively; for example, a
single account mentioned @realDonaldTrump in 19
tweets, each linking to the same false claim about millions of votes
by illegal immigrants (see details in Supplementary Discussion
and Supplementary Fig. 7). For a systematic investigation, let us
consider all tweets that mention or reply to a user and include a
link to a viral article from a low-credibility source in our corpus.
The number of followers is often used as a proxy for the influence
of a Twitter user. As shown in Fig. 3b, in general tweets tend to
mention popular people. However, accounts with the largest bot
scores tend to mention users with a larger number of followers
(median and average). A possible explanation for this strategy is
that bots (or rather, their operators) target influential users with
content from low-credibility sources, creating the appearance that
it is widely shared. The hope is that these targets will then reshare
the content to their followers, thus boosting its credibility.
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Fig. 1 Online virality of content. a Probability distribution (density function) of the number of tweets for articles from both low-credibility (blue circles) and

fact-checking (orange squares) sources. The distributions of the number of accounts sharing an article are very similar (see Supplementary Fig. 2). As

illustrations, the diffusion networks of two stories are shown: b a medium-virality misleading article titled “FBI just released the Anthony Weiner warrant,

and it proves they stole election”, published a month after the 2016 US election and shared in over 400 tweets; and c a highly viral fabricated news report

titled “Spirit cooking”: Clinton campaign chairman practices bizarre occult ritual, published 4 days before the 2016 US election and shared in over 30,000

tweets. In both cases, only the largest connected component of the network is shown. Nodes and links represent Twitter accounts and retweets of the

article, respectively. Node size indicates account influence, measured by the number of times an account was retweeted. Node color represents bot score,

from blue (likely human) to red (likely bot); yellow nodes cannot be evaluated because they have either been suspended or deleted all their tweets. An

interactive version of the larger network is available online (iunetsci.github.io/HoaxyBots/). Note that Twitter does not provide data to reconstruct a

retweet tree; all retweets point to the original tweet. The retweet networks shown here combine multiple cascades (each a “star network” originating from

a different tweet) that all share the same article link
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Bot impact. Having found that automated accounts are employed
in ways that appear to drive the viral spread of low-credibility
articles, let us explore how humans interact with the content
shared by bots, which may provide insight into whether and how
bots are able to affect public opinion. Figure 4a shows who
retweets whom: humans do most of the retweeting (Fig. 4b), and
they retweet articles posted by likely bots almost as much as those
by other humans (Fig. 4c). This result, which is robust to the
choice of threshold used to identify likely humans, suggests that
collectively, people do not discriminate between low-credibility
content shared by humans versus social bots. It also means that
when we observe many accounts exposed to low-credibility
information, these are not just bots (re)tweeting it. In fact, we find
that the volume of tweets by likely humans scales super-linearly
with the volume by likely bots, suggesting that the reach of these
articles among humans is amplified by social bots. In other words,
each amount of sharing activity by likely bots tends to trigger a
disproportionate amount of human engagement. The same
amplification effect is not observed for articles from fact-checking
sources. Details are presented in Supplementary Discussion
(Supplementary Figs. 8, 9).

Another way to assess the impact of bots in the spread of low-
credibility content is to examine their critical role within the
diffusion network. Let us focus on the retweet network33, where
nodes are accounts and connections represents retweets of
messages with links to stories—just like the networks in Fig. 1b,
c, but aggregating across all articles from low-credibility sources.
We apply a network dismantling procedure34: we disconnect one
node at a time and analyze the resulting decrease in the total
volume of retweets and in the total number of unique articles.
The more these quantities are reduced by disconnecting a small
number of nodes, the more critical those nodes are in the
network. We prioritize accounts to disconnect based on bot score
and, for comparison, also based on retweeting activity and
influence. Further details can be found in the Methods.
Unsurprisingly, Fig. 5 shows that influential nodes are most
critical. The most influential nodes are unlikely to be bots,
however. Disconnecting nodes with high bot score is the second-
best strategy for reducing low-credibility articles (Fig. 5a). For
reducing overall post volume, this strategy performs well when
about 10% of nodes are disconnected (Fig. 5b). Disconnecting
active nodes is not as efficient a strategy for reducing low-
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according to the Mann–Whitney U test): super-spreaders are more likely bots
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credibility articles. These results show that bots are critical in the
diffusion network, and that targeting them would significantly
improve the quality of information in the network. The spread of
links to low-credibility content can be virtually eliminated by
disconnecting a small percentage of accounts that are most likely
to be bots.

Finally, we compared the extent to which social bots
disseminate content from different low-credibility sources. We
considered the most popular sources in terms of median and
aggregate article posts, and measured the bot scores of the
accounts that most actively spread their content. As shown in
Fig. 6, one site (beforeitsnews.com) stands out for the high degree
of automation, but other popular low-credibility sources also have
many likely bots among their promoters. The dissemination of

content from satire sites like The Onion and fact-checking
websites does not display the same level of automation; it appears
to be more organic.

Discussion
Our analysis provides quantitative empirical evidence of the key
role played by social bots in the spread of low-credibility content.
Relatively few accounts are responsible for a large share of the
traffic that carries misinformation. These accounts are likely bots,
and we uncovered two manipulation strategies they use. First,
bots are particularly active in amplifying content in the very early
spreading moments, before an article goes “viral.” Second, bots
target influential users through replies and mentions. People are
vulnerable to these kinds of manipulation, in the sense that they
retweet bots who post low-credibility content almost as much as
they retweet other humans. As a result, bots amplify the reach of
low-credibility content, to the point that it is statistically indis-
tinguishable from that of fact-checking articles. Successful low-
credibility sources in the United States, including those on both
ends of the political spectrum, are heavily supported by social
bots. Social media platforms are beginning to acknowledge these
problems and deploy countermeasures, although their effective-
ness is hard to evaluate11,25,35.

The present findings complement the recent work by Vosoughi
et al.2 who argue that bots alone do not entirely explain the
success of false news. Their analysis is based on a small subset of
articles that are fact-checked, whereas the present work considers
a much broader set of articles from low-credibility sources, most
of which are not fact-checked. In addition, the analysis of
Vosoughi et al.2 does not consider an important mechanism by
which bots can amplify the spread of an article, namely, by
resharing links originally posted by human accounts. Because of
these two methodological differences, the present analysis pro-
vides new evidence about the role played by bots.

Our results are robust with respect to various choices. First,
using a more restrictive criterion for selecting low-credibility
sources, based on a consensus among several news and fact-
checking organizations (see Methods), yields qualitatively similar
results, leading to the same conclusions. In addition, the findings
are not driven by any single source associated with a large portion
of the tweet volume. Second, our analysis about active spreaders
of low-credibility content being likely bots is robust with respect
to the activity threshold used to identify the most active sprea-
ders. Furthermore, bot scores are uncorrelated with account
activity volume. Third, the conclusions are not affected by the use
of different bot score thresholds to separate social bots and
human accounts. Details about all of these robustness analyses
can be found in the Supplementary Discussion (Supplementary
Figs. 10–15).

Our findings demonstrate that social bots are an effective tool
to manipulate social media. While the present study focuses on
the spread of low-credibility content, such as false news, con-
spiracy theories, and junk science, similar bot strategies may be
used to spread other types of malicious content, such as malware.
Although our spreading data are collected from Twitter, there is
no reason to believe that the same kind of abuse is not taking
place on other digital platforms as well. In fact, viral conspiracy
theories spread on Facebook36 among the followers of pages that,
like social bots, can easily be managed automatically and anon-
ymously. While the difficulty to access spreading data on plat-
forms like Facebook is a concern, the growing popularity of
ephemeral social media like Snapchat may make future studies of
this type of abuse all but impossible.

The results presented here suggest that curbing social bots may
be an effective strategy for mitigating the spread of low-credibility
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content, and that the bot score might provide a useful signal to
prioritize accounts for further review. Progress in this direction
may be accelerated through partnerships between social media
platforms and academic research11. For example, our lab and
others are developing machine learning algorithms to detect
social bots10,26,27. The deployment of such tools is fraught with
peril, however. While platforms have the right to enforce their
terms of service, which forbid impersonation and deception,
algorithms do make mistakes. Even a single false-positive error
leading to the suspension of a legitimate account may foster valid
concerns about censorship. This justifies current human-in-the-
loop solutions which unfortunately do not scale with the volume
of abuse that is enabled by software. It is therefore imperative to
support research both on improved abuse detection algorithms
and on countermeasures that take into account the complex
interplay between the cognitive and technological factors that
favor the spread of misinformation37.

An alternative strategy would be to employ CAPTCHAs38,
challenge–response tests to determine whether a user is human.
CAPTCHAs have been deployed widely and successfully to
combat email spam and other types of online abuse. Their use to
limit automatic posting or resharing of news links could help
stem bot abuse by increasing its cost, but also add undesirable
friction to benign applications of automation by legitimate enti-
ties, such as news media and emergency response coordinators.
These are hard trade-offs that must be studied carefully as we
contemplate ways to address the fake news epidemics.

The present study focuses on the role of social bots in the
spread of low-credibility content. These kinds of bots are often
deceptive. For example, none of the ten Twitter accounts most
active at retweeting articles in the core of the misinformation
network during the study period identified themselves as bots33.
One question that has not been addressed is whether similar
patterns of amplification might be observed in the spread of

content from legitimate, high-quality news sources. Mainstream
media do use automated accounts to post news feeds, although
these bots do not deceptively impersonate humans. While pre-
liminary analysis suggests that mainstream media do not display
the same systematic bot support observed for low-credibility
sources (Supplementary Fig. 8), the use of bots to promote
legitimate news content deserves further investigation.

Finally, the present study focuses on US sources during the
period preceding and following the 2016 US presidential election.
It will be important to explore whether bot manipulation of social
media platforms is concentrated around major electoral events in
the United States and other countries.

Methods
Hoaxy data. Data about articles shared on Twitter were collected through Hoaxy,
an open platform developed at Indiana University to track the spread of claims and
fact checking33. A search engine, interactive visualizations, and open-source soft-
ware are freely available (hoaxy.iuni.iu.edu). The data are accessible through a
public application program interface (API). Further details are presented in Sup-
plementary Methods.

The collection period for the present analysis extends from mid-May 2016 until
the end of March 2017. During this time, we collected 389,569 articles from 120
low-credibility sites. We also tracked 15,053 stories published by independent fact-
checking organizations, such as snopes.com, politifact.com, and factcheck.org.

The list of low-credibility sources was obtained by merging several lists
compiled by third-party news and fact-checking organizations or experts. The
collection started with 71 sites and 49 more were added in mid-December 2016.
The full list of sources and their provenance is reported in Supplementary Table 1.
Many low-credibility sources label their content as satirical, and viral satire is
sometimes mistaken for real news. For these reasons, satire sites are not excluded
from the list of low-credibility sources. However, our findings are robust with
respect to this choice. The Onion is the satirical source with the highest total
volume of shares. We repeated our analyses of most viral articles (e.g., Fig. 3a) with
articles from theonion.com excluded and the results were not affected.

We also repeated the analysis using a more restrictive criterion for selecting
low-credibility sources, based on a consensus among three or more news and fact-
checking organizations. This yields 327,840 articles (86% of the total) from 65 low-
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credibility sources, also listed in Supplementary Methods, where we show that the
results are robust with respect to these different source selection criteria.

Our analysis does not require a complete list of low-credibility sources, but does
rely on the assumption that many articles published by these sources can be
classified as some kind of misinformation or unsubstantiated information. To
validate this assumption, we checked the content of a random sample of articles.
For the purpose of this verification, we adopted a definition of “misinformation”
that follows industry convention and includes the following classes: fabricated
content, manipulated content, imposter content, false context, misleading content,
false connection, and satire39. To these seven categories we also added articles
whose claims could not be verified. We found that fewer that 15% of articles could
be verified. More details are available in Supplementary Methods (Supplementary
Figs. 3, 4).

Using the filtering endpoint of Twitter’s public streaming API, we collected
13,617,425 public posts that included links to articles from low-credibility sources
and 1,133,674 public posts linking to fact checks. This is the complete set of tweets
linking to these articles in the study period, and not a sample (see Supplementary
Methods for details). We extracted metadata about the source of each link, the
account that shared it, the original poster in case of retweet or quoted tweet, and
any users mentioned or replied to in the tweet.

We transformed links to canonical URLs to merge different links referring to
the same article. This happens mainly due to shortening services (44% links are
redirected) and extra parameters (34% of URLs contain analytics tracking
parameters), but we also found websites that use duplicate domains and snapshot
services. Canonical URLs were obtained by resolving redirection and removing
analytics parameters.

In the targeting analysis (Fig. 3b), we exclude mentions of sources using the
pattern “via @screen_name.”

Botometer scores. The bot score of Twitter accounts is computed using the
Botometer classifier which evaluates the extent to which an account exhibits
similarity to the characteristics of social bots26. The system is based on a supervised
machine learning algorithm leveraging more than a thousand features extracted
from public data and metadata about Twitter accounts. These features include
various descriptors of information diffusion networks, user metadata, friend sta-
tistics, temporal patterns of activity, part-of-speech, and sentiment analysis. The
classifier is trained using publicly available datasets of tens of thousands of Twitter
users that include both humans and bots of varying sophistication. The Botometer
system is available through a public API (botometer.iuni.iu.edu). It has also been
employed in other studies2,40 and is widely adopted, serving hundreds of thousand
requests daily.

For the present analysis, we use the Twitter Search API to collect up to 200 of an
account’s most recent tweets and up to 100 of the most recent tweets mentioning
the account. From these data we extract the features used by the Botometer
classifier. We use logistic calibration to make the bot scores calculated by the
classifier easier to interpret as confidence levels (see Supplementary Methods and
Supplementary Fig. 5).

There are many types of bots and humans using different levels of automation.
Accordingly, Botometer provides a score rather than a binary classification.
Nevertheless, the model can effectively discriminate between human and bot
accounts of different nature; fivefold cross-validation yields an area under the
receiver operating characteristic curve (AUC) of 94%26. (An AUC value of 50%
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indicates random accuracy and 100% means perfect accuracy.) When a binary
classification is needed, we use a bot score threshold of 0.5 which maximizes
accuracy26. See Supplementary Methods and Discussion for further details about
bot classification and the robustness of results based on a bot score threshold.

Retweet network. The network studied in the dismantling analysis (Fig. 5) is
based on retweets with links to articles from low-credibility sources, posted before
the 2016 US presidential election (16 May–7 November 2016). The network has
227,363 nodes (accounts) and 816,453 directed edges. Each edge is weighted by the
number of retweets between the same pair of accounts. When an account is dis-
connected, all of its incoming and outgoing edges are removed. When we dis-
connect a retweeting node i that was in turn retweeted by some node j, only i is
removed because in the Twitter metadata, each retweet connects directly to the
account that originated the tweet. Given the directionality of edges, retweeting
activity is measured by node in-strength centrality (weighted in-degree) and
influence by out-strength centrality (weighted out-degree).

Code availability. Code used to carry out the analyses in this manuscript is
available on Github (github.com/IUNetSci/HoaxyBots). Hoaxy is an open-source
project and all system software is public (github.com/IUNetSci). Reasonable
additional requests and questions about code can be directed to the corresponding
author.

Data availability
There are two data sources analyzed during the current study: Hoaxy for data about
article diffusion, and Botometer for data about Twitter bot scores. Further details
are available in Supplementary Methods. Datasets used to carry out the analyses in
this manuscript are available on Zenodo (https://doi.org/10.5281/zenodo.1402267).
Additionally, data about article diffusion and bot scores are available through the
public Hoaxy API (hoaxy.iuni.iu.edu) and the public Botometer API (botometer.
iuni.iu.edu), respectively. Reasonable additional requests and questions about data
or APIs can be directed to the corresponding author.
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