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Abstract

The presence of web-based communities is a distinctive signature of Web 2.0. The web-based feature means that
information propagation within each community is highly facilitated, promoting complex collective dynamics in view of
information exchange. In this work, we focus on a community of scientists and study, in particular, how the awareness of a
scientific paper is spread. Our work is based on the web usage statistics obtained from the PLoS Article Level Metrics dataset
compiled by PLoS. The cumulative number of HTML views was found to follow a long tail distribution which is reasonably
well-fitted by a lognormal one. We modeled the diffusion of information by a random multiplicative process, and thus
extracted the rates of information spread at different stages after the publication of a paper. We found that the spread of
information displays two distinct decay regimes: a rapid downfall in the first month after publication, and a gradual power
law decay afterwards. We identified these two regimes with two distinct driving processes: a short-term behavior driven by
the fame of a paper, and a long-term behavior consistent with citation statistics. The patterns of information spread were
found to be remarkably similar in data from different journals, but there are intrinsic differences for different types of web
usage (HTML views and PDF downloads versus XML). These similarities and differences shed light on the theoretical
understanding of different complex systems, as well as a better design of the corresponding web applications that is of high
potential marketing impact.
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Introduction

In the era of Web 2.0, individuals are tightly connected in the

virtual worlds and form various online communities. Recently, the

propagation of information in these online communities has

gained much attention [1], partly because of the massive

popularity of online social networking sites and their potential

marketing impact. Information propagation is a complex dynam-

ical process rooted in the interactions between huge numbers of

heterogeneous individuals. As online communities by their nature

capture a complete record of their members, they offer

unprecedented opportunities to study emergent properties of

human behaviors. Generally speaking, a community is character-

ized by a common interest. For example, users from the website

CNET (http://www.cnet.com/) form a community that are

primary interested in information about gadgets; scientists

following a certain set of scientific journals comprise another

community in which the awareness of scientific papers is being

spread. Exploring the propagation of information in different

communities sheds light on the intrinsic differences between

different types of information, and it is interesting to question

whether different communities share any universal behavior. So

far most studies have focused on popular communities of general

users like digg.com, myspace and Flickr, and little work has been

done on more specific communities in which the number of users

is smaller, and the users tend to be more homogeneous. In this

work, we look at the signatures of scientific information by

focusing on how the awareness of scientific papers spread within

specific communities of scientists.

Over the last two decades, the WWW has revolutionized

scientific research, in particular by speeding up the rate of the

spread of information. Nowadays, once a paper is electronically

published on a journal website, the information can propagate

rapidly in the community, partially due to various scientific blogs

and folksonomy websites like CiteULike and Connotea. The

spread of a paper will then be reflected at the level of web usage

statistics, in particular, the number of HTML views, i.e. the

WWW traffic of the webpage corresponding to the paper. In this

work, we regard readers of the 6 PLoS journals (PLoS Biology,

PLoS Computational Biology, PLoS Genetics, PLoS Medicine,

PLoS One and PLoS Pathogens) as a community of scientists. As

an estimation of the size of the community, there were over 4000

papers published in 2008 and the total HTML views numbered

over 7 million. We quantitatively examine the propagation

process by studying the monthly web usage statistics of individual

papers reported in the PLoS Article-Level Metrics (ALM) dataset.

The dataset contains the number of HTML views; the number of

PDF and XML downloads of more than 13000 papers published

from 2003 to 2009 on a monthly basis since their publication.

Compiled by PLoS, the ALM dataset (http://www.plos.org/
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cms/node/485) also includes various statistics such as the number

of citations, blog coverage and social bookmarking. These

statistics are designed to provide a more thorough measure of

the impact of a paper.

Results

Correlation between various statistics in the PLoS Article-
Level Metrics

To develop a better intuition regarding the PLoS Article-Level

Metrics, we examined the correlation pattern between various

statistics. Figure 1 shows the Spearman correlation matrix of 18

different metrics, including the article usage statistics (HTML

views, PDF downloads, XML downloads), citation statistics

(PubMed, CrossRef, Scopus), blog coverage (Bloglines, Nature

Blogs, Postgenomics), social bookmarking (CiteUlike, Connotea)

and various online ratings employed in the PLoS website. As

shown in Figure 1, the article access metrics, the citation metrics

and the social bookmarking metrics broadly form a cluster,

signified by relatively high correlation coefficients among them. It

is interesting to point out that the number of citations is best

correlated with the access statistics (with average spearman

correlation r = 0.44, the highest correlation with the number of

PDF downloads (r = 0.48)), and then the number of bookmarking

(average spearman correlation r = 0.2). Among the article access

statistics, the number of PDF downloads strongly correlates with

Figure 1. The Spearman correlation between various Article Level Metrics compiled by PLoS. The full meaning of the labels are: note
threads (number of notes users put on an article), replies to comments (number of replies to comment threads of an article), rating+comments
(number of users who leave a rating as well as a comment to an article), no. of ratings (how many times an article has been rated), average rating (the
average rating an article received), comment threads (number of comment threads users put on an article), trackbacks (the number of trackbacks that
have been made to this article by external sites), Bloglines, Nature Blogs and Postgenomics (the number of times an article have been blogged by the
respective sites, Connotea and CiteUlike (the counts of how many bookmarks have been made to an article by users of these social bookmarking
sites), CrossRef, PubMed and Scopus (the counts of how many citations are recorded in these databases), HTML views, PDF downloads and XML
downloads (the counts of HTML views, PDF and XML downloads for each article). The article access metrics, the citation metrics and the social
bookmarking metrics form a broad cluster.
doi:10.1371/journal.pone.0019917.g001
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the number of HTML views (r = 0.91, P = 0), and these article

access statistics generally agree with social bookmarking metrics

(Connotea and CiteUlike) and blog coverage metric (Postge-

nomics), suggesting media coverage or spread of knowledge

between individuals might contribute to the access statistics of

articles, or vice versa.

Decay in the number of web accesses
We next move our focus to the empirical observation of

information propagation using a time series of web accesses. As

described above, the number of PDF downloads and the number

of HTML views are strongly correlated, and we thus use the

HTML views as a proxy to measure information propagation. We

considered 7000 papers that have been published for at least one

year, and counted the number of HTML views they received at

different time points after publication. These papers were

published in one of the six PLoS journals: PLoS Biology, PLoS

Computational Biology, PLoS Genetics, PLoS Medicine, PLoS

One and PLoS Pathogens. Figure 2 shows the decrease of the

average number of views. As expected, on average, the older a

paper is, the less attention it receives. In particular, from the first

month to the second month, the decay is rapid, while later on the

decay goes slower. Moreover, it is interesting to point out that such

decay patterns are remarkably similar for the six different PLoS

journals listed (see the inset of Figure 2), including ones for broad

audiences like PLoS Biology, and ones for more specialized

readers like PLoS Computional Biology.

While the number of HTML views better reflects the knowledge

of the existence of a paper, we repeated the decay pattern analysis

for the number of PDF downloads, which might arguably measure

the number of times a paper is read, and also the number of XML

downloads. Figure 3 shows the decay patterns for all three types of

web accesses. Being consistent with the high correlation observed

in Figure 1, the decay pattern of PDF downloads resemble the

pattern of HTML views in the sense both of them possess the two

phases of decay. Nevertheless, as shown in Figure 3, the decay of

XML downloads does not share the same characteristics.

The long tail distribution of cumulative number of HTML
views

In addition to the average number of HTML accesses as shown

in Figure 2, we studied how the number of accesses of individual

Figure 2. The average number of HTML views of articles in six PLoS journals. We study the access statistics of 7000 publications that have
been published for at least one year. These publications belong to 6 different PLoS journals: PLoS Biology (1177), PLoS Computational Biology (688),
PLoS Genetics (723), PLoS Medicine (1300), PLoS One (2796) and PLoS Pathogen (543). In average, the number of HTML views of an old paper is lower.
The decay process is much faster from the first month to the second month after publication, compared to the subsequent period. The inset shows
the average accesses of different journals normalized by the corresponding values of the first month. Note that the patterns are remarkably similar for
the six different journals.
doi:10.1371/journal.pone.0019917.g002
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papers are distributed. For the 7000 papers that have been published

for at least one year, we examined the cumulative number of HTML

views at a time 3 months after publication. As shown in Figure 4A,

the logarithm of the numbers is reasonably well fitted by a normal

distribution using the maximum likelihood method, suggesting that

the number of HTML views of the 7000 papers follows a lognormal

distribution. We then looked at the normal Q-Q plot of the

logarithm of the HTML views. Apart from a slightly longer tail, the

plot is close to a straight line (Figure 4B), meaning that the majority

of the data are well explained by a lognormal distribution.

While the lognormal distribution is a reasonable approximation

to the distribution of cumulative HTML views at a certain instant,

we ask whether this case is true for any time point. As the lifespan

of papers increases, the cumulative views of all individual papers

increase monotonically. As shown in Figure 4C, the Q-Q plots

between the cumulative accesses at two different months are all

very close to straight lines. This result suggests that the cumulative

HTML views at different times follow the same distribution up to

certain shift and scaling factors.

A stochastic model of information propagation
It is well known that lognormal distributions can be generated by

the so-called random multiplicative processes. A simple stochastic

model, which was recently used by Wu and Huberman in a study of

the voting statistics in digg.com [2], can be easily applied in our

scenario to examine information propagation in a scientific

community. There are two basic assumptions in this model:

1.) After a scientist has accessed a paper (and hopefully read it as

well), he/she might spread the information of the paper to his

friends, colleagues or students. The information would then be

further spread via a cascade of social interactions. 2.) Independent

from the intrinsic properties of the paper, say relevance and quality,

the chance of someone passing on the information in an old paper is

less than that of passing on a new paper. Suppose Nt is the

cumulative number of HTML views at time t. The dynamical

process is mathematically written as Nt~Nt{1(1zrtXt), where Xi

are positive, independent and identically distributed random

variables with finite mean m and variance s2 (Figure 5A). The

mean m can be interpreted as, on average, the fraction of scientists

who would spread the information in each step of the cascade. The

additional parameter rt, is defined to moderate the average rate of

spread of information at time t. As the time series are given in the

resolution of month, rt is a piecewise constant function such that

rt~r(j) if t is at the jth month after publication.

The simple model is able to explain the observed lognormal

distributions. When time steps are small, Xt is small and therefore

we write (1zriXi)~exp(riXi). The cumulative accesses of a paper

at time t can be written as Nt~N0 P
t

i~1
exp(riXi), where N0 is the

size of initial sources. Taking the logarithm of both sides, we have

log Nt{log N0~
Pt

i~1

riXi. The righthand side converges to a

normal distribution. As N0 is comparably small, the cumulative

accesses of a paper could be viewed as a random variable drawn

from a lognormal distribution. Furthermore, the average value

Slog NtT at the k months after publishing is proportional to the

sum of the modulating factors, given by m
Pk

j~1

r(j).

Figure 3. The decay patterns of three types of web accesses: HTML views, PDF downloads, and XML downloads. The decay pattern of
PDF downloads are consistent with the pattern of HTML views. Both profiles possess the same two phases of decay. The profile of XML downloads
does not share the same characteristics.
doi:10.1371/journal.pone.0019917.g003
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By fitting the data to the stochastic model, we further extracted

the parameters r(j), which are proportional to the rates of

information propagation at different stages. As shown in

Figure 5B, there are two phases of decay: the rate drops rapidly

from the first month to the second month after publication, and

then a slow decay which follows a power law with exponent

20.98. Indeed, the second regime is well fitted by the power law

(R2 = 0.997), the initial rapid decay is significantly deviated from

this power law (see caption for details).

Discussion

We have empirically studied the online access statistics in the

PLoS ALM dataset. We proposed to use the number of HTML

views of a paper to quantify by how far the paper has percolated in

the scientific community, and explained the time series of HTML

views using a simple stochastic model. We found that the rate of

information spread decreases as a function of time after publication,

and there are two decay regimes: a rapid drop from the first month

to the second month after publication, and a slow power law decay

afterward (Figure 5B). The power law decay is not unexpected. The

pattern is consistent with the scenario of receiving citations. While

researchers tend to have an exponentially decaying memory

regarding the papers they cite (i.e. a researcher is exponentially

more likely to cite a new paper than an old paper) [3][4], for a single

publication, the number of citations it received as a function of time

decays in a power law fashion [5]. In particular, as reported in Ref.

[5], the power law exponent is 20.94, which is remarkably close to

Figure 4. The number of cumulative HTML views follows a long tail distribution, reasonable well fitted by a lognormal distribution.
A. The cumulative number of HTML views of 7000 papers at the 3rd month after publication is fitted using the maximum likelihood method by a
lognormal distribution, with the mean and variance of the logarithmic values as shown. B. The normal Q-Q plot of the logarithm of the HTML views
shown in panel A. Apart from a slightly longer tail, the plot is close to a straight line, meaning that the majority of the data is well explained by a
lognormal distribution. C. The Q-Q plot between the cumulative accesses of the same set of 7000 papers at the 3rd month and at the 10th month after
publication. The plot is very close to a straight line, suggesting the cumulative HTML views at different time points follow the same distribution up to
certain shift and scaling factors.
doi:10.1371/journal.pone.0019917.g004
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the decay exponent we observed in accesses. Of particular interest is

the extremely high access number in the first month and the

corresponding rapid decay. We refer to this behavior as an effect of

fame, which is probably exaggerated in modern days due to

immediate online media coverage. What is the underlying

mechanism of fame? Due to the low temporal resolution of the

time series (in a monthly basis), the PLoS ALM data is not able to

provide enough insights. However, with a higher temporal

resolution, several studies have shed light to the question in the

framework of relaxation dynamics. These studies focus on systems

like the number of views of videos in YouTube [6], the sales of books

and music in Amazon [7], and the amount of donation in response

to the tsunami at Dec, 2004 [8]. For instance, with time series in a

resolution in a daily basis, Ref. [6] identified a class of videos whose

viewing involves nontrivial herding behavior analogously to what

we referred to as fame. Nevertheless, in terms of downloads of

publications, it is still worthwhile to explore at the level of individual

paper, the relationship between the fame received at the beginning

and the later impact of a paper, the number of downloads later on,

and even the number of citations.

We have emphasized that a lognormal distribution is a

reasonable approximation of the empirical data. Nevertheless, as

shown in Figure 3, the tail of the distribution is not perfectly fitted

by a lognormal distribution, suggesting that the current model

cannot fully capture the dynamics of publications that receive

extremely high attention. These extremely high downloads could

be the results of mechanisms such as the Matthew effect (richer get

richer) [9]. It is important to mention that the current formalism is

a mean-field model, in which details such as the inhomogeneity

between different research fields, or the sub-communities structure

among scientists are not captured. With the availability of many

more social networks among research communities, future work

could be done on more specific propagation channels, for instance

the social networks built on folksonomy resources such as

CiteULike, or in an almost real-time fashion: the twitter network

[10]. To explore the inhomogeneity between different research

fields, we repeated the analysis of Figure 2 for papers in different

topics (see Methods). As shown in Figure S1, the accesses of

different groups of papers decrease in a similar fashion.

The emergence of lognormal distribution via random multipli-

cative processes has been studied for a long time [11], and appears

in a wide range of applications. Examples include the MacArthur

model for species abundance [12] and the Black-Scholes Model in

finance [13]. More recently, it has been used to for the description

of popularity patterns in many contexts such as Internet traffic of

websites [14][15], proportional elections [16] and citation statistics

[17][18][19]. In particular, Huberman et.al. used a random

multiplicative process to model the number of votes a story

received in digg.com [2]. Ref. [2] introduced the concept of

novelty and explained the voting statistics in terms of the decay of

novelty. Although the idea of novelty is similar to what we refer to

as information in this study, the pattern of two decay regimes is not

observed in the voting statistics. This is because, unlike scientific

literature, news articles appearing in digg.com do not have long-

term followers, and fame thus dominates the voting process.

We have questioned whether the decay patterns are consistent

among three types of web usage statistics: the number of HTML

views and the number of PDF and XML downloads. Interesting

enough, the number of XML downloads is not consistent with the

other two. The fact that XML downloads behave differently from

the usage of both HTML and PDF is also presented in the

correlation map shown in Figure 1. This is probably because XML

Figure 5. A stochastic model of information diffusion. A. After a scientist has accessed a paper, he/she might spread information from the
paper to his friends, colleagues or students. The information would then be further spread via a cascade of social interactions. The cumulative
number of accesses at time t is pictured by the number of scientists enclosed in the concentric circles. Mathematically, Nt~Nt{1(1zrtXt), where Xt s
are positive, independently and identically distributed random variables with finite mean m and variance s2 , and rt is a modulating factor (see main
text). B. Modulating factors decay with respect to time. The value at the jth month, r(j), is normalized by the value at the first month r(1). The decay of
modulating factors is divided into two regimes: a rapid drop from the first month to the second month, and a low power law decay afterward. The
power law regime is best fitted by the function 0:53t{0:98, with R2~0:997. The residuals for the points in the second regime are in order of 1023. The
residual of the first data point, compared to the fitted curve, is 0.48. The point is significantly deviated from the power law regime.
doi:10.1371/journal.pone.0019917.g005

PLoS Information Diffusion

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e19917



downloads are performed by machines, and thus the decay profile

follows a different characteristic time scale. In fact, unlike the

usage of HTML and PDF, the number of XML downloads does

not follow a lognormal distribution. This is not entirely surprising

as machines visit websites regularly without talking to each other;

the underlying mechanism is not a random multiplicative process.

Over the last decades, electronic publications have revolution-

ized our ways of publishing, leading to many interesting new

questions as well as methods in scientometrics. For instance, the

relationship between the number of citations acquired by an

article to the number of downloads or accesses [20][21], as well as

the effects of new practices such as open access publishing [22],

have been explored. Recently, the sequences of access of articles

(clickstream) have been used to generate a visual map of science

[23]. We believe that the era of Web 2.0 will bring further

questions and challenges to scientometrics or bibliometrics. For

instance, metrics like the PLoS Article-Level metrics will become

more and more popular, as there will be many different ways for a

paper to be exposed to the community, and thus the impact of a

paper would not be able to be merely quantified by the number of

citations. More importantly, data such as the web access statistics

enable us to further identify and quantify the collective effects of

scientists. The fame and the spread of information described in this

study is only one of many interesting collective phenomena.

Methods

The PLoS Article-Level Metric (ALM) dataset was downloaded

from the PLoS website (http://www.plos.org/cms/node/485) in

August 2009. The dataset contains information about 13828

papers published from 2003 to 2009 in 8 PLoS journals: PLoS

Biology, PLoS Computational Biology, PLoS Genetics, PLoS

Medicine, PLoS One, PLoS Pathogens, PLoS Neglected Tropical

Diseases and PLoS Clinical Trials. For each article, one or several

topic areas are assigned. We focused on the web access statistics, in

which the number of HTML views, the number of PDF and XML

downloads of each article are given on a monthly basis after their

publication.

Supporting Information

Figure S1 The average number of HTML views of
articles in different topics. The 7000 papers that have been

published for more than a year are classified into different topics

by PLoS ALM dataset. We plot the median number of HTML

accesses against the time of publications for several selected topics.

The number of papers in each of the selected topics are:

mathematics (446), science policy (324), physics (110), public

health and epidemiology (1729), molecular bio (1742), neurosci-

ence (1805). Note that a paper could be classified into more than

one topic. The trends of different topics are consistent to one

another.

(TIFF)
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