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The Spread of the Potential on a Homogeneous Tree (*). 

CARLA CATTANEO 

Summary. - We compute explicitly the solution of the heat equation on a homogeneous tree F 
whose edges have suitable positive conductances and are identified with copies of segments 
[0, 1 ] with the condition that the sum of the weighted normal exterior derivatives is 0 at 
every node (Kirchhoff type condition). Furthermore we find the expression of the semigroup 
of linear operators on L 2(F, c) having A as infinitesimal generator. These results derive 
from the equation governing the spread of the potential along the dendrites of a neuron. 

1.  - I n t r o d u c t i o n .  

The aim of this paper is to study the equation governing the spread of the potential 

(1) 8V  _ 8 2V  V 

8t 8x 2 

on an infinite homogeneous tree whose edges have suitable positive conductances and 
are identified with copies of segments [0, 1] with the condition that the sum of the 
weighted normal exterior derivatives is 0 a t  every node (Kirchhoff type condi- 
tion). 

Problems of this type arise studying the model introduced to determine the spread 
of the potential along neurons. Neurons are the main components of nervous tissue, 
and they have a very irregular shape. In every neuron we can distinguish a cellular 
body containing the nucleus and prolongations having different shape and structure 
called axon, dendrites and additional prolongations (sometimes absent). The axon is 
usually composed by only one prolongation whose diameter remains constant up to the 
terminal ramification that can also happen at a big distance from the cellular body. The 
equations governing the spread of the potential along the axon are not linear. On the 
other hand, the dendrites are the lines of transmission of the potential where the in- 

(*) Entrata in Redazione il 14 settembre 1995 e, in versione riveduta, il 13 maggio 1996. 
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duction is negligible (see e .g .J .  RINZEL-W. RALL, ref. [15], [16]). In abstract, we can 
compare the dendrites to cylinders having variable diameter and joined to form a 
structure that we can represent as a tree (i.e. a connected graph without circuits). This 
tree can be considered as a particular case of a ramified space, according to the defini- 
tion introduced by S. NICAISE (see ref. [9]). 

The equations governing the spread of the potential on every edge of the dendritic 
tree are (see e .g .J .  RINZEL-W. RALL, ref. [15], [16]): 

8 V  8i 8 V  
(2) ri  - , - c - -  - g V  , 

8x  9x 8t 

where 

i is the axial current, 

V is the interior potential, 

r is the resistance per unit length, 

c is the capacity per unit length, 

g is the conductibility per unit length. 

Moreover the potential must be continuous and the sum of the currents arriving at 
every node must be 0. By a suitable change of variables in equations (2) one obtains 
equation (1) and the weighted Kirchhoff type conditions which appear in equation (12) 
below. 

The study of equation (1) on finite trees or, more generally, on finite graphs has 
been dealt by S. NICMSE and J. P. ROTH in the framework of the abstract theory intro- 
duced by G. LUMER (see res [5]). In particular, S. NICAISE determined the spectrum of 
the operator A u  = ~ u / S x  ~ with Kirchhoff type conditions, Dirichlet type conditions, 
and mixed type conditions on finite graphs or on Z+, the infinite graph represented by 
the one way path (see ref. [8], [10]). J. P. ROTH constructed the fundamental solution of 
the heat equation on finite graphs and applied it to the study of the asymptotic be- 
haviour of the functions associated with the spectrum of the operator z] (see ref. [17]). 
The operator zl is a particular case of the operator L defined on graphs by L u  = 

= - ( 8 / S x ) ( p ( x ) ( S u / S x ) )  + q(x)  u, for every edge. The operator L arises in a natural 
way in various physical problems (oscillations of elastic nets, oscillations in hydraulic 
and electrical networks, electron oscillations of complex molecules, etc.). The operator 
L on finite graphs has been studied by several authors. For example see I. G. KARELI- 
NA, 0. M. PENKIN, Yu. V. POKORNYI (see ref. [13], [14]). 

In this paper we will determine the solution of the spread equation (1) with Kirch- 
hoff type condition at every node, when F is an infinite homogeneous tree of degree 
q I> 3 (i.e. every vertex has exactly q edges branching out from it) and every edge of F 
has a positive conductance. Biologically, this represents a very simplified model with no 
Dirichlet type conditions (in particular there are no terminal nodes). We observe that 
the method adopted in this paper can be extended to more general trees, for example, 
to trees whose vertices have uniformly bounded degrees. 
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In section 2 we introduce our notation and the basic facts. Namely, we describe the 
tree F as a CW-complex, so that we can introduce a natural topology on F. Furthermore 
we compute the number of all the paths joining two points of F, and we illustrate the 
conditions on the conductances assigned to the edges of F (these conditions are more 
general than in the biological model of J. RINZEL and W. RALL (see ref. [15], 
[16])). 

In section 3 we define the spaces L2(F, c) and Hm(F, c). We also illustrate the vari- 
ational formulation of our problem. In particular we show how we can define the Lapla- 
cian A on a tree using the setting of J. L. LIONS (see ref. [4]), and we describe the do- 
main and the basic properties of A. 

In section 4 we introduce the fundamental solution of the heat equation on a homo- 
geneous tree. First we define such a solution abstractly and we study its regularity 
properties. Then, in section 5, we verify that this function is actually a fundamental sol- 
ution. Moreover, we observe that if there exists a function with the properties charac- 
terizing the fundamental solution of the heat equation, then this function is just the 
function defined in section 4. In order to do this, we generalize the method adopted by 
J. P. ROTH (see ref. [17]) for finite graphs and so we also obtain that the fundamental 
solution of the heat equation on F is the sum of two terms: the source solution of the 
heat equation on R (solution suitably weighted) and a series obtained by imposing 
Kirchhoff type conditions at every node of F. 

We notice that a construction of the heat kernel for homogeneous trees appears in a 
paper of B. GAVEAU - M. 0KADA - T. 0KADA (see ref. [2]) under the more restrictive as- 
sumption that all the conductances are equal to 1. In this paper of B. GAVEAU-M. OKADA 
- T. OKADA, the heat kernel is expressed as a contour integral and some asymptotic for- 
mulas are deduced (see also T. OKADA, ref. [11]). 

In final section 6, we obtain the solution in H2(F, c) of the Cauchy problem associ- 
ated to the spread equation of the potential i.e., the solution of the following Cauchy 
problem on the Hilbert space L2(F, c) 

(3) 
gu = A u - u ,  
at 

u(O) = f  , 

t > O ,  

In order to do this, first we determine the solution in H2(F, c) of the following Cauchy 
problem on the Hilbert space L2(F, c) 

(3') 

au 
- - ~ = A u ,  

u(O) =f .  

t > O ,  

We prove that, for every f i n  L 2 (F, c), the solution of (3'), denoted by Pt fi is expressed 
by integrating on F the initial value f against the fundamental solution, and moreover it 
turns out that Pt is the semigroup of linear operators on L 2(F, c) having A as infinitesi- 
mal generator. Then, by the general theory of semigroups (see e.g.A. PAZY, ref. [12]), 
we know that the solution of (3) is ( e x p ( - t ) ) P t f .  
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2.  - N o t a t i o n .  

Let F = (V, E) be a homogeneous tree of degree q t> 3 where Vis the vertex set and 
E the edge set. Let  us fix a reference vertex o in V which we will also call root of F. 

We call geodesic distance between two vertices v and v '  the smallest number of 
edges joining v to v ' .  

We say that two edges e and e'  are neighbours, we write e - e ', if they have a com- 
mon endpoint (i.e. a common vertex). We denote by E" the set of all the edges which are 
neighbours of e (note that E~' has 2 ( q -  1) elements). 

We identify every edge e of F with the real interval [0, 1], for istance in such a way 
that the endpoint having the smaller geodesic distance from o is identified with 0 (the 
other endpoint of the edge e is then identified with 1). In this way we associate with F a 
CW-complex having only cells of dimensions 0 and 1 (see e . g . J . R .  MUNKRES, ref. [7]). 
The cells of dimension 1 are the intervals [0, 1] which we have identified with the edges 
e of E, and the cells of dimension 0 correspond to the vertices v of V. The same letter F 
will be used from now on to denote the associated CW-complex. Note that F is a metric 
space in a natural way. 

We can orient every edge e of F in two opposite ways. We call an arc an oriented 
edge and we denote by A the set of all the arcs of F. For every edge e, we denote by + e 
the orientation (arc) of e such that the first endpoint has smaller geodesic distance 
from o than the second endpoint, and by - e  the opposite arc. We sometimes write l el 
to denote the unoriented edge e. If  no confusion can arise, we denote by e both the ori- 
ented and the unoriented edge e. For every arc e we denote by I(e) the initial vertex of e 
and by T(e) the terminal vertex. So I ( + e ) =  T ( - e )  and T ( + e ) = I ( - e ) .  

We define a path C to be a finite sequence of arcs (e0, ..., era) such that T(ej) = 
= I(ej + 1) for 0 < j  ~< m - 1. We denote by - C the path obtained by reversing all the ori- 
entations of the arcs of C i.e., if 

C = (e0, ..., e,~) 

then 

- C  = ( - e ~ ,  ..., -eo)  

We call length of the path C, denoted by/ (C) ,  the number of the arcs of C. 
For every point x of F, we denote by E~ the set of all the edges containing x, and by 

E~ the set of all the edges which are neighbours of the edges of E~. So, if x is in V, then 
E~ has q elements, the q edges branching out from x, while if x is not in V, then E~ has 
only one element, the edge e containing x and moreover in this case, E ;  is equal to 
E ' .  

If  x and y are points of the same edge, let us denote by d(x, y) the (euclidean) dis- 
tance between x and y. 

Let x and y be points of F. We call path joining x to y a path whose first arc is one of 
the arcs obtained from the edges of E~ and whose last arc is one of the arcs obtained 
from the edges of Ey. We observe that if x and y belong to the same edge e, then there 
exist two paths joining x to y made by only one arc (i.e. + e, - e ) .  

We call geodesic path joining x to y a path joining x to y having minimum length. 
We observe that if x and y do not belong to the same edge, then there exists only one 
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geodesic path joining x to y. We will denote it by C*. Note that - C *  is the only 
geodesic path joining y to x. On the other hand, if x and y belong to the same edge e, 
then there exist two geodesic paths joining x to y (i.e. + e, - e), and moreover they are 
also the geodesic paths joining y to x. 

Set 

(4) 
0 if x and y belong to the same edge,  

O( x , y) = l( C * ) - 2 otherwise. 

Let  x be a point of an edge e and let y be a point of an edge e '. We denote by 
Cm(e, e ') the set of all the paths having length m, joining x to y and whose fwst arc is 
one of two arcs obtained by e and whose last arc is one of two arcs obtained by e '  
i.e., 

(5) Cm(e, e ' )  = { C e C :  l(C) = m  and C= (_+e, el, ..., e~-2, -+e')} 

where C will denote throughout the paper the set of all the paths of F. 

LEMMA 1. - For all m 

card (Cn(e, e ')) ~< 2q m-1 

PROOF. - We denote by Cm(e) the set of all the paths having length m and whose 
fwst arc is one of two arcs obtained by the edge e i.e., 

Cm(e) = { C e C :  l(C) = m  and C =  (-+e, el, ..., e~ - l ) } .  

The paths of Cm(e, e ' )  are particular paths of C~(e), so it is enough to evaluate the 
cardinality of Cm(e). We observe that Cl(e) has exactly 2 elements. We fLX a path 
( - e ,  e l , . . . , e ,~_ l )  of Cm(e) and we consider the q paths {(+-e, e l , . . . , e m - l , ~ j ) ,  
1 <~ j ~< q } of Cm § 1 (e) obtained by adding to the arcs of this path ( _+ e, el, ..., em_ 1) any 
one of the arcs ~j obtained by the q edges of Er(~m_ 1) and having. I(~j) = T(e,~ _ 1). We get 
immediately that 

card (Cm(e, e ' ))  ~< card ((Cm(e)) = 2q m-~ �9 

We suppose assigned to every edge e of F a positive conductance c(e) with the fol- 
lowing condition 

c(e) 
(6) 

c(e')  
- -  ~< K if the edges e, e ' a r e  neighbours 

where K is a positive constant such that K 1> 1. 
For every vertex v of F we denote by c(v) the sum of the conductances of all the 

edges branching out from v i.e. 

(7) c(v) = ~ c(e). 
eeEv 
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We call t ransfer  coefficient from the arc e to the arc e ', the following quantity 

(8 )  e . ,  8' = 

2c(lel) /c(T(e))  if T(e )=I ( e ' ) ,  e ' ; ~ - e ,  

2 c ( l e l ) / c ( T ( e ) ) - I  if T(e )=I ( e ' ) ,  e ' = - e ,  

0 if T(e) ~ I(e '). 

We observe that  

(8') ! e ~, 8' I ~< ~ = max { 1, 2 ~:/q } for all arcs e, e '  

For  every path C = (co, . . . ,  era) of F, we denote by e c the product of the transfer  co- 
efficients of all the pairs of consecutive arcs of C i.e. 

m - 1  

(8'9 ~ c = [ I  j=0  F'ej '  e j+ l  " 

We denote by R+ the set of the real numbers which are strictly positive. 
Set 

(9) 

1 2 
k(t, x) = ~ - - ~  e x p ( - x  /4t)  

0 

if (t, x) eR+ •  

otherwise,  

(10) h(t, x) = t k ( t ,  x). 

The function k is the source solution of the heat  equation on R (see e .g .D .V .  WIDDER, 
ref. [19]). We denote by the symbol * the convolution with respect to the time t. I t  is 
well known that  h and k are C ~ functions which satisfy the heat  equation on R 2 \ (0 ,  0) 
and that  

(11) 
k(t, xl + x2) = k(t, Xl) *h( t ,  x2), 

h(t, xl + x2) = h(t, Xl) *h( t ,  x~), 

(see e .g .G.  DOETSCH, ref. [1]). 

3. - T h e  L a p l a c i a n  o n  F.  

We will identify any function u on F with a collection {us }~ EE of functions ue defined 
on the edges e of F. Note that  ue can be considered a function on [0, 1]. In fact, we will 
use the same notation u~ to denote both the function on the edge e and the function on 
the real interval [0, 1] identified with e. 
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The integral on F of a positive function u is defined as follows 

1 

u(x) dx : ~ c(e) [ u~(x) dx = ~ c(e) f u~(x) dx . 
eeE eeE 

F e 0 

We define the space L2(F, c) as the space of all the functions u on F such that  u~ e 
eL2((0,  1)) for every e in E, and ~ e(e)llUel122((o, 1))< ~ .  

eeE 
Analogously, for every integer m > 0, we define the Sobolev space Hm(F, c) as the 

space of all the functions u on F such that  u is continuous on F, u~ e Hm((0, 1 )) for every 
2 m e in E, and ~ c(e)Ilu~ IIH ((o, 1)) < cr 

eeE 
The above spaces are Hilbert spaces with inner products 

( U ,  W)L2(F ' c)-'~ E c(e)(Ue, We)L2((O, 1)), 
eEE 

(u, W)Hm(r, ~)= ~, c(e)(u~, We)H~((O, 1)). 
eEE 

Note that  u is continuous on F if and only if u~ is continuous on [0, 1] for every e in E, 
and u~(v) = u~,(v) for all v in V and for all the edges e and e '  having v as a common 

endpoint. 
Consider the sesquilinear continuous form ~ on Hi(F,  c) defined by 

(p(U,  W) : Z c(e)(Ue', We)L2((O, 1)). 
eEE 

According to J. L. LIONS (see ref. [4]), we can associate to cp an operator A in the follow- 
ing w a y .  Denote by D(~ ) the set of all the functions u in H I(F, c) such that  cf ~ (w) is an 
antilinear continuous mapping on Hi(F,  c) with respect to L2(F, c) topology. If  u is an 
element of D(A), then we can extend cf~ to an antilinear continuous mapping on 
L2(F, c), and so there exists only one element of L2(F, c), denoted by zJu, such that, 
for every w in Hi(F ,  c) 

of(u, w) = - ( z l u ,  w)L~(r, ~). 

I t  is easy to verify that  A is a linear, unbounded, closed, self-adjoint, dissipative, non- 
positive operator. Le t  e be in E and let y be an endpoint of e. Let  u = {u~ }eeE be a func- 
tion on F. We denote by (au~/an~)(y) the normal exterior derivative of u~ evaluated at y 
i.e. 

- lim (ue(y + h ) -  ue(y))/h 
3ue (y) = h-~o § 

an~ h~m_ (u~ (y + h) - ue (y) )/h 

if y = O ,  

if y = l .  

As in the case of a finite graph (see ref. [10]) we can prove the following results 
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LEMMA 2. - The following properties are true 

(12) D(A)={u~H2(F ,c ) :  e~' c ( e ) ~ ( v ) = O  

(13) (AU)e = u" for every e in E and for every u in D(A). 

The condition in (12) is called Kirchhoff type condition. Equation (13) justifies the 
name Laplacian for the operator zJ. 

4. - S o m e  p r o p e r t i e s  o f  t h e  f u n d a m e n t a l  s o l u t i o n .  

Our aim is to determine the solution of the abstract Cauchy problem (3). By the the- 
ory of semigroups (see e.g.A. PAZY, ref. [12]), this solution can immediately be obtained 
by the solution of the abstract Cauchy problem (3'). Then we calculate the solution of 
(3'). As observed in introduction, in section 6 we will prove that, for eve ry f in  L2(F, c), 
the solution of (3') is expressed by the integral o f f  against the fundamental solution K 
which we are going to construct. In order to do this, our strategy is the following. First 
we define abstractly a function K(t, x, y) and study its regularity properties. Then, in 
section 5, using the results of this section, we will prove that K is actually the funda- 
mental solution. 

Let x and y be in F. Choose any e, e '  in E such that x e e and y e e '. Set 

(14) K(t, x, y) =c(e)-lk(t,  d(x, Y))Se, e' +L( t ,  x, y) 

where k is as in (9), 

1 f f e ' = e ,  

0 otherwise, 

(15) L(t, x, y)=c(e) -1 ~, ~ eck(t, d(x, T(+_e))+m+d(y, I(+_e'))), 
m >~Q(x, y) C~Cm+2(e, e') 

(~)(x, y), Cm+2(e, e ' ) ,  ec are as in (4), (5), (8") respectively). 
We observe that if x and/or y are vertices of F, then L(t, x, y) depends on the 

choice of the edges e and e '. We will prove in Theorem 1 that K(t, x, y) does not de- 
pend on the choice of the edges e and e '. 

L(t, x, y) has the following properties. 

LEMMA 3. - There exist ~7 > 0 a n d  v > 0 (independent of e and e '  ) such that, for 
every (t, x, y) in R+ • F • F 

(16) IL(t, x, Y) I <~ sq ~, exp(m(ln(eq) - m/4t)) <~ - - - - ~  (1 + t)exp(vt) 
c(e) V ~  ~ ( ~ ,  y) c(e) V~ 

(s is as in (8 ')) .  
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Moreover there exist to > 0 and a > 0 (independent of e and e' ) such that, for all 
(t, x, y) in (0, to] • F •  F 

a 

(17) IL(t, x, y) [ <. c(e) V~ exp ( - Q2(x, y)fl/t) 

where 1/8 < fl < 1/4. 

PROOF. - By (15) we have that 

IL(t, x, Y) I < c(e)-i ~-, ~, Isc Ik( t, m). 
m >~Q(x, y) C~Cm+2(e, e ')  

Set M =  [4t ln  (eq)]. Then, by Lemma 1 and (8'), we obtain that  

]L(t, x, Y) I <'c(e) -1 ~ 2@q)~+lk(t, m) <~ 
m >t ~(x, y) 

sq Z exp (m(ln (eq) - m/4t ) )  <<. 
<" c(e) V-~  ~ o  

eq [ ~ M e x p ( m ( l n ( s q ) _ m / 4 t ) ) +  
c(e) ~ 

exp (m(ln (sq) - m/4t))  ] <~ 
m > ~ M + l  

<. c(e) V ~  ( M + I )  exp (Mln (sq) ) +j>~oE exp ((j + M + l )(ln ( sq) -  (j + M + l ) /4t)) 

<<. ] c(e) ~ (4tln(eq) + 1)exp(4tln2(eq)) + j>~o ~" exp( - j ( j  + M + 1)/4t)  ~< 

<. c ( e ) V ~  (4tln(sq) + 1)exp(atln2(sq))) +j>~o ~" e x p ( - j ( M +  1)/4t)  ~< 

< sq [ (4 t ln(eq)+l)exp(4 t ln2(sq) )+(eq) / ( (eq)_ l )]  <. Z -~ - - - - ( l+ t ) exp (v t ) .  
c(e) ~ c(e) V7 

Fix fl in (1 /8 ,  1/4). Clearly, if t ~< to = ( 1 / 4 -  fl)/ln(eq), then ( m l n ( e q ) -  m2/4t)<~ 
<<. - m 2 tilt for every m 1> 0. So, if t ~< to, then 

]L(t, x, y) I <<" sq ~, exp (m(ln (sq) - m/4t))  
c(e) V ~  ~ ( ~ ,  ~) 

eq • exp(-m2fl/t)  <<. a 
c(e) V ~  m >~ ~(~, y) c(e) V~ 

exp ( - Q2(x, y) tilt) 

i.e. (17). �9 
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REMARK 1 .  - We notice that a much better estimate was obtained in the case when 
all the conductances are equal to 1 (see e.g.B. GAVEAU, M. 0KADA, T. 0KADA, ref. [2], 
[11]). However our estimate is sufficient for our purposes. See Remark 5 below. 

REMARK 2 .  - The previous Lemma guarantees that the series which appears in the 
expression of L(t, x, y) converges uniformly on the edge e '  for every (t, x) in 
R + x F .  

Now we compute (aK/3y)(t, x, y) and (SL/ay)(t, x, y) and we study their regularity. 
Let x and y be in F. Choose any e, e '  in E such that x e e and y e e '. Set 

(18) L~(t, x, y) = c(e) -1 ~ ~_, x 
m>~Q(x,y) CeC~+~(e,e') 

8k 
Xec --:-(t, d(x, T( +_e)) + m  + d(y, I( +_e'))) . 

~y 

We note that if x and/or y are vertices of F, then Ll(t ,  x, y) depends on the choice of 

the edges e and e '. 
L~(t, x, y) has the following properties. 

LEMMA 4. - There exist ~] > 0 and v > 0 (independent of e and e ') such that, for 
every (t, x, y) in R+ z F x  s 

(19) ILl(t, x, Y) I < e2(eq) F. exp(m(ln(eq)+ l - m / 4 t ) ) < ~  
2c(e) t h / ~  m~>d,,y) 

<~ ~ (1 + t) exp (vt) 
c(e) t V t  

(e is as in ( 8 ' ) ) .  

For every (t, x) fixed in R + x F and for every y in e' 

8L 
(20) - - ( t ,  x, y) = Ll(t ,  x, y).  

8y 

Moreover there exist to > 0 and a > 0 (independent of e and e' ) such that, for all 
(t, x, y) in (0, to] x F x  F 

8I, I a V~ e x p ( -  Q2(x, y)fl / t)  (21) ~ ( t ,  x, y) <. c(e) t 

where 1 t/8 < fl < 1/4. 

PROOF. - We know by (9) that 

X 
~x (t, x) = - -~k( t ,  x).  
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So by (18) we have that  

m + 2  
]L i ( t , x , y )  l <<-c(e) -1 ~, E ]ec] 

m>~e(x, y) CeC~+2(e, e') 2t 
k(t, m) <. 

eq ~, (eq)'~(m + 2) exp ( - m 2 / 4 t )  <~ 
2c(e) t V ~  ~>e(~, y) 

e~(eq) E exp(m(ln(sq)  + 1 - m/4t)) <<. 
2 c(e) t V ~  m >~ ~(~, y) 

e2(sq) • exp (m(ln (eq) + 1 - m/4t)) .  
~< 2c(e) t~/-~ m~>o 

Now if we set  M = [4t(ln (Eq) + 1)], then, arguing as in the proof of Lemma 3, we obtain 
that  

ILl(t, x, Y) I <~ - -  
~7 

c(e) t V7 
( 1 + t) exp (vt) 

i.e. (19); while if we fix (t, x) in R§ • F, then we observe that  we can derive term by 
term the series which appears in the expression of L(t, x, .). Thus we get (20). 

Fix fi in (1 /8 ,  1/4) .  Clearly, if t<~to = (1 /4 - f l ) / ( l n ( sq )+  1), then ( m ( l n ( s q ) +  
+ 1) - m2/4t)  ~ - m 2 f l / t  for every m/> 0. So, if t ~< to, then 

]~y(t, ] e2(eq) E exp(-m2fi/t)<., a 
x, y) <<" 2 c ( e ) t V ~  ~>~Q(x,y) c(e)tV~t 

- -  exp ( - ~2(x, y) fi/t) 

i.e. (21). �9 

REMARK 3. - We obtain by (20) that  (SK/Sy)(t, x, y) exists on R+ z F • ( /~V) 
and 

8K 8k 
YS~-(t, x, y) =c (e )  -1 aY--Z-(t' d(x, y))Se, e, +L~(t, x, y). 

REMARK 4. - We know by (19) and (20) that, for every (t, x) in R+ • F 

I 8Lle'l I 
8-~l~,l (t, x, I(+_e')) <~ 

c(e) t V t  
- -  (1 + t) exp (vt).  

We can give an analogous estimate for the normal exterior derivative of K(t, x, . )  on 
the edge l e '  I at I(_+e') .  
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PROPOSITION 1. - For every e'  in E and x in F 

8KI~'I ( . ,  x, I(+_e')) is continuous on R+ . 
8nl~, I 

PROOF. - We know that  

_ _  8 L I ~ ' I  8KI~, I ( . , x , i ( + _ e , ) ) = c ( e ) _  1 8k ( . , d ( x , I ( + e ' ) ) ) ( ~ , ~ , +  ( . , x , I ( + _ e ' ) ) .  
9nl~' l 8nl~' l 8nl~' l 

Hence it is enough to prove that  (SLle, I/Snle' I ) ( ' ,  x,  I( +_ e' )) is a continuous function 
on R+. 

In order to do this, we observe that  every element of the series which appears in the 
expression of (SLIe, I/Snl~' I ) ( ' ,  x, I( +_ e'  )) is a continuous function on R +, and, for 
every t > 0, by (19) and (20), we can prove that  there exists a neighborhood of t where 
the series converges uniformly. 

So we can conclude that  (SLI~, i/Snl~, I ) ( ' ,  x, I( me ' ) )  is continuous on R+. �9 

REMARK 5. - As a consequence of Remark 4 and Proposition 1, the Laplace trans- 
form of (SKI~, i/Snle, I ) ( ' ,  x, I( --e ' ) )  is well defined for every e '  in E and x in F (see 
e . g . P . K . F .  KUHFITTm, ref. [3]). 

Now we compute ( ~ K / a y 2 ) ( t ,  x, y) and ( ~ L / S y 2 ) ( t ,  x,  y) and we study their 

properties. 
Le t  x and y be in F. Choose any e, e '  in E such that  x �9 e and y �9 e '. Set 

(22) L2(t, x,  y) = c(e) -1 ~ ~ x 
m >~Q(x, y) CeCm+2(e, e') 

~ k  
XSc - - ( t ,  d(x, T( +_e) ) + m + d(y, I( +-e') )) . 

8y 2 

We note that  if x and/or y are vertices of F, then L2(t, x,  y) depends on the choice of 

the edges e and e '. 
L2(t, x,  y) has the following properties. 

LEMMA 5. - Set v = rain {t, t2}. There exist ~] > 0 and v > 0 (independent of e and 
e ' )  such that, for every (t, x,  y) in R+ x s  F 

(23) IL2(t, x,  Y) I ~< e4(~q) E exp (m( ln  (eq) + 2 - m/4t ) )  <~ 
c(e) T X/-~ ~'~(~, y) 

V (1 + t) exp (vt) 
c(e) vV~ 

(~ is as in (8')). 
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For every (t, x) fixed in R+ • F and for every y in e' 

(24) 
~ L  
aY 2 (t, x, y) =L2(t ,  x, y) .  

Moreover there exist to > 0 and a > 0 (independent of e and e')  such that, for all 
(t, x, y) in (0, to] • F •  F 

(25) I a2L a -~y2 (t, x, y) ] <~ c(e) t2V~ e x p ( - o 2 ( x ,  y) fl/t) 

where 1/8 < fl < 1/4. 

PROOF. - We know by (9) that 

a2k (t, x) 1 ax 2 - -~ (  - 2 t  + x ~) k(t, x). 

So by (22), we have that 

IL2( t ,x ,y )]  <-c(e) -1 E E Isc] 
m >~Q(x, y) CeCm+2(e, e') 

(m + 2)2 + 1 

2v 
k(t, m) 

<~ e4(sq) E exp(m(ln(sq)+2-m/4t))<  
c(e) y) 

e4(sq) Z exp(m(ln(sq) +2-m/4t)). 
< c(e)vVr-~ m~o 

Now if we set M = [4t(ln (cq) + 2)], then, arguing as in the proof of Lemma 3, we obtain 
that 

IL2(t, x, Y) I ~ 
c(e) v V t  

(1 + t)exp (vt) 

i.e. (23); while if we fix (t, x) in R+ • F, then we observe that we can derive term by 
term the series which appears in the expression of Ll(t,  x, y). Thus we get (24). 

Fix fi in ( 1/8, 1/4). Clearly, if t ~< to = (1/4 - fi)/(ln (eq) + 2), then (m(ln (eq) + 
+ 2) - m ~/4 t) <~ - m 2 tilt for every m I> 0. So, if t ~< to, then 

] e4(sq) a V~ exp ( a2---~L(t, x, y) <. • exp(-m2fl/t)<~ -~2 (x ,  y)fi / t)  
ay 2 c(e) t 2 V ~  m>~(~, y) c(e) t 2 

i.e. (25). �9 



42 CARLA CATTANE0: The spread of the potential, etc. 

REMARK. - 6. - It follows by (24) that (a2K/3y2)(t, x, y) exists on R+ • F •  (FXV) 
and 

a2K 22k . 
: - ~  (t, x, y) =c(e)  -1 -:--T {t, d(x, y) ) 5~,~, + L2(t, x, y) 
r vy" 

Now we verify that, for every (t, x) in R§ • F, K(t, x, .), (3K/$y)(t, x, .) and 
( a2 K/a2y)(t ,  x, .) belong to L I(F, c) A L 2(F, c). We denote by M(t,  x, y) any one of 
the previous functions. 

PROPOSITION 2. - The function M(t,  x, y) has the following properties 

(i) M(t, x, .) e L l ( F ,  c) N L 2(F, c) for every (t, x) in R§ • F, 

(ii) there exists a ~ ( t ) > 0  such that, for every x in F IIM(t, X,')llLl(r,e)~ < 
<~al(t), 

(iii) there exists a2 ( t )>0  such that, for every x in F IIM(t, x, .)IIL~(r,~) << , 
<~ a2(t)/c(e). 

PROOF. - We prove Proposition for M(t, x, y) = K(t, x, y), in the other cases the 
proof is similar. 

Let x be in F. We remember that E~ is the set of all the edges containing x, while E~ 
is the set of all the edges which are neighbours of the edges of E~. 

We begin with L 1. By (6) and (16) we have that 

IK(t, x, y ) Idy  ~ f c(e)-l k(t, d(x, y) )S e,~,dy + 
F F 

+ e-~q~[c(e)-I E ( eq ) '~exp( -m2/4 t )dy  <~ 
V ~  / m ~ ~(~, ~) 

const, const. + - -  
c(e ') 

E ~ (eq)'~exp ( - m 2 / 4 t )  + 
e'~(ExUE~) c ( e )  m >~0 

+ - -  const. c(e ') 
E (eq)mexp ( - m 2 / 4 t )  <~ 

e'eEX(E~UE~) c ( e )  m~Q(x , I (+e ' ) )  

<~ a(t) + - -  
const. 

E (Kq2) n E (eq) '~exp(-m2/4t)  <~ 
n>~l m>~n 

<~ a(t) + - -  
const. 

( e q ) ~ e x p ( - m 2 / 4 t )  ~, ( K q 2 )  n 
m>~l n<~m 

<, a(t) + - -  
const. 

(K(eq)8)mexp ( - m 2 / 4 t )  = a l ( t )  < ~ �9 

m>~l  
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Now we prove the L ~-estimate. 

f IK(t, x, y) 12dy<~2 f Ic(e)-~k(t, d(x, y))5~,e,  12dy+ 
F F 

2(eq) 2 f const. 
+ z t  I e(e)=~ m ~> Q(~,~l(+~,))(eq)mexp(-m2/4t) 12dy <<" c(e)-----t + 

F 

+ - -  const. 

t 
e ,~eEC(e ' j (c (e)  -1 ~ (eq)mexp(-m2/4t))2<~ 

m>~(x, I( +e')) 

const. 

c(e)t 

const, c(e' ) i ~ ~ ~2 
+ t ~ - |  >- ~ (eq) e x p ( - m 2 / 4 t ) ]  <~ 

' c(e) \m~Q(x,I(+e')) 

const. 

c(e)t 

_ _  c(e >( ) const. ~ ~ (eq) '~exp(-m2/4t )  2 
+ c(e)t ~'~(E~UE;)-~e) ,~o  + 

+ m const. ~ c( e ') [ 

c(e) t e'~EX(E~uE;) c(e) 
(eq)mexp ( - m 2 / 4 t )  )2 <~ 

m >~Q(x, I( +e')) 

eonst, eonst. ( ~ (Kq) n ~ (eq),~exp(_m2/4t))2_ a2(t) 
< c(e)-----T + e(e)------T~n~ m ~ n  - c(e---7 < ~ " 

REMARK 7.  - I f  t ~< to = ( ( 1 / 4 ) - - f i ) / l n q  (see Lemma 3), by (17) we can prove that 
there exist al(to) > 0 and a2(to) > 0 such that, for every x in F 

IlK(t, x, .)llLl(r, c)~< al(to), 

IlK(t ,  x ,  .)  ]lL2(r, c) -< a2(to) 
c(e)  

REMARK 8 .  - We can repeat  Proposition 2 and Remark 7 (with c(e ') in place of c(e)) 
substituting the function M(t, x, .)  with the function M ( t , . ,  y), where it is de- 
fined. 

PROPOSITION 3. - For all (t, x, y) in R§ • F • (FXV) 

aK a2K 
--~-(t, x, y) = - - 3 y  2 (t, x, y) 

PROOF. - We know by (14) that  

K(t, x, y) = c(e)-l k(t, d(x, y))5~, e, + L(t, x, y). 

Moreover k(t, x) is the source solution of the heat  equation on R (see (9)), so by (22), we 
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have that 

L2(t, x, y) = c(e) -1 E E ec 8k (t, d(x, T(+_e)) + m + d(y, I( +-e '))) 
m>~(x,y) CeCm+2(e,e') ---~ 

By (23) it is easy to prove that, for every (t, x, y) in R+ x s  (F\V), there exists a 
neighborhood of t where the above series converges uniformly. So, for every (t, x, y) in 
R+ x s x ( s  

8t (t, x, y) = L2(t, x, y) ~ L  (t, x, y) 
8y 2 

and hence, for every (t, x, y) in R+ x F x  (F\V) 

8k 81, 
8Kst (t, x, y) = c(e) -~ - ~  (t, d(x, y))Se,~, + --~-(t, x, y) : 

_ _  8~L 82K 
=c(e)  -1 82k (t, d(x, Y))5~,e' + - - ( t ,  x, y) = - - ( t ,  x, y) 

8y 2 8y 2 8y 2 �9 

PROPOSITION 4. - For all (x, y) in F x (F\V) 

8K 

8t 
- - ( . ,  x, y) is continuous on R+ . 

PROOF. - We know by the last equation in the proof of Proposition 3 that 

8K 8k 8I, 
3--/('' x, y) = c(e)- '  ~ (., x, y) ~ e, e' + - ~  ( ' ,  X, y). 

So it is enough to prove that (SL/St)( . ,  x, y) is a continuous function on R+. In order to 
do this, we observe that every element of the series which appears in the expression of 
(aL/3t)(t ,  x,  y) is a continuous function on R§ and for every t > 0, by (23) again, we 
can prove that there exists a neighborhood of t where the series converges uniformly. 
Hence we conclude that (SL/at)( . ,  x, y) is continuous on R+. " 

5. - T h e  f u n d a m e n t a l  s o l u t i o n  o f  t h e  h e a t  e q u a t i o n  o n  F.  

THEOREM 1. - The function K defined in (14) does not depend on e and e' and has 
the following properties 

(i) (SK/Sy)(t ,  x, y) and (82K/Sy2)(t ,  x, y) exist on R+ x F x (F\V), 

(ii) (SK/gt)( . ,  x, y) exists continuous on R+ for every (x, y) in F x (F\V), 

(iii) (SK/St)(t ,  x, y) = (82K/Sy2)(t ,  x, y) on R§ x F x  (F\V), 

(iv) K(t, x, . ) e D ( A )  for every (t, x) in R+ x F. 
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PROOF. - By (14) and (15), we know that 

K(t, x, y) = c(e)-l k(t, d(x, y))Se,~, + 

+c(e)  -1 • E sck(t, d(x, T(+_e))+m+d(y, I(+_e'))) 
m>~Q(x, y) CeCm+2(e, e') 

where x is a point of the edge e, y a point of the edge e '. 
We observe that if x and y are not vertices of F, then there exist only one edge e and 

only one edge e '  such that x e e, y e e ', so there is not ambiguity in the definition of 
K(t, x, y). On the contrary, if x and/or y are vertices of F, then we can choose the edge 
e containing x among q edges and the same holds for y. So, apparently, K(t, x, y) is not 
well defined in the vertices. We will prove that the dependence on e and e '  is illusory 
and that K(t, x, y) is well defined everywhere. 

By section 4, we know that K satisfies the properties (i), (ii), (iii) and moreover that 
K(t, x, .), ( aK/ay)(t, x, .) and ( 32 K/ay2)(t, x, .) belong to L 2(F, c) for every (t, x) in 
R+ x F. Hence we must prove that K(t , . ,  .) is well defined also on V x  V, K(t, x, .) is 
continuous on F and satisfies the conditions of connection of the weighted normal exte- 
rior derivatives at the vertices. In order to do this, we begin to prove the following con- 
ditions, then we will verify the continuity of K. 

Let  x be an interior point of the edge e (by the continuity the following conditions 
still hold when x is a vertex of the edge e), and let el, e2, ..., eq be the q arcs having the 
same initial vertex i.e., I(ej) = I(el) for j = 2, ..., q, then we claim that 

(26) there exists a constant depending on e such that, for j = 1 , . . . ,  q one has 
K(t, x, I(ej) ) = const. ,  

(27) ~, c(leJ I) aKl~jl (t, x, I(ej))=O. 
j = 1 anle~ i 

Applying the Laplace transform,-we obtain that (27) is equivalent to 

q 

(28) j~lc(lej.= ]) aKl~jlanlej--- ~ (t, x, I(ej))* - ~ 1  =O.  

(By Remark 5, the Laplace transform of (aKleJl//anleJl ) ( - ,  x, I(ej)) is well defined 
for every x in F). 

Before proving conditions (26) and (28), we observe that condition (26) guarantees 
that if y is a vertex, then the definition of K(t, x, y) does not depend on the choice of 
the edge e '  containing y. So K(t, x, y) is well defined if x is an interior point of the edge 
e and y is a generic point of F. On the contrary, if x is a vertex, then apparently the ex- 
pression of K(t, x, y) still depends on the choice of the edge e containing x. We will also 
prove that the definition of K(t, x, y) does not depend on the choice of the edge e. 

Now we want to obtain for K another expression which will allow us to prove easily 
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(26) and (28). In order  to do this, we introduce some matrices as follows. We set 

zl lel(t, x) = [A~, lei(t, X)]~A, 

~2(t) = [~2~,~(t)]~,~A, 

where 

Fle ' l ( t ,  Y) = [Fl~'l,~(t, Y)]~A, 

A~, i~1 (t, x) = (e_e,~k(t, d(x, I( +e))) + s +~,~k(t, d(x, I ( - e ) ) ) ) ,  

Y2~,~(t) = E~,~h(t, 1), 

Fl~' l '~(t '  Y) = { oh(t' d(y, I(~))) ifotherwise ~ = --e ' , .  

(Remember  that  A is the set of all the arcs of F, ~ ~, ~, k and h are as in (8), (9), (10) re- 
spectively, and e, e '  are the edges containing x and y). Note that  the elements of Ale ] 
(column vector), t2, F te'l (row vector) belong to the convolution algebra formed by the 
functions that  are continuous for t I> 0 and that  are 0 for t ~< 0. Moreover we know that  
the t ransfer  coefficient between two arcs is 0 if the terminal vertex of the first arc is not 
equal to the initial vertex of the second arc (see (8)). So we can rewrite (14) as 
follows 

(14') K(t, x, y) = c( lel )- lk(t ,  d(x, y))5 lel, le'l + c(lel )-1/.  o, ,(t, y) * A  lel (t, x) 

+ c ( ] e ] )  -1 • Flerl( t ,  y)*t2(t)*m*Atel(t ,  x). 
m~>l  

Set 

(29) 0 1 e i ( t , x ) = A l e l ( t , x ) +  ~ Q(t)* '~*Alei( t ,x) .  
m~>l  

Observe that  0 lel (t, X) is the solution of the following Volterra equation (see e . g .S .G .  
MIKHLIN, ref. [6]) 

(30) 0 lel (t, x) = ~2(t) *0 lel (t, X) + A le ] (t, X). 

In fact, setting ~1 = maxh(t ,  1 ) s  (s is as in (8 ')) ,  we can easily prove by induction 
that  t 

] U2(t) *m)~, ~ I ~< 
qm-l~mtm 1 

(m - 1)! 

for every m 1> 1 and for every couple of arcs ~, ~ in A (note that  every row and every col- 
umn of tg(t) has exactly q elements not equal to O, by the property  of the t ransfer  coeffi- 
cient remembered  above). 
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Then 

t 

i i ]( Q(t)*m * A lei (t, X))~] = ~A f (Q(t -- S)*~ )~,~A ~, lel (S, x)ds 
0 

t 

<~ 2qm~Tmt~-~-~m--~. ofk(s' O)ds= 
2qm~]mtm-1/2 

V~(m - 1)! 

for every m 1> 1 and for every arc ~ in A. 
So we can conclude that there  exists the solution of the Volterra equation (30) and 

this solution is (29). 
Moreover, again by (8) and (30), we can express every component of 0 I~i (t, x) as 

follows 

O er Ben(t, x) = E -e~,ejk(t, d(x, I(ej) ))5 .el, lejl + E s _e~,~jk(t, d(x, I(e~) ))5 I~1, le~, + 
i ~ j  

+e _~j, ejh(t, 1) * 0  _~j, 1el (t, X) + ~ ~ _e~,~h(t, 1) * 0  -e~, ,el(t, x) 
i ~ j  

or equivalently 

(31) k(t,d(x,I(ej)))51ei,ieji+Oej, lei(t ,x)+h(t ,  1),O_~j,l~l(t ,x)= 

q 2c(iei  I) 
E (k(t, d(x, I(ei)))5 iel, levi + h(t, 1) * 0  -e~, iel(t, x)) 

i = 1  c(I(ei)) 

where e l ,  e2, . . . ,  eq are the q arcs having I(ej) = I(el) f o r j  = 2, ... ,  q, and c(I(ei)) is as 
in (7). (We will see that  (31) is very  important to prove (26) and (28)). 

By (29), we can rewrite (14')  as follows 

(14") K(t, x, y)= c(le]) - l(k(t ,  d(x, y) ) ~ ,el, I~' ,+ h(t, d(I( +e '), y))* 0 +e', l e, (t, x)+ 

+ h( t ,  d(I(  - e '), y ) )  * 0 -e', tel ( t ,  x ) )  

where  x is a point of the edge e and y a point of the edge e '. (To verify (26) and (28) we 
will always use equation (14")). 

We evaluate K(t, x, .) at I(ej). After some tedious computations, we have that 

(32) K(t, x, I(ej)) = c(lei)-l(k(t ,  d(x, I(ej)))5 tel, ie~l + 

+0e~, lel(t, x)+h(t ,  1)*0_e j , , e l ( t ,  x ) ) .  
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By (31), we get  that  

q 2c(le i ]) 
(32') K(t, x, I(ej)) = c( le l )  -1 E k(t, d(x, I (e i ) ) )a  ,~l, I~l + 

i=l  c(I(ei)) 

q 2c(iei  ] ) 
+c( ge I )-1 ~, _ _  h(t, 1) * 0  _~. I~1 (t, x) = const.  

i=1 c(I(e~)) 

i.e. (26). 
Now we compute (aKi~j , /anl~l)( t ,  x, . ) * I / V ~  and evaluate it at I(ej). By Re- 

mark  3, (11) and (32), we obtain that  

(33) 3Ki~l (t, x, I (ej))* - -  1 
= c ( i e i ) - l ( - k ( t ,  d(x, I(ej)))d I~l, tejl + 

+0ej, i~l(t, x) -h( t ,  1) *0 _~j, Ben(t, x)) .  

To prove (28), we verify that  summing  the q equations (26) multiplied by suitable 
conductances and substract ing (28) we again obtain the sum of the q weighted equa- 
tions (26). In fact, by (32), (32')  and (33), we have tha t  

q q aKl~J I (t, 1 
JZ= 1 c(]ej ]) K(t,  x, I(ej)) -j~=lc(iej I) --anneal x, I ( e j ) ) .  ~ - 

q 

= c(]e ])-1 E 2c(le j ] )(k(t,  d(x, I(ej))) d I~l, I~1 + h(t, 1) * 0 _~j, let (t, x)) = 
j= l  

q 

= • c(le j l)K(t, x, I(ej)) .  = c(I(el))K(t ,  x, I ( e l ) )  j= l  

To prove that  the function K(t,  x, y) does not depend on the choice of the edge con- 
taining x, we verify that  there  exists a constant  (depending on the conductance of e '  ) 
such that,  f o r j  = 1, . . . ,  q, one has K(t, T(ej), y) = const.  (where el,  e2, . . . ,  eq are the q 
arcs having the same terminal  ver tex and y is a generic point of F). In order  to do this, 
we essentially repeat  the procedure  adopted to verify conditions (26) with the following 
matrices 

where  

A le'l(t,  y) = [A~, I~'l(t' y ) ] ~ A ,  

t?(t) = [~9~,~(t)]~,~A, 

Fie I(t, x) = [Flej,~(t, X)]~A, 

A~, le' I( t, Y) = (s~, § d(y, I( +e '))) + s~, _e,k(t, d(y, I ( - e  ' ) ) ) ) ,  

~9~,~(t) = e~,~h(t, 1), 

x ) = I h ( t ' d ( x ' T ( ~ ) ) )  if ~ = _ + e ,  
Fl~l,~(t, 

[ 0 otherwise .  
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As before A le,l(t, y) is a column vector and Flel(t, x) is a row vector. 
To finish the proof of Theorem, we verify that K(t, x, .) is continuous on F for every 

(t, x) in R+ x F. In fact, we know by (14) that 

K(t, x, y) =c(e)-lk(t, d(x, y))Se, e, + L(t, x, y). 

If y is not a vertex of F, then the continuity follows by the uniform convergence of the 
series which appears in the expression of L(t, x, y) (see Remark 2). On the other hand, 
if y is a vertex, then the uniform convergence guarantees that K(t, x, .) is continuous 
on the edge e ', but we have seen that the definition of K(t, x, y) does not depend on the 
choice of the edge e '  containing y. Hence K(t, x, .) is continuous on F. �9 

REMARK 9. - One can prove, essentially repeating the procedure adopted by J. P. 
ROTH (see ref. [17]), that if there exists a function H(t, x, y) with the properties of The- 
orem 1, then, for every (t, x, y) in R+ x F x F 

H(t, x, y) = K(t, x, y). , 

Therefore we can consider the properties listed in Theorem 1 as the properties charac- 
terizing the fundamental solution of the heat equation on F. 

6. - T h e  s o l u t i o n  o f  t h e  a b s t r a c t  C a u c h y  p r o b l e m .  

Now we can determine the solution of the abstract Cauchy problem (3') and so the 
solution of (3). Before introducing the function which will show to be the solution of sys- 
tem (3'), we prove the following 

PROPOSITION 5. - For every function f i n  L 2(F, c) and for every t > 0 we have that 
~M(t, y)f(x) dx exists for in (F\V) and X, every Y 

r fM(t ,  x, . ) f ( x )  dxeL2(F,  c) 
F 

(M(t, x, y) denotes any one of three functions K(t, x, y), (SK/Sy)(t, x, y), 
( 8e K/Sy2)(t, x, y) ). 

PROOF. - Applying Proposition 2 and Remark 81 we obtain that 

f ~ M ( t , x , Y ) f ( x ) d x l e d Y < < - j ( j I M ( t , x , y ) l d x ) ( j l M ( t , x , Y ) l l f ( x ) 1 2 d x ) d y  <~ 
FF 

<<, al(t) f ~ IM(t, x, Y)[If(x)12dxdy < - 
FF 

REMARK 10. - We observe that fK(t ,  x, y)f(x) dx exists for every y in F. 
F 
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DEFINITION 1. - For every f in L2(F, c) and for all y in F, set 

ptf(y)=I/K(t'x'y)f(x)dx 
I f ( Y )  

if t > 0 ,  

if t = 0 .  

THEOREM 2. - P t f  is the solution of the abstract Cauchy problem (3'). 

PROOF. - We must verify that Ptf has the following properties (see e.g.A. PAZY, 
ref. [12]): 

(i) Ptf ( ' )  eD(zl) for t > 0, 

(ii) P t f  satisfies system (3'), 

(iii) P t f  is a continuous function of Le(F, c) for t i> 0, 

(iv) P t f  is a continuously differentiable function of L2(F, c) for t > 0. 

We prove property (i). We must verify that, for every fixed t > 0, Ptf(') is an ele- 
ment of H2(s c) satisfying the conditions of connection of the weighted normal exteri- 
or derivatives at every vertex of s (see (12)). In order to do this, we begin to verify that 

(34) Ptf(e) is continuous on F .  

Fixed Y0 in F, let U be a (small) neighborhood of Y0 in the topology of CW-complex. We 
know by property (iv) of Theorem 1 that K(t, x, . ) f (x )  is continuous on U, for every 
(t, x) in R+ x F. We prove that there exists a function gt e L 1 (F, c) such that, for every 

y i n  U 

IK(t, x, y) f(x) l < gt(x). 

Therefore we obtain (34). 
For every x in (F\V), we set 

1 Eq 
gt(x) - 2 e ( e ) V ~  e'~E~o Ife'(X) J6 ~,~,+ c(e) V ~  If (x) I E exp(m(ln(sq)-m/4t))  

m/> ~o(x, Yo) 

where e is the edge containing x. (n) 
Let us fix an edge ~ of E~o, and let us denote by F. the sum extended to the edges of 

F having one endpoint at geodesic distance n from Y0, and by y(t) a suitable function 
depending on t and Y0 (and, possibly on ~), which may vary from line to line. 

fgt(x) dx <~ const______:. E IIf  IILl((o, 1)) -~- 
F V t  e e Ey 0 

+ const,  e IIf II., o ,1))(\m~ ~ o e x p ( m ( l n ( e q ) - m / 4 t ) ) ) +  
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coast, r, n+l  ))] 

~<r(t) sup IlL IlL 1((o, +y(t)~[i(n [ \ (n+l) ~ )1/2 1)) | (Kq 2) n Z IlL 11~2((0, 1)) 
e �9 (Ey o U E~D) n >~ 1[ 

X 

] 
• Y. exp (m(ln (eq) - m/4t))|  <. 7(t) sup Hf~ IILI((0, 1)) -{- 

m >1 n J e e (Ey o U E~o) 

+y(t)]]f]]L2(r ' ~) ~, (~2q)n • exp(m(ln(eq) -m /4 t ) )  < 
n>~l  m>~n 

(the convergence of the last series is proved as in the proof of (ii) of Proposition 2). 
Now we verify that 

8 
(35) - -  (Ptf( ' ))  eL2( F, c). 

8y 

By (19) and Lebesgue theorem, we can prove that, for all y in (/~V) 

(36) 8-y -~y (t, x, y) f(x) dx. 

Applying Proposition 5 with M(t, x, y )= (SK/Sy)(t, x, y), we obtain (35) for every 
t > 0 .  

Likewise we can prove that, for every t > 0 

82 
(37) (Pt f ( ' ) )  e L 2 (F, c), 

8y 2 

So, by (34), (35) and (37), we can conclude that Ptf ( ' )  is an element of H2(F, c) for 
every t > 0. 

Now we show that 

Y. c(e) a ~E, ~ (Ptf)~(v) = O. 

Remembering that K(t, x, y) satisfies the conditions of connection of the weighted nor- 
mal exterior derivatives at every vertex y (see Theorem 1), and arguing as in the proof 
of (36), we can observe that, for every (t, v) in R+ • V 

(38) ~ c(e) 8-~(Ptf)e(V)= f ~ c(e) 8K~ ~E, r ~E, ~ ( t ,  X, v)f(x) dx=O.  

Hence, for every t > 0, P t f i s  an element of H2(F, e) satisfying the conditions of con- 
nection (38). So Pt f is an element of D(d)  (see (12)) i.e., Pt f satisfies property (i). 
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It is also easy to see that Pt f  satisfies system (3'). Indeed, by Definition 1 Pof=f .  
Next 

8 
-=7 (Pt f )  = d (Pt f )  
Jt 

since, by (23), Proposition 3 and Lebesgue theorem 

(39) a__K_K (t 8---(Ptf)(y) = f x, y ) f (x)  dx 
8t at ' 

F 

Hence, for every y in (F\V), we obtain that 

) 8 (Ptf)(Y) - A(Ptf)(Y) = --~ (t, x, y) - - -  (t, x, y) f (x)  dx 
8t 8y 2 

= 0 .  

Therefore (ii) holds. 
Now we prove that, for every t t> 0 

liFt +~ f ( ' )  - Pt f(')liL2(r, ~)--> 0 if s--~0. 

We distinguish two cases 

(1.iii) t > 0, 

(2.iii) t = 0. 

(1.iii) By (39) we have that, for every y in (F\V) 

P,+sf (y )~P, f (y )  if s ~ O .  

Then using Propositions 2 and 5, Remarks 7 and 8 and Lebesgue theorem, we can veri- 
fy that there exists a function gt in LI(F,  c) such that, for all s sufficiently small 

IPt+sf(Y) - Ptf(Y)12 ~ gt(y). 

So P t f  is a continuous function of L2(F, c) for t > 0. 

(2.iii) By (14) and Definition 1 we have that 

liP. f ( . )  --f(~ o)= 

[ i 12] l j2 = E c(e')[ ~k(s,d(x,y))f~,(x)dx-f~,(y)+ Ec(e ) ]L(s , x , y ) f~ (x )dx  dy < 
e ' e E  e ~' e'  e e E  e 

~< 

+[ z c(e')f 
e'  E E  e' 

e ]112 

dyj + 

i ]1/2 
edy ~, c(e) [ L(s, x, y) f~(x) dx 

e e E  J 
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We begin to prove that the first term in the last inequality tends to 0 when s tends to 
0 +. In order to do this, we identify every functionfi on [0; 1] with a function on R which 
is 0 everywhere outside [0, 1], and we observe that 

[ i i'] '/2 e~EC(e')[ fk(s,d(x,y))f~,(x)dx-fe,(y) dy = 

e f e f 

[ /ji = e~Ec(e') k(s, v)f~,(v + y) dv -f~,(y) <~ 

+ 

<<. f k(s,v) c(e') [f~,(y+v)-fi,(y)[2dy dv 
e 

- oo 

and we argue as in the proof of 

IIk~*f--fllL~(R)~O if ~ o  

where {k~} is a summability kernel on R and f i s  a function of L2(R) (see e . g . E . M .  
STEIN-G. WEISS, ref. [18]). (Note that the space Co(F) of all the continuous functions on 
F whose supports are compact is dense in L 2 (F, c)). Now we study the behaviour of the 
second term. We begin to observe that 

]1/2 2 dy 
e~EC(e') f l e~EC(e) f L(s, x, y) f~(x) dx <~ 

e '  6 

[er sl s I~<,,.] ''' c(e') 2 c(e) L(s, x, y)fe(X) dx + 
e e  (e '  G E ; , )  

e t e 

[ i i ]  '/2 2dy + ~EC(e')f ~ c(e)~L(s,x,y)f i(x)dx . 
e e '  e e ( E \ ( e '  LJEg,)) e 

(Remember that E' ,  is the set of all the edges which are neighbours of e '). We analyse 
the first term. We suppose that fi is a positive function for every edge e (in the other 
cases the proof is similar) and we observe that 

[ i i ]  ''2 2 dy ~Ec(e'>~ ~_, c(e) fL(s ,x ,y) fe(x)dx  <~ 
e e '  e e ( e ' U E ; , )  e 

[ 
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V "Ill 2 
x ~k(s'  d(x, T(+-e)) + d(y, I(+-e')))f~(x) dx) dyJ 

~<const. r ~ 2(eq)m+lexp(-m2/4to)]" 
Lm~O 

11,,  
�9 ~ ~,J[~(~'uEg,) ~ Jk(s 'd(x 'T(+-e))+d(y ' I (+-e ' ) ) ' f~(x)dx)dyJ  <<" 

~<const. ~Ec(e' 2 [k(s ,d(x,r(+_e))+d(y,I(+_e'))) fJx)dx dy . 
e e e ( e '  U E g , )  e 

(We have supposed s ~< to = (1 /4  - f l ) / ln  (eq), see Lemma 3). We note tha t  the previous 

t e rm is less or equal to a sum of (2q - 1) series of the form 

e~Ec(e ' fk(s,d(x,T(+_e))+d(y,I(+_e')))f~(x)dx dy . 
e 

where  the edge e is an edge of the set (e '  U E~',). We observe that  d(x, T( --+ e)) may  be 

ei ther  x or 1 -  x). We argue for the case x, the other  case is analogous. Thus we 

have 

e,~EC(e ' k(8, d(x, T(+_e))+d(y, I(+_e')))fi(x)dx dy = 

L o'to" 

<~K e~EC(e ' k(s, v) f~,(v-d(y ,  I(+--e')))dv dy <~ 
, _ 

! v,r c,, ,,,+_e 
- L e ' ~ E  e' 

and the last t e rm tends to 0 since fi,  ( - d(y, I( --e ' ) ) )  = O a.e. y in e '. (Note that  we 

have used condition (6)). 
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Now we analyse the second term. In order to do this we begin to observe that, for 
every y in (F\V) 

I I 
ii x c(e) f L(s, x, y) fAx)  dx II --->0 if s---)O + . 

eeE\(e '  uE;,) e 

(n) 

In fact, as above we denote by E the sum extended to the edges of F having one end- 
point at geodesic distance n from y. We use (17) and have that 

] E c(e)fL(s,x,y)fAx)dx]  
e e E\(e' U Eg,) e 

a /(n+l) ) 
<~ "-~ ~ exp ( -n2 f l / s ) (  2 HfillLl((o,~)) --->0 

Vsn~l  
if s--->O + . 

In fact 

(n+ l )  ) 
a Y, exp(_n 3/s) E IlfellLl((o,i)) 

Vs n~>l 

/(n+l) ) 
a ~_, exp(_n2fl / to)  ( E Ilfi[IL~((o, 1)) <~ 

V ~ o  n >~ l 

/(n+ 1)cCe~ \1/21 
2 2 

<" VToo ~'>~lexp(-n2fl/t~ E ~ H L I ] L  ((0,1))) I 4 

[]fl[L 2(r, c) ~, ( K2 q )n + l exp ( - n ~ fl /to ) < oo 
n>~l 

(We have again supposed s ~< to). Finally, using Propositions 2 and 5, Remarks 7 and 8 
and Lebesgue theorem, we can verify that there exists a function go in LI(F,  c) such 
that, for all s sufficiently small 

Z c(e) fL(s ,x ,y ) f~(x)dx]2<~go(y) .  
eeE\(e '  U Ee',) e 

Then, we can conclude that P t f  is a continuous function of L2(F, c) for t I> 0 i.e., 
property (iii). To finish the proof of Theorem, we verify that Pt f i s  a continuously differ- 
entiable function of L2(F, c) for t > 0. 

Fixed y in (F\V), using property (ii) of Theorem 1, (39) and Lebesgue theorem, we 
can prove that (a/St)(Ptf)(y)  is continuous for t > 0. 
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Arguing as above, we can construct a function gt in L 1 (F, c) such that, for all s suffi- 
ciently small 

a - ~ ( P t f ) ( Y )  2 I -~ (Pt + ~ f)(Y) <~ gt(Y) . 

Then, by Lebesgue theorem, we can conclude that Pt f is a continuously differentiable 
function of L2(F, c) for t > 0 i.e., property (iv). �9 

REMARK 11. - By the general theory (see e.g.K. YOSIDA, ref. [20]) and by Theorem 
2, we can conclude that the mapping on (R+ U {0}) x L~(F, c) defined as above by 

p t f ( y ) = I ~ r  K ( t ' x ' y ) f ( x ) d x  

I f (Y)  

f i t > 0 ,  

if t = 0 ,  

is the semigroup on L2(F, c) having d as infinitesimal generator. 

REMARK 12. - By the theory of semigroups (see e.g.A. PAZY, ref. [12]), we obtain 
that the solution of the Cauchy problem associated to the spread equation of the poten- 
tial (i.e. the solution of (3)) is (exp ( - t ) ) P t f .  

REMARK 13. - Note that we can obtain all the previous results substituting the ho- 
mogeneous tree F by a tree F such that the degrees of its vertices are uniformly bound- 
ed and equal to 3 at least. 

Acknowledgement. We wish to thank the referee for suggesting an improvement of 
an earlier version of this paper. 
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