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ABSTRACT 

The creation of the new L1C GPS signal presented the 
opportunity to choose both a family of spreading codes 
and an associated family of overlay codes. This paper 
describes the rationale and construction of these families. 
The families were created from extensive searches with 
each search requiring its own fine-tuned techniques and 
search criteria.  

The L1C spreading codes comprise 210 pilot/data pairs of 
length-10230 sequences. The data code modulates the 
data message bits while the pilot code modulates the 
overlay code symbols, which represents a fixed repeating 
pattern. The codes are perfectly balanced and exhibit 
good auto- and crosscorrelation (both in the "odd" case, 
when there is a bit transition across the code boundary, 
and the "even" case when there is no such transition). The 
length 10230 precluded the immediate adaptation of well-
known spreading code families, such as Gold codes. 
Instead, the relatively new Weil sequence construction 
was adapted. Weil codes are prime length sequences 
constructed via shift-and-add from the well-known 
Legendre sequence and one of its shifts. Weil code 
correlation sidelobes are bounded by twice the square root 
of the length, which is no worse than 3 dB from 
commonly used Gold codes.  

The L1C codes were created by using Weil-codes of 
prime length 10223. Selected Weil-codes were padded 
with a fixed 7-bit pad to yield the L1C spreading code. 
The correlation properties of Weil-codes with pad are 
highly dependent on both the Weil code and the pad 
insertion point. Thus a search over all Weil codes and 
insertion points was required. The search criteria were 
derived from threshold bounds on the sidelobes for both 
auto- and cross-correlation and for both the even and odd 
cases. The search criteria need to be adjusted occasionally 
                                                 
 

to yield more candidates codes.  The overall search  
yielded a large set of codes from which the final set of 
420 codes could be selected. Because L1C is currently 
considering two separate modulation schemes (BOC(1,1) 
and TMBOC), two separate families of codes were 
constructed that are optimized to the modulation 

The 210 L1C overlay codes are length 1800, which 
corresponds to a frame length of 1800 symbols. The 
search to construct the overlay codes used two types of 
criteria. First, full period even auto- and cross-correlation 
sidelobe bounds were specified. Second, criteria were 
given for the correlation sidelobes when a small 
subsequence of the code is correlated against the full 
code. For this case, lengths of 100 (1 second) and 200 (2 
seconds) were used. The overlay codes are based on 
truncated linear feedback shift register sequences of 
length 2047, either m-sequences or Gold sequences. The 
choices for truncation points ensured good auto and cross-
correlation sidelobes while also allowing flexibility to 
bound the short window correlations.  

INTRODUCTION  

One part of the ongoing Global Positioning System 
modernization is the creation of a new civil signal on the 
next generation of satellites (GPS III). This new signal, 
called L1C, will be transmitted on the L1 carrier 
frequency.  The L1C signal design has been designed with 
many innovative and effective features that will provide 
improved performance to all users. These features include 
separate pilot and data components, new spreading and 
overlay codes, flexible data messaging with separation of 
clock and ephemeris, state-of-the-art forward error 
correction (FEC). The L1C signal has been designed to be 
compatible with other international GNSS signals. A 
complete description of the L1C signal is at [1], while an 
overview of the final design is [2]. 

We summarize the L1C design features pertinent to the 
spreading and overlay codes. The L1C signal nominally 
uses a BOC(1,1) modulation, and thus fits into other GPS 
signals on L1 as shown in Figure 1. BOC(1,1) is a binary 
offset carrier modulation with 1.023 MHz spreading code 
chipping rate and 1.023 MHz square wave subcarrier 
frequency, sine phased [3]. An alternative modulation 
scheme, called TMBOC, has been recommended and may 
be adapted in the future; the effects of the modulation 
scheme on the spreading code families is dealt with 
below.  
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The L1C signal consists of a pilot and a data component. 
Power is divided unequally between the two components, 
with 75% of the power in the pilot component and the 
remaining 25% in the data component.  The phase 
relationship between the two components is not specified 
ahead of time, and thus is not assumed in this paper. The 
data symbol period is 10 ms, which is also the spreading 
code period. Since the chipping rate is 1.023 MHz, the 
spreading code period is 10230.  

 

 
Figure 1. Future Collection of Signals on L1  

The families of spreading and overlay codes have their 
own constraints and requirements, and thus each required 
their own tailored searches. The bulk of the paper is 
devoted to spreading codes and their novel use of Weil 
sequences. The overlay codes are based on conventional 
linear feedback shift register sequences.  

FAMILIES OF SPREADING CODES 

In general, a spreading sequence family consists of a set 
of (often binary) sequences that exhibit good auto- and 
cross correlation properties. For a periodic sequence a of 
length N with elements ia  for i = 0 to N – 1, the 
autocorrelation is   
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where throughout all subscript arithmetic is modulo N. As 
such, we only consider periodic correlations. When τ is 
not congruent to 0 modulo N, the values of the 
autocorrelation are called sidelobes. Similarly, the 
crosscorrelation is defined for distinct a and b as 

 
1

0
cross( , ; ) .

N
i i

i
a b ττ

−
+

=
= ∑a b  

All values of the crosscorrelation are sidelobes. The 
balance of a sequence is just the sum of its elements.  

Finding large families of sequences with good correlation 
properties is difficult. The Welch bound [4] provides a 
lower bound for the maximum sidelobe for a family of M 
sequences of length N:  
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Table 1 indicates most of the well-known sequence family 
constructions, along with the respective length, family 
size, and maximum sidelobe magnitude. Notice that some 
families essentially meet the Welch bound. The last line 
of Table 1 has the relatively new Weil sequences, which 
are described in the next section. The data for Table 1 is 
derived from [5-8]. 

Table 1. Good Sequence Families  

Name Length 
N Family Size Max 

Sidelobe 

Gold 
(odd) 

2n − 1, 
 n odd 

2N +  1 2 1N+ +  

Gold 
(even) 

2n − 1,  
n = 4k + 

2 
2N +  1 2 1N+ +  

Kasami 
(small) 

2n − 1, 
 n even 

1N +  1 1N+ +  

Kasami 
(large) 

2n − 1,  
n = 4k + 

2 
( 2) 1N N+ +  1 2 1N+ +  

Bent 2n − 1, 
 n = 4k 

1N +  1 1N+ +  

No 2n − 1,  
n = 2k 

1N +  1 1N+ +  

Gong (2n − 1)2 N  3 2 1N+ +  

Paterson, 
Gong 

p2 , p 
prime 3 
mod 4 

1N +  3 2 1N+ +  

Paterson 
p2 , p 

prime 3 
mod 4 

N  5 4 1N+ +  

Z4-linear, 
family I 

2(2n − 1), 
n odd 

/ 2 1N +  2 2N+ +  

Z4-linear, 
family II 

2(2n − 1), 
n odd 

2( 2) / 4N +  2 2 2N+ +  

Weil p, prime ( 1) / 2N −  5 2 N+  

 

An important lesson from Table 1 is the lack of variety 
for the lengths of the various families. The fact that Weil 
codes exist for any prime length gives them a flexibility 
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that may suggest other applications besides the L1C 
spreading code construction.  

Table 1 reports maximum sidelobe in the so-called even 
case, when there is no sign transition across a sequence 
period. Odd correlation is defined when such a sign 
transition occurs; for example, odd crosscorrelation is 
defined as 
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(odd autocorrelation defined similarly). It is an 
unfortunate reality that sequence families designed for 
good even correlation often fail to have good odd 
correlation (note that the Welch bound still serves as a 
lower bound  in the odd case). 

L1C SPREADING CODE SEARCH OVERVIEW 

The design for the L1C signal specified several 
requirements for the length-10230 L1C spreading codes: 

• A total of 210 pilot code/ data code pairs are 
needed. 

• BOC(1,1) modulation should be used initially. 

• Because of the greater power on the pilot 
component, greater emphasis should be placed 
on the correlation properties of the pilot codes. 

• The codes should be optimized for both even and 
odd correlation. 

• The sequences should have near-zero balance. 

• Within a given pilot code/data code pair, the 
codes should be near orthogonal at zero lag. 

• The new family should improve on other length 
10230 GNSS spreading code families, including 
the GPS L5 codes. 

Finally, the codes were desired to be easy to implement. 
This last criteria meant that memory codes were not 
considered. 

Given these goals, several initial constructions were 
considered with little success. Examples included looking 
at concatenations and truncations of Gold codes [9] and 
attempts at modifying the interleave constructions of 
Gong and Paterson [6-7]. Eventually, the Weil sequence 
constructions was re-discovered and adapted to the L1C 
task. 

WEIL SEQUENCES 

Weil sequences exist for any prime length p. They are 
constructed via a “shift-and-add” procedure from the 
length-p Legendre sequence. Legendre sequences in turn 
are based on which integer values are squares modulo p. 

An integer x is a square modulo p if there is some integer 
y such that 2 (mod )x y p≡ (so, for example, 2 is a square 
modulo 7). We will use the term “square” only for values 
of x that are not divisible by p. Define the Legendre 
symbol as 
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1 is not a square(mod )

p x
x x p
p
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⎧
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Then the Legendre sequence Leg p  is defined as 

Leg (0) 1p = −  and Leg ( )p
ii
p

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
otherwise. It is well-

known (see [10]) that for k not divisible by p, 
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From this equation it follows that the sidelobes for τ not 
divisible by p 
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In particular, Leg p has the same 2-valued autocorrelation 
function as an m-sequence in the second case.  

Weil sequences are defined from a Legendre sequence 
using an index k by 

 Weil ( ) Leg ( )Leg ( ),k
p p pi i i k= +  

where k = 0 to (p – 1)/2. This construction is a “shift-and-
add” construction set in a multiplicative form since the 
elements are ±1. We will omit the value p from the 
notation if it is understood from context. 

The Weil sequence construction was originally proposed  
for primes congruent to 3 modulo 4 in [11]. We re-
discovered the construction, extended it to all primes, and 
proved the important correlation properties in [8]. Some 
of the properties of Weil sequences are listed in Table 1. 
In addition, Weil sequences have balance -1 or +1 and -3, 
depending on the value of p modulo 4; this fact is 
equivalent to the autocorrelation of the Legendre 
sequence. 

The proof of the bound of 5 2 p+ in Table 1 for the 
Weil sequence sidelobes is beyond the scope of this paper 
and can be found in [8]. It is established by bounding 
sums of the form  (see [10]) 
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A general bound on such sums was proved by Weil in 
1948 [12], hence the naming of these sequences. 

Figure 2 shows the maximum sidelobe between Weil1 and 
Weil2 for all primes up to 10000 compared to the theorem 
bound in Table 1. We see that the bound is tight for many 
values of p. The prevalence of the primes is also evident.  

 

Figure 2. Bound versus Actual Maximum Sidelobe 
Magnitude 

One intriguing aspect of Weil sequences, which is still not 
completely understood, is the behavior of the odd 
correlation sidelobes. Consider Figure 3, which shows a 
plot of the maximum autocorrelation sidelobes for all 
5111 Weil sequences when p = 10223. The vertical axis is 
in dB, which is measured here and throughout as 

 
2
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The bottom curve shows the maximum even 
autocorrelation sidelobe. This line is flat at about -34 dB, 
which reflects the bound magnitude bound of 
5 2 10223+ . The top curve shows the maximum odd 
autocorrelation. We see a 2 to 4 dB variation at any given 
point on the curve, and an almost 8 dB variation between 
the smallest values to the largest.  Other experiments (not 
shown) inidcate that this behavior between the odd and 
even curves, including the shape of the odd curve, holds 
in general for all primes. Interestingly, although Weil 
sequences are 3 dB worse than Gold sequences, 
experiments have seen comparable performance between 
Gold and Weil sequences when odd correlation is 
considered.  

The importance of Figure 3 is that Weil sequences with 
indices in the upper range are more likely to have both 
good even and odd correlation. Such facts influence the 
actual searches conducted below. 

 

Figure 3. Maximum Even and Odd Autocorrelation 
Sidelobe (dB) 

THE WEIL-BASED L1C CONSTRUCTION 

The prevalence of primes allowed some flexibility in 
initial attempts to adapt Weil codes to L1C task. For 
example, 10223 and 10243 are the two primes that are 
nearest to 10230. In the first case, we would need to pad 
Weil sequences by 7 values to obtain the desired length; 
in the second case, we would need to truncate Weil 
sequences by 13 values. Some preliminary experiments 
determined that padding yielded slightly better 
performance (measured in correlation sidelobes), and 
hence that was the approach ultimately taken. In 
particular, we fix p = 10223 for now on. 

The construction is shown in Figure 4; the figure is 
adapted from [1], but uses values that are ±1 consistent 
with the mathematical formulation in this paper.  The 
figure indicates how Weil sequences are a shift-and-add 
of the core Legendre sequence, and how the Weil 
sequence is then augmented with a 7-bit pad to obtain the 
final length-10230 code (the choice of pad is elaborated 
on below).   

Notice that the resulting sequences are easily 
implemented in logic. Indeed, even the Legendre 
sequence could be constructed on the fly using shift-
register logic to generate the location of the square values, 
but in practice the single Legendre sequence would 
probably be stored and used to derive all subsequent 
codes.  

This construction suggests the search strategy given in 
Figure 5. There are 5111 Weil sequences of length 10223. 
There are 10223 positions where a 7 bit pad could be 
inserted into the sequence, and there are 128 possible 7-
bit pads. The family of codes is constructed by 
progressing through this parameter space, creating a given 
code, and testing it against the previously found members 
of the family to determine whether or not it should be 

Even Correlation Auto Maximum Sidelobe

dB

Weil Index

Odd Correlation Auto Maximum Sidelobe
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added to the family. The test criteria are in terms of auto- 
and crosscorrelation for both the even and odd cases.  

 

Figure 4. Construction of Length-10230 Weil-Based 
Spreading Codes 

 

 

Figure 5. Weil-Based Search Strategy 

Motivated by Figure 3, some experiments were run to 
establish the dependency on the pad and insertion point in 
this construction. The results are shown in Figures 6 and 
7. In each figure, we show the maximum even and odd 
autocorrelation sidelobes in dB (two separate plots) for 
each insertion point. The two curves in each plot indicate 
the minimum (green) and maximum (blue) of this 
maximum sidelobe over all 128 possible 7-bit pads. 
Figure 6 yields results for the length-10223 Weil Index 1 
sequence, while Figure 7 is for Weil index 5111. 

 

 

 

Figure 6. Variations Due to Pad and Insertion Point 
for Weil Index 1  

Several observations are immediate from the figures. 
First, since we are looking at autocorrelation properties of 
the Weil sequence plus a pad, we lose the uniform 
performance evident in the even case in Figure 3. For 
Weil Index 1 in Figure 6, we see how bad the odd 
correlation compared to the even correlation; again 
consistent with Figure 3. Similarly, Figure 7 shows how 
good the odd correlation is for Weil Index 5111. Indeed, it 
is better than the even correlation result for most insertion 
points. Finally, both Figures 6 and 7 indicate that there is 
little to gain by varying the 7-bit pad. As such, the final 
strategy fixed a pad to be the values +1 -1 -1 +1 -1 +1 +1 
as indicated in Figure 4. One benefit to using this pad is 

Weil Sequences
5111 possible

7-bit pad
128 possible

Insertion point
10223 possible
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criteria

Passes: add to family   

Fails: go to next parameter set  
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i
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+1 if i ≡ a2 mod 10223, some a

. . . . . .

+1 -1-1 . . .
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s
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that all resulting Weil-based codes will have balance 
equal to 0. 

 

Figure 7. Variations Due to Pad and Insertion Point 
for Weil Index 5111  

SEARCH RESULTS 

An exhaustive search was conducted over all Weil indices 
k and insertion point values s. The search began with k = 
5111 and progressed downward. The search first used 
several days to gather all potential codes that satisfied an 
autocorrelation threshold of -31 dB for even correlation 
and -28 dB for odd correlation. The rationale was that it 
was relatively quick to gather this set, and that 
autocorrelation is an easier criterion to meet and thus 
would not unduly degrade the larger follow on search. 
The actual threshold values were based on preliminary 
test searches. 

Once that set of potential codes had been gathered, the 
longer exhaustive search was conducted. The resulting set 
of codes divides naturally into three subsets based on 
criteria for crosscorrelation: 

1. An even crosscorrelation threshold at -28 dB and 
an odd crosscorrelation threshold at – 26.5 dB 
yielded 109 codes. 

2. An even threshold of -27.5 dB and an odd 
threshold of -26.5 yielded an additional 150 
codes. 

3. A final setting of an even threshold of -27.2 dB 
and an odd threshold of -26.2 dB yielded 480 
codes. 

In the second and third cases, the full set of potential 
codes was re-examined; thus in essence three exhaustive 
searches were conducted. The end result is a family of 
739 Weil-based length-10230 codes that meet the above 
criteria. Figure 8 captures the full family of codes by 
graphing the Weil index versus insertion point. Note that 
the indices toward 5111 are more heavily used, and the 
values of the insertion point are consistent with the 
phenomena observed in Figures 6 and 7. 

 

Figure 8. Insertion Points and Weil indices 

The final operation required to create the set of L1C 
spreading codes was to match pilot/data pairs that are near 
orthogonal at zero lag. Because the sequences have zero 
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balance, the smallest absolute correlation between them is 
an absolute value of 2. This was obtainable in practice 
using standard graph matching techniques. 

From the set of 739 codes, we created the 210 pilot/data 
pairs that are found in [1]. The individual codes are 
specified by the Weil index and insertion point. Because 
the pilot component will be allocated 75% of the power, 
the best codes (from the first subset above) were used for 
the pilot codes when possible. In particular, this is true for 
the first 63 codes reserved for GPS. 

TMBOC  

The search and selection of the 739 Weil-based codes was 
a search on binary sequences, and as such is relevant only 
when the implicit one sample per chip applies to the 
modulation scheme, is the case with BOC(1,1) 
modulation. However, there are currently two different 
modulation variants that are being considered. In addition 
to BOC(1,1), the alternative spreading modulation is 
called multiplexed BOC (MBOC); it has been 
recommended by the GPS-GALILEO Working Group on 
Interoperability and Compatibility [13]. MBOC has a 
spectrum produced by 10/11 of the total signal power in a 
BOC(1,1) component and 1/11 of the total signal power in 
a BOC(6,1) component; see [14]. Currently it has not 
been decided whether BOC(1,1) or MBOC will be used. 

The L1C implementation of MBOC is called time-
multiplexed BOC (TMBOC). In TMBOC, the data 
component spreading still uses BOC(1,1), while the pilot 
component replaces four out of every 33 BOC(1,1) 
spreading symbols with BOC(6,1) spreading symbols.  
Note that the fraction of total power devoted to BOC(6,1) 
symbols is (4/33) × (3/4) = 1/11, since the pilot 
component has 75% of the power. Figure 9 shows the “4 
out if 33” replacement pattern. This pattern was found 
using search techniques that compared possible patterns 
versus compatible with the L1C spreading codes. 

 

Figure 9. TMBOC Modulation,  
Including the “4 out of 33” Pattern 

 

 

A family of spreading codes optimized for one type of 
modulation scheme will not necessarily be optimized for a 
different modulation scheme. In particular, the family of 
codes constructed above for BOC(1,1) performs worse 
with TMBOC. Fortunately, the set of 739 potential codes 
resulting from the exhaustive searches permits the 
creation of a different family of spreading codes 
optimized for TMBOC. In particular, an initial family of 
210 pilot/data pairs of Weil-based codes has been created 
for TMBOC and is currently being evaluated.  

PERFORMANCE SUMMARY 

Table 2 summarizes the performance of the two Weil-
based spreading code families (BOC(1,1) and TMBOC) 
along with the other GNSS codes of length 10230. We 
specify the even auto- and crosscorrelation maximum 
sidelobe, since this is the prominent metric used in the 
literature to discuss spreading code families. We also give 
a measure of the tails of the distribution of the sidelobes 
for both even and odd combined by giving the 99.9999% 
cutoff.  

The calculations use one sample per spreading symbol for 
all cases except TMBOC, where 12 samples per spreading 
symbol are used to capture the structure of the BOC(6,1) 
spreading symbol. Only 0 Hz Doppler is considered. The 
low sidelobes for the L1C families are impressive given 
the large number of codes involved, especially when one 
considers that only 420 of the possible 739 codes are used 
in each L1C family. Notice that the tail cutoff points 
begin to become comparable due to effect of the codes 
beginning to behave as a collection of random sequences. 
Even so, the TMBOC family out-performs the other 
families, because of the cancellation effect of BOC(1,1) 
and BOC(6,1) symbols being orthogonal.  

Table 2. Correlation Sidelobes for Various  
Length-10230 Spreading Codes 

Code 
Family 

Number 
of Codes

Max. 
Auto 
Even 

Sidelobe 
(dB) 

Max. 
Cross 
Even 

Sidelobe 
(dB) 

99.9999% 
Auto 

Even/Odd 
Sidelobe 

(dB) 

99.9999% 
Cross 

Even/Odd 
Sidelobe 

(dB) 

L1C 
BOC(1,1) 420 –31.1 –27.3 –28.1 –26.9 

L1C 
TMBOC 420 –31.1 –27.7 –29.4 –28.7 

Galileo 
E5a 200 –28.6 –25.5 –28.6 –26.4 

L5 (I5 
and Q5) 420 –28.6 –26.0 –26.9 –27.0 

L2C CM 37 –27.0 –25.4 –27.0 –25.4 

25% Power Data Component

75% Power Pilot Component

••• •••

••••••

BOC(1,1) BOC(6,1)
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THE OVERLAY CODES 

Each pilot component is modulated by an overlay code, 
which serves several purposes. The overlay code 
enhances the correlation properties of the pilot spreading 
code by making the overall period much longer. 
Narrowband interference suppression is improved through 
decreasing spectral lines. Finally, the overlay code 
enables synchronization of the data messaging. For the 
L1C signal, the overlay code is unique to each pilot code. 
Each bit of the overlay code is modulated to one period 
(10 ms) of the spreading code.  

The length of the overlay code is 1800 bits, which 
corresponds to the number of symbols in a data frame for 
L1C (900 information symbols with half-rate forward 
error correction).  The criteria used to create the family of 
210 overlay codes divides into two parts. The first part is 
the desire for the overlay codes to have good auto- and 
crosscorrelation as a family of length-1800 spreading 
codes.  This goal was accomplished in the search by 
setting appropriate thresholds in the same manner as the 
spreading code search. Notice that only even correlation 
needs to be considered. 

The second part of the criteria relates to the goal of aiding 
synchronization. In practice, a receiver may wish to 
synchronize within an overlay code period using a much 
shorter window.  Figure 10 depicts this situation, where a 
small window of length L is correlated periodically 
against the full overlay code. 

 

Figure 10. Short Window Synchronization in an 
Overlay Code 

Optimization for every value of L is impractical, so two 
nominal values were used: L = 100 and L = 200. These 
values correspond to a 1-second and a 2-second window 
duration. For each value of L, one considers all 
correlations from each possible length-L subsequence 
taken from the overlay code. The maximum sidelobe of 
all of these correlations was required to be below a given 
threshold. For L = 100, the threshold was -7 dB; this 
corresponds to a raw value of about 45, which represents 
about 4.5 standard deviations if one assumes a normal 
approximation for the correlations. Similarly, when L = 
200, the threshold was -10.5 dB, which corresponds to a 
value of about 60 or 4.2 standard deviations.  

Given these two sets of criteria, a search took place to 
find the best overlay code family. Initially, we considered 
a Weil-based approach, since 1801 is a prime number, so 

that there are in fact 900 Weil sequences of length 1801. 
These sequences can be used to construct a family of 
codes of length 1800 (by truncation) that meet the first set 
of correlation goals. However, the resulting codes do not 
meet the synchronization goals. 

Instead, we focused on using linear feed back shift 
register based sequences of length 2047 to construct the 
overlay codes. Experimentation found that truncated m-
sequences gave comparable crosscorrelation performance 
to truncated Gold sequences, while having better 
autocorrelation properties.  Thus the first 63 overlay 
codes, which are reserved for GPS, are truncated m-
sequences.  The remaining overlay codes are truncated 
Gold sequences.   

The search for the overlay codes was analogous to that of 
the spreading code listed in Figure 5. First, for each m-
sequence, all possible truncation points were checked. If 
one truncation point was such that the resulting length-
1800 sequence passed all of the criteria, it was then added 
to the family. Testing all of the m-sequences yielded the 
63 overlay codes for GPS. Subsequently, each possible 
Gold sequence was similarly examined to find an 
appropriate truncation point. Each Gold sequence is 
derived from a so-called preferred pair, and there are 2047 
non-m-sequence Gold sequences for each preferred pair. 
Thus only a few preferred pairs needed to be examined to 
complete the desired set of 210 overall codes.  The 
specific parameters are given in [1]. 

Table 3 shows the auto- and crosscorrelation of the 
overlay codes. The 2 dB improvement in autocorrelation 
is due to the better autocorrelation properties of an m-
sequence. All of the overlay codes met the above 
synchronization thresholds. The entire calculation used 
one sample per code element, and only 0 Hz Doppler was 
considered.   

Table 3. Maximum Sidelobes at 0 Hz Frequency Shift 
for the Overlay Codes 

Overlay 
Codes 

Even Auto- 
Correlation 

Even Cross- 
Correlation 

Index 
1 to 63 –24.8 dB –19.6 dB 

Index 
1 to 210 –22.7 dB –19.6 dB 

  
SUMMARY 

The new L1C signal presented the opportunity to create 
better families of spreading and overlay codes. The Weil-
based L1C spreading code achieve that goal. They have 
improved correlation properties, are well-balanced, and 
easy to construct. The large sets of codes that have been 
collected permits flexibility with regard to the final 
modulation scheme. The overlay codes likewise meet the 
goals enhancing correlation on the pilot component while 

1800 symbols

L (e.g., 100 symbols)
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also permitting synchronization to the data message. Both 
the spreading and overlay codes are examples of many of 
the improvements to be found in the new L1C signal. 
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