
The Spy in the Sandbox – Practical Cache Attacks in Javascript

Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan and Angelos D. Keromytis

Computer Science Department, Columbia University

{yos | vpk | simha | angelos}@cs.columbia.edu

Abstract

We present the first micro-architectural side-channel at-

tack which runs entirely in the browser. In contrast to

other works in this genre, this attack does not require the

attacker to install any software on the victim’s machine –

to facilitate the attack, the victim needs only to browse

to an untrusted webpage with attacker-controlled con-

tent. This makes the attack model highly scalable and ex-

tremely relevant and practical to today’s web, especially

since most desktop browsers currently accessing the In-

ternet are vulnerable to this attack. Our attack, which is

an extension of the last-level cache attacks of Yarom et

al. [23], allows a remote adversary recover information

belonging to other processes, other users and even other

virtual machines running on the same physical host as

the victim web browser. We describe the fundamentals

behind our attack, evaluate its performance using a high

bandwidth covert channel and finally use it to construct a

system-wide mouse/network activity logger. Defending

against this attack is possible, but the required counter-

measures can exact an impractical cost on other benign

uses of the web browser and of the computer.

1 Introduction

Side channel analysis is a remarkably powerful class of

cryptanalytic attack. It lets attackers extract secret infor-

mation hidden inside a secure device by analyzing the

physical signals (power, radiation, heat, etc.) the de-

vice emits as it performs a secure computation [15]. Al-

legedly used by the intelligence community as early as

World War II, and first discussed in an academic context

by Kocher et al. in 1996 [14], side channel analysis has

been shown to be effective in breaking into myriad real-

world systems, from car immobilizers to high-security

cryptographic coprocessors [8, 18]. A particular kind of

side-channel attack which is relevant to personal com-

puters is the cache attack, which exploits the use of cache

memory as a shared resource between different processes

or users to disclose secret information [17, 11].

While the potency of side-channel attacks is estab-

lished without question, their application to practical sys-

tems is relatively limited. The main limiting factor to

the practicality of side-channel attacks is the problem-

atic attack model they assume: with the exception of

network-based timing attacks, most side-channel attacks

require that the attacker be in close proximity to the vic-

tim. Cache attacks, in particular, typically assume that

the attacker is capable of executing arbitrary binary code

on the victim’s machine. While this assumption holds

for Infrastructure/Platform-as-a-Service (IaaS/PaaS) en-

vironments such as Amazon’s cloud computing platform,

it is less relevant for other settings.

In this report we challenge this limiting security as-

sumption by presenting a successful cache attack which

assumes a far more relaxed and practical attacker model.

In our attacker model, the victim merely has to access a

website owned by the attacker. Despite this minimal at-

tack model, we show how the attacker can still launch an

attack in a practical time frame and extract meaningful

information from the system under attack. Keeping in

tune with this computing setting, we chose to focus our

attacks not on cryptographic key recovery but rather on

tracking user behavior. The attacks described in this

report are therefore highly practical: practical in the as-

sumptions and limitations they cast upon the attacker;

practical in the time they take to run; and practical in

terms of the benefit they deliver to the attacker. To the

best of our knowledge, this is the first side-channel at-

tack which can scale effortlessly into millions of targets.

For our attacks we assume that the victim is using a

personal computer powered by a late-model Intel CPU.

We furthermore assume that the user is accessing the web

through a browser with comprehensive HTML5 support.

As we show in Subsection 5.1, this covers a vast majority

of personal computers connected to the Internet. The vic-

tim is coerced to view a webpage containing an attacker-

1

ar
X

iv
:1

50
2.

07
37

3v
2

 [
cs

.C
R

]
 1

 M
ar

 2
01

5

controlled element such as an advertisement. The attack

code itself, which we describe in more detail in Section 2,

executes a Javascript-based cache attack, which allows

it to track accesses to the DUT’s last-level cache (LLC)

over time. Since this single cache is shared by all CPU

cores and by all users, processes and protection rings,

this information can provide the attacker with a detailed

knowledge of the user and the system under attack.

1.1 The Memory Architecture of Modern

Intel CPUs

Modern computer systems typically incorporate a high-

speed central processing unit (CPU) and a large amount

of lower-speed random access memory (RAM). To

bridge the performance gap between these two com-

ponents, modern computer systems make use of cache

memory – a type of memory element with a smaller

size but a higher performance, which contains a sub-

set of the RAM which has been recently accessed by

the CPU. The cache memory is typically arranged in a

cache hierarchy, with a series of progressively larger

and slower memory elements being placed in levels be-

tween the CPU and the RAM. Figure 1, taken from

[22], shows the cache hierarchy used by Intel Ivy Bridge

series CPUs, incorporating a small, fast level 1 (L1)

cache, a slightly larger level 2 (L2) cache, and finally a

larger level 3 (L3) cache which is then connected to the

RAM. The current generation of Intel CPUs, code named

Haswell, extends this hierarchy by another level of em-

bedded DRAM (eDRAM), which is not discussed here.

Whenever the CPU wishes to access a memory element,

the memory element is first searched for in the cache hi-

erarchy, saving the lengthy round-trip to the RAM. If the

CPU requires an element which is not currently in the

cache, an event known as a cache miss, one of the ele-

ments currently residing in the cache must be evicted to

make room for this new element.

The Intel cache micro-architecture is inclusive – all el-

ements in the L1 cache must also exist in the L2 and L3

caches. Conversely, if a memory element is evicted from

the L3 cache, it is also immediately evicted from the L2

and L1 cache. It should be noted that the AMD cache

micro-architecture is exclusive, and thus the attacks de-

scribed in this report are not immediately applicable to

that platform.

This report focusses on the level 3 cache, commonly

referred to as the last-level cache (LLC). Due to the

LLC’s relatively large size, it is not efficient to search

its entire contents whenever the CPU accesses the mem-

ory. Instead, the LLC is divided into cache sets, each

covering a fixed subset of the memory space. Each of

these cache sets contains several cache lines. For exam-

ple, the Intel Core i7-3720QM processor, which belongs

to the Haswell family, includes 8192 = 213 cache sets,

each of which can hold 12 lines of 64 = 26 bytes each,

giving a total cache size of 8192x12x64=6MB. When

the CPU needs to check whether a given physical ad-

dress is present in the L3 cache, it calculates which cache

set is responsible for this address, then only checks the

cache lines corresponding to this set. As a consequence,

a cache miss event for a physical address can result in

the eviction of only one of the relatively small amount of

lines sharing its cache set, a fact of which we make great

use in our attack. The method of mapping between 64-bit

physical addresses and 13-bit cache set indices has been

reverse engineered by Hund et al. in 2013 [12]: of the 64

physical address bits, bits 5 to 0 are ignored, bits 16 to

6 are taken directly as the lower 11 bits of the set index,

and bits 63 to 17 are hashed to form the upper 2 bits of

the cache index. The LLC is shared between all cores,

threads, processes, users, and even virtual machines run-

ning on a certain CPU chip, regardless of privilege rings

or other protection similar mechanisms.

Modern personal computers use a virtual memory

mechanism, in which user processes do not typically

have direct knowledge or access to the system’s physi-

cal memory. Instead, these processes are allocated vir-

tual memory pages. When a virtual memory page is

accessed by a currently executing process, the operat-

ing system dynamically associates the page with a page

frame in physical memory. The CPU’s memory manage-

ment unit (MMU) is in charge of mapping between the

virtual memory accesses made by different processes and

accesses to physical memory. The size of pages and page

frames in most Intel processors is typically set to 4KB,

and both pages and page frames are page aligned – the

starting address of each page is a multiple of the page

size. This means that the lower 12 bits of any virtual ad-

dress and its corresponding virtual address are generally

identical, another fact we use in our attack.

1.2 Cache Attacks

The cache attack is the most well-known representative

of the general class of micro-architectural attacks, which

are defined by Aciiï¿œmez in his excellent survey [2] as

attacks which “exploit deeper processor ingredients be-

low the trust architecture boundary” to recover secrets

from various secure systems. Cache attacks make use of

the fact that, regardless of higher-level security mech-

anisms such as sandboxing, virtual memory, privilege

rings, hypervisors etc., both secure and insecure pro-

cesses can interact through their shared use of the cache.

This allows an attacker to craft a “spy” process which

can measure and make inferences about the internal state

of a secure process through their shared use of the cache.

First identified by Hu in 1992 [11] , several results have

2

Figure 1: The Intel Ivy Bridge Cache Architecture (taken from [22])

shown how the cache side-channel can be used to recover

AES keys [17, 4], RSA keys [19], and even allow one

virtual machine to compromise another virtual machine

running on the same host [20].

Our attack is modeled after the PRIME+PROBE attack

method, first described by Osvik et al. in [17] in the con-

text of the L1 cache. The attack was later extended by

Yarom et al. in [23] to last-level caches on systems with

large pages enabled, and we extend it in this work to

last-level caches in the more common case of 4K-sized

pages. In general, the PRIME+PROBE attack follows a

four-step pattern. In the first step, the attacker creates

one or more eviction sets. An eviction set is a set of lo-

cations in memory which, when accessed, can take over

a single cache line which is also used by the victim pro-

cess. In the second step, the attacker primes the cache set

by accessing the eviction set. This forces the eviction of

the victim’s code or instructions from the cache set and

brings it to a known state. In the third step, the attacker

triggers or simply waits for the victim to execute and po-

tentially utilize the cache. Finally, the attacker probes

the cache set by accessing the eviction set yet again. A

low access latency suggests that the attacker’s code or

data is still in the cache, while a higher access latency

suggests that the victim’s code made use of the cache

set, thereby teaching the attacker about the victim’s inter-

nal state. The actual timing measurement is carried out

by using the unprivileged assembler instruction rdtsc,

which provides a very sensitive measurement of the pro-

cessor’s cycle count. Iterating over the linked list also

serves a secondary purpose by forcing the cache set yet

again into an attacker-controlled state, thus preparing for

the next round of measurements.

1.3 The Web Runtime Environment

Javascript is a dynamically typed, object-based script-

ing language with runtime evaluation, which powers the

client side of the modern web. Javascript code is deliv-

ered to the browser runtime in source-code form and is

compiled and optimized by the browser using a just-in-

time mechanism. The fierce competition between differ-

ent browser vendors resulted in an intense focus on im-

proving Javascript performance. As a result, Javascript

code performs in some scenarios on a level which is on

par with that of native code.

The core functionality of the Javascript language is

defined by the ECMA industry association in Standard

ECMA-262 [7]. The language standard is complemented

by a large set of application programming interfaces

(APIs) defined by the World Wide Web Consortium [6],

which make the language practical for developing web

content. The Javascript API set is constantly evolving,

and browser vendors add support to new APIs over time

according to their own development schedules. Two spe-

cific APIs which are of use to us in this work are the

Typed Array Specification [9], which allows efficient ac-

cess to unstructured binary data, and the High Resolu-

tion Time API [16], which provides sub-millisecond time

measurements to Javascript programs. As we show in

Subsection 5.1, a large majority of Web browsers in use

today support both of these APIs.

Javascript code runs in a highly sandboxed environ-

ment – code delivered via Javascript has highly restricted

access to the system. For example, Javascript code can-

not open files, even for reading, without the permission

of the user. Javascript code cannot execute native lan-

guage code or load native code libraries. Most signifi-

cantly, Javascript code has no notion of pointers. Thus,

it is impossible to determine even the virtual address of a

Javascript variable.

1.4 Our Contribution

Our objective was to craft a last-level cache attack which

can be deployed over the web. This process is quite

3

challenging since Javascript code cannot load shared li-

braries or execute native language programs, and since

Javascript code is forced to make timing measurements

using scripting language function calls instead of using

dedicated assembler instruction calls. These challenges

notwithstanding, we have been able to successfully ex-

tend cache attacks to the web-based environment:

• We present a novel method of creating a non-

canonical eviction set for the last-level cache. In

contrast to [23], our method does not require the

system to be configured for large page support, and

as such can immediately be applied to a wider va-

riety of desktop and server systems. We show that

our method runs in a practical time even when im-

plemented in Javascript.

• We present a fully functional last-level cache at-

tack using unprivileged Javascript code. We eval-

uate its performance using a covert channel method,

both between different processes running on the

same machine and between a VM client and its host.

The nominal capacity of the Javascript-based chan-

nel is on the order of hundreds of kilobits per sec-

ond, comparable to that of the native code approach

of [23].

• We show how cache-based methods can be used to

effectively track the behavior of the user. This ap-

plication of cache attacks is more relevant to our at-

tack model than the cryptanalytic applications often

explored in other works.

• Finally, we describe possible countermeasures to

our attack and discuss their systemwide cost.

Document Structure: In Section 2 we presents the de-

sign and implementation of the different steps of our at-

tack methodology. In Section 3 we present a covert chan-

nel constructed using our attack methodology and evalu-

ate its performance. In Section 4 we investigate the use

of cache-based attacks for tracking user behavior both

inside and outside the browser. Finally, Section 5 con-

cludes the paper with a discussion of countermeasures

and open research challenges.

2 Attack Methodology

As described in the previous section, the four steps in-

volved in a successful PRIME+PROBE attack are: creat-

ing an eviction set for one or more relevant cache sets,

priming the cache set, triggering the victim operation

and finally probing the cache set again. While the actual

priming and probing are pretty straightforward to imple-

ment, finding cache sets which correlate to interesting

system behaviors and creating eviction sets for them is

less trivial. In this Section we describe how each of these

steps was implemented in Javascript.

2.1 Creating an Eviction Set

2.1.1 Design

As stated in [23], the first step of a PRIME+PROBE attack

is to create an eviction set for a certain desired cache set

shared with a victim process. This eviction set consists

of a set of variables which are all mapped by the CPU

into the same cache set. The use of a linked list is meant

to defeat the CPU’s memory prefetching and pipelining

optimizations, as suggested by [20]. We first show how

we create an eviction set for an arbitrary cache set, and

later address the problem of finding which cache set is

shared with the victim.

As discussed in [17], the L1 cache determines the set

assignment for a variable based the lower bits of its vir-

tual address. Since the attacker is assumed to know the

virtual addresses of its own variables, it was thus straight-

forward to create an eviction set in the L1 attack model.

In contrast, set assignments for variables in the LLC are

made by reference to their physical memory address,

which are not generally available to an unprivileged pro-

cess. The authors of [23] partially circumvented this

problem by assuming that the system is operating in large

page mode, in which the lower 21 bits of the physical and

virtual addresses are identical, and by the additional use

of an iterative algorithm to resolve the unknown upper

(slice) bits of the cache set index.

In the attack model we consider, the system is running

in the traditional 4K page mode, where only the lower 12

bits of the physical and virtual addresses are identical. To

our further difficulty, Javascript has no notion of pointers,

so even the virtual addresses of our own variables are

unknown to us.

The mapping of 64-bit physical memory addresses

into 13-bit cache set indices was investigated by Hund

et al. in [12]. They discovered that accessing a contigu-

ous 8MB “eviction buffer” of physical memory will com-

pletely invalidate all cache sets in the L3 cache. While

we could not allocate such an eviction buffer in user-

mode (indeed, the work of [12] was assisted by a kernel-

mode driver), we allocated an 8MB byte array in vir-

tual memory using Javascript (which was assigned by the

operating system into an arbitrary and non-contiguous

set of 4K physical memory pages), and measured the

system-wide effects of iterating over this buffer. We dis-

covered that access latencies to unrelated variables in

memory were slowed down by a noticeable amount when

we accessed them immediately after iterating through

this eviction buffer. We also discovered that the slow-

down effect persisted even if we did not access the entire

4

buffer, but rather accessed it in offsets of once per ev-

ery 64 bytes. However, it was not immediately clear how

to map each of the 131K offsets we accessed inside this

eviction buffer into each of the 8192 possible cache sets,

since we did not know the physical memory locations of

the various pages of our buffer.

A naive approach to solving this problem would be to

fix an arbitrary “victim” address in memory, then find

by brute force which set of 12 out of the 131K offsets

share a set with this address. To do so, we could fix some

subset of the 131K offsets, then measure whether the ac-

cess latency to this victim address is increased after it-

erating through these offsets. If the latency increases,

this means the subset contains the 12 addresses sharing

the set with the victim address. If the latency does not

change, then the subset does not contain at least one of

these 12 addresses, allowing the victim address to remain

in the cache. By repeating this process 8192 times, each

time with a different victim address, we would be able to

identify each cache set and create our data structure.

An immediate application of this heuristic would take

an impractically long time to run. Fortunately, the page

frame size of the Intel MMU, as described in Subsection

1.1, could be used to our great advantage. Since virtual

memory is page aligned, the lower 12 bits of each virtual

memory address are identical to the lower 12 bits of each

physical memory address. According to Hund et al., 6 of

these 12 bits are used in uniquely determining the cache

set index. Thus, an offset in our eviction buffer cannot

be the same cache set as all 131K other offsets, but rather

only with the 8K other offsets sharing address bits 12 to

6. In addition, discovering a single cache set can imme-

diately teach us about 63 additional cache sets located

in the same page frame. Joined with the discovery that

Javascript allocates large data buffers along page frame

boundaries, this led to the greedy algorithm described in

Algorithm 1.

By running Algorithm 1 multiple times, we can grad-

ually create eviction sets covering most of the cache, ex-

cept for those parts which are accessed by the Javascript

runtime itself. We note that, in contrast to the eviction

sets created by the algorithm of [23], our eviction set is

non-canonical – since Javascript has no notion of point-

ers, we cannot identify which of the CPU’s cache sets

corresponds to any particular eviction set we discover.

Furthermore, running the algorithm multiple times on the

same system will result in a different mapping each time

it is run. This property stems from the use of traditional

4K pages instead of large 2MB pages, and will hold even

if the eviction sets are created using native code and not

Javascript.

Algorithm 1 Profiling a cache set

Let S be the set of unmapped pages, and address x be an

arbitrary page-aligned address in memory

1. Repeat k times:

(a) Iteratively access all members of S

(b) Measure t1, the time it takes to access x

(c) Select a random page s from S and remove it

(d) Iteratively access all members of S\s

(e) Measure t2, the time it takes to access x

(f) If removing page s caused the memory access

to speed up considerably (i.e., t1 − t2 > thres),

then this page is part of the same set as x. Place

it back into S.

(g) If removing page s did not cause memory ac-

cess to speed up considerably, then this ad-

dress is not part of the same set as x.

2. If |S|= 12, return S. Otherwise report failure.

2.1.2 Evaluation

We implemented Algorithm 1 in Javascript and evaluated

it on Intel machines using CPUs from the Ivy Bridge,

Sandy Bridge and Haswell families, running the latest

versions of Safari and Firefox on Mac OS Yosemite and

Ubuntu 14.04 LTS, respectively. The systems were not

configured to use large pages, but instead were running

with the default 4K page size. The code snippet shown

in Listing 1 shows lines 1.d and 1.e of the algorithm, and

demonstrate how we iterate over the linked list and mea-

sure latencies using Javascript. The algorithm requires

some additional steps to run under Chrome and under

Internet Explorer, which we describe in Subsection 5.1.

Figure 2 shows the performance of the profiling algo-

rithm, as evaluated on an Intel i7-3720QM running Fire-

fox 35.0.1 for Mac OS 10.10.2. We were pleased to find

that the algorithm was able to map more than 25% of the

cache in under 30 seconds of operation, and more than

50% of the cache after 1 minute. The algorithm seems

very simple to parallelize, since most of the execution

time is spent on data structure maintenance and only a

minority of it is actually spent in the actual invalidate-

and-measure portion. The entire algorithm fits into less

than 500 lines of Javascript code.

To verify that our algorithm was indeed capable of

identifying cache sets, we designed an experiment that

compares the access latencies for a flushed and an un-

flushed variable. Figure 3 shows two probability distri-

bution functions comparing of the time required to access

5

// Invalidate the cache set

var currentEntry = startAddress;

do {

currentEntry =

probeView.getUint32(currentEntry);

} while (currentEntry != startAddress);

// Measure access time

var startTime =

window.performance.now ();

currentEntry =

primeView.getUint32(variableToAccess);

var endTime = window.performance.now();

Listing 1: Javascript code to invalidate a cache set, then

measure access time

0 25 50 75 100 125 150
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (s)

C
a
ch
e
se
ts

p
ro
fi
le
d

Figure 2: Cumulative performance of the profiling algo-

rithm

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Access Latency (ns)

P
ro
b
a
b
il
it
y
d
en

si
ty

Figure 3: Probability distribution of access times for

flushed vs. un-flushed variable (Haswell CPU)

0 50 100 150
0

0.05

0.1

0.15

0.2

Access Latency (ns)

P
ro
b
a
b
il
it
y
d
en

si
ty

Figure 4: Probability distribution of access times for

flushed vs. un-flushed variable (Sandy Bridge CPU)

a variable which has recently been flushed from the cache

using our method (gray line) with the time required to

access a variable which currently resides in the cache set

(black line). The timing measurements were carried out

using Javascript’s high resolution timer, and thus include

the additional delay imposed by the Javascript runtime.

It is clear to see that the two distributions are distinguish-

able, confirming the correct operation of our profiling

method. Figure 4 shows a similar plot captured on an

older-generation Sandy Bridge CPU, which includes 16

entries per cache set.

By selecting a group of cache sets and repeatedly mea-

suring their access latencies over time, the attacker is

provided with a very detailed picture of the real-time ac-

tivity of the cache. We call the visual representation of

6

this image a “memorygram”, since it is looks quite simi-

lar to an audio spectrogram.

A sample memorygram, collected over an idle period

of 400ms, is presented in Figure 5. The X axis corre-

sponds to time, while the Y axis corresponds to different

cache sets. The sample shown has a temporal resolution

of 250µs and monitors total of 128 cache sets. The in-

tensity of each pixel corresponds to the access latency

of this particular cache set at this particular time, with

black representing a low latency, indicating no other pro-

cess accessed this cache set between the previous mea-

surement and this one, and white representing a higher

latency, suggesting that the attacker’s data was evicted

from the cache between this measurement and the previ-

ous one.

Observing this memorygram can provide several im-

mediate insights. First, it is clear to see that despite

the use of Javascript timers instead of machine language

instructions, measurement jitter is quite low active and

inactive sets are clearly differentiated. It is also easy

to notice several vertical line segments in the memo-

rygram, indicating multiple adjacent cache sets which

were all active during the same time period. Since con-

secutive cache sets (within the same page frame) corre-

spond to consecutive addresses in physical memory, we

believe this signal indicates the execution of a function

call which spans more than 64 bytes of assembler in-

structions. Several smaller groups of cache sets are also

accessed together. We theorize that the these smaller

groups correspond to variable accesses. Finally, the

white horizontal line indicates a variable which is con-

stantly accessed during our measurements. This variable

probably belongs to the measurement code or to the un-

derlying Javascript runtime. It is remarkable that such a

wealth of information about the system is available to an

unprivileged webpage!

2.2 Identifying Interesting Regions in the

Cache

The eviction set allows the attacker to monitor the ac-

tivity of arbitrary sets of the cache. Since the eviction

set we receive is non-canonical, the attacker must now

correlate the cache sets he has profiled to data or code

locations belonging to the victim. This learning/classi-

fication problem was addressed earlier by Zhang et al.

in [25] and by Yarom et al. in [23], where various ma-

chine learning methods such as SVM were used to derive

meaning from the output of cache latency measurements.

To effectively carry out the learning step, the attacker

needs to induce the victim to perform an action, then ex-

amine which cache sets were touched by this action, as

formally defined in Algorithm 2.

Finding a function for step (c) of the algorithm was

Algorithm 2 Interesting Regions in the Cache

Let Si be the data structure matched to eviction set i

1. For each set i:

(a) Iteratively access all members of Si to prime

the cache set

(b) Measure the time it takes to iteratively access

all members of Si

(c) Perform an interesting operation

(d) Measure once more the time it takes to itera-

tively access all members of Si

(e) If performing the interesting operation caused

the access time to slow down considerably,

then the operation was associated with cache

set i.

actually quite challenging due to the limited permissions

granted to Javascript code. This can be contrasted with

the ability of Apecechea et al. to trigger a minimal ker-

nel operation by invoking an empty sysenter call [3].

To carry out this step, we had to survey the Javascript

runtime to discover function calls which may trigger in-

teresting behavior, such as file access, network access,

memory allocation, etc. We were also interested in func-

tions which take a relatively short time to run and left

no background “tails” such as garbage collection which

would impact our measurement in step (d). Several such

functions were discovered in a different context by Ho et

al. in [10]. Another approach would be to induce the user

to perform an interesting behavior (such as pressing a key

on his keyboard) on the behalf of the attacker. The learn-

ing process in this case might be structured (where the

attacker knows exactly when the victim operation was

executed), or unstructured (where the attacker can only

assume that relatively busy periods of system activity are

due to victim operations. We make use of both of these

approaches in the attack we present in Section 4.

Since our code will always detect activity caused by

the Javascript runtime, the high performance timer code,

and other components of the web browser which are run-

ning regardless of the call being executed, we actually

called two similar functions and examined the differ-

ence between the activity profile of the two evaluations

to identify relevant cache sets.

7

C
a
ch
e
S
et

(n
o
n
-c
a
n
o
n
ic
a
l)

Time (ms)
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

20

40

60

80

100

120

Figure 5: Sample memorygram

3 A Cache-Based Covert Channel in

Javascript

3.1 Motivation

As shown in [23], last-level cache access patterns can be

used to construct a high-bandwidth covert channel and

effectively exfiltrate sensitive information between vir-

tual machines co-resident on the same physical host. In

our particular attack model, in which the attacker is not

in a co-resident virtual machine but rather inside a web-

page, the motivation for a covert channel is different but

still very interesting.

By way of motivation, let us assume that a Security

Agency is tracking the criminal mastermind Bob. Mak-

ing use of a spear phishing campaign, the Agency in-

stalls a piece of software of its own choosing, commonly

referred to as an Advanced Persistent Threat (APT), on

Bob’s personal computer. The APT is designed to log

incriminating information about Bob and send it to the

Agency’s secret servers. Bob is however highly security-

savvy, and is using an operation system which enforces

strict Information Flow Tracking [24]. This operating

system feature prevents the APT from accessing the net-

work after it accesses any file containing private user

data.

Javascript-based cache attacks can immediately be put

to use to allow the Agency to operate in such a scenario,

as long as Bob can be enticed to view a website con-

trolled by the Security Agency. Instead of transmitting

the private user data over the network, the APT will use

the cache side-channel to communicate with the mali-

cious website, without setting off the flow tracking capa-

bilities of the operating system.

This case study is inspired by the “RF retro-reflector”

design attributed to a certain Security Agency, in which a

collection device such as a microphone does not transmit

the collected signal directly, but instead modulates the

collected signal onto an “illuminating signal” sent to it

by an external “collection device”.

3.1.1 Design

The design of our covert channel system was influenced

by two requirements: first, we wanted the transmitter part

to be as simple as possible, and in particular we did not

want it to carry out the eviction set algorithm of Sub-

section 2.1. Second, since the receiver’s eviction set is

non-canonical, it should be as simple as possible for the

receiver to search for the sets onto which the transmitter

was modulating its signal.

To satisfy these requirements, our transmitter/APT

simply allocates a 4K array in its own memory and con-

tinuously modulates the collected data into the pattern

of memory accesses to this array. There are 64 cache

sets covered by this 4K array, allowing the APT to trans-

mit 64 bits per time period. To make sure the memory

accesses are easily located by the receiver, the same ac-

cess pattern is repeated in several additional copies of

the array. Thus, a considerable percentage of the cache

is actually exercised by the transmitter, in contrast to the

method of [23] which assumes a canonical eviction set,

and thus only activates two lines.

The receiver code profiles the system’s physical mem-

ory, then searches for one of the page frames containing

the data modulated by the APT. The data can then be de-

modulated from the memory access pattern and uploaded

back to the server, all without violating the information

flow tracking protections.

3.1.2 Evaluation

Our attacker model assumes that the transmitter part is

written in (relatively fast) native language, while the re-

ceiver part is implemented in Javascript. Thus, we as-

sumed that the limiting factor in the performance of our

system is the sampling speed of the malicious website.

8

C
a
ch
e
S
et

(n
o
n
-c
a
n
o
n
ic
a
l)

Time (ms)
50 100

10

20

30

40

50

60

Figure 6: A host-to-host covert channel

To evaluate the bandwidth of this covert channel, we

wrote a simple program that iterates over memory in a

predetermined pattern (in our case, a bitmap containing

the word “Usenix”). Next, we attempted to search for

this memory access pattern using a Javascript cache at-

tack, then measured the maximum sampling frequency at

which the Javascript code could be run.

Figure 6 shows a memorygram capturing an execu-

tion of this covert channel. The nominal bandwidth of

the covert channel was measured to be approximately

320kbps, a figure which compares well with the 1.2Mbps

bandwidth achieved by the native code cross-VM covert

channel implemented by [23].

Figure 7 shows a similar memorygram where the re-

ceiver code is not running directly on the host, but rather

on a virtual machine (Firefox 34 running on Ubuntu

14.01 inside VMWare Fusion 7.1.0). While the peak

bandwidth of the in this scenario was severely degraded

to approximately 8kbps, the fact that a webpage running

inside a virtual machine is capable of probing the under-

lying hardware is still quite surprising.

4 User Behavior Tracking Through Cache

Attacks

Most works which evaluate cache attacks assume that the

attacker and the victim share a colocated machine inside

a cloud-provider data center. Such a machine is not typ-

ically configured to accept interactive input, and accord-

ingly most works in this field focus on the recovery of

cryptographic keys or other secret state elements, such

as random number generator states [26]. For this work,

we chose to examine how cache attacks can be used to

track the interactive behavior of the user, a threat which

C
a
ch
e
S
et

(n
o
n
-c
a
n
o
n
ic
a
l)

Time (ms)
100 200 300 400

10

20

30

40

50

60

Figure 7: A host-to-VM covert channel

is more relevant to the attack model we consider. We note

that [20] have already attempted to track keystroke tim-

ing events using coarse-grained measurements of system

load on the L1 cache.

This case study shows how a malicious webpage can

track a user’s activity using a cache attack. In the at-

tack presented below, we assume that the user has loaded

a malicious webpage in a background tab or window,

and is carrying out sensitive operations in another tab,

or even in a completely different application with no In-

ternet connectivity.

We chose to focus on mouse and network activity be-

cause the operating system code that handles them is

non-negligible. Thus, we expected them to have a rel-

atively large cache footprint. They are also easily trig-

gered by content running within the restricted Javascript

security model, as we describe below.

4.1 Design

The structure of both attacks is similar. First, the profil-

ing phase is carried out, allowing the attacker to probe

individual cache sets using Javascript. Next, during a

training phase, the activity to be detected (i.e. network

activity or mouse activity) is triggered, and the cache ac-

tivity is sampled multiple times with a very high tempo-

ral resolution. While the network activity was triggered

directly by the measurement script (by executing a net-

work request), we simply waved the mouse around over

the webpage during the training period 1.

By comparing the cache activity during the idle and

active periods of the training phase, the attacker learns

1In a full attack, the user can be enticed to move the mouse by

having him play a game or fill out a form.

9

which cache sets are uniquely active during the relevant

activity and trains a classifier on these cache sets. Finally,

during the classification phase, the attacker monitors the

interesting cache sets over time to learn about the user’s

activity.

We used a basic unstructured training process, assum-

ing that the most intensive operation performed by the

system during the training phase would be the one being

measured. To take advantage of this property, we cal-

culated the Hamming weight of each measurement over

time (equivalent to the count of cache sets which are ac-

tive during a certain time period), then applied a k-means

clustering of these Hamming weights to divide the mea-

surements into several clusters. We then calculated the

mean access latency of each cache set in every cluster,

arriving at a centroid for each cluster. To classify an un-

known measurement vector, we measured the Euclidean

distance between this vector and each of these centroids,

classifying it as the closest one.

In the classification phase, we generated network traf-

fic using the command-line tool wget and moved the

mouse outside of the browser window. To provide

ground truth for the network activity scenario, we con-

currently measured the traffic on the system using tcp-

dump, then mapped the timestamps logged by tcpdump

to the times detected by our classifier. To provide ground

truth for the mouse activity scenario, we wrote a web-

page that timestamps and logs all mouse events, then

moved the mouse over this webpage. We stress that the

mouse-logging webpage was run on a different browser

(Chrome) than the measuring code (Firefox).

4.2 Evaluation

The results of the activity measurement are shown in Fig-

ures 8 and 9. The top part of both figures shows the real-

time activity of a subset of the cache. On the bottom part

of each figure are the classifier outputs, together with the

ground truth which was collected externally. As the Fig-

ures show, our extremely simple classifier was quite ca-

pable of detecting mouse and network activity. The per-

formance of the attack can be improved without a doubt

by using more advanced training and classification tech-

niques. We stress that the mouse activity detector did not

detect network activity, and vice versa.

The classifier’s measurement rate was only 500Hz. As

a result, it could not count individual packets but rather

periods of network activity and inactivity. In contrast,

our mouse detection code actually logged more events

than the ground truth collection code. This is due to the

fact that the Chrome browser throttles mouse events to

web pages down to a rate of approximately 60Hz.

Detecting network activity can be a stepping stone to-

ward a deeper insight of the user’s activity, as famously

Time (ms)
200 400 600 800 1000 1200

Set Activity

 Classifier
Ground Truth

Figure 8: Network activity detection

Time (ms)
200 400 600 800 1000 1200

Set Activity

 Classifier
Ground Truth

Figure 9: Mouse activity detection

10

demonstrated by Chen et al. in [5]. In essence, while

Chen et al. assumed a network-level attacker which can

monitor all incoming and outgoing traffic to the victim,

the techniques presented here can enable any malicious

website to monitor the concurrent web activities of its

users. The attack can be bolstered by more indicators,

such as memory allocations (as explored by [13]), DOM

layout events, disk writes and so on.

5 Discussion

This work shows that side-channel attacks have a much

wider reach than previously expected. Instead of being

relevant only for very specific attacker scenarios, the at-

tack proposed here can be mounted against most com-

puters connected to the Internet. The fact that so many

systems are suddenly vulnerable to side-channel attacks

suggests that side-channel resistant algorithms and sys-

tems should be the norm, rather than the exception.

5.1 Prevalence of Vulnerable Systems

Our attack requires a personal computer powered by

an Intel CPU based on the Sandy Bridge, Ivy Bridge,

Haswell or Broadwell micro-architectures. According

to data from IDC, more than 80% of all PCs sold after

2011 satisfy this requirement. We furthermore assume

that the user is using a web browser which supports the

HTML 5 High Resolution Time API and the Typed Ar-

rays specification. Table 1 notes the earliest version at

which these APIs are supported for each of the common

browser brands, as well as the proportion of global In-

ternet traffic coming from vulnerable browser versions,

according to StatCounter GlobalStats measurements as

of January 2015 [1]. As the table shows, more than 80%

of desktop browsers in use today are vulnerable to the

attack we describe.

The effectiveness of our attack depends on being able

to perform precise measurements using the Javascript

High Resolution Time API. While the W3C recommen-

dation of this API [16] specifies that the a high-resolution

timestamp should be “a number of milliseconds accurate

to a thousandth of a millisecond”, the maximum reso-

lution of this value is not specified, and indeed varies

between browser versions and operating systems. In our

testing we discovered, for instance, that the actual reso-

lution of this timestamp for Safari for MacOS was on the

order of nanoseconds, while Internet Explorer for Win-

dows had a 0.8µs resolution. Chrome, on the other hand,

offered a uniform resolution of 1µ on all operating sys-

tems we tested.

Since, as shown in Figure 3, the timing difference be-

tween a single cache hit and a single cache miss is on

the order of 50ns, the profiling and measurement algo-

rithms need to be slightly modified to support systems

with coarser-grained timing resolution. In the profiling

stage, instead of measuring a single cache miss we repeat

the memory access cycle multiple times to amplify the

time difference. For the measurement stage, we cannot

amplify a single cache miss, but we can take advantage

of the fact that code access typically invalidates multiple

consecutive cache sets from the same page frame. As

long as at least 20 out of the 64 cache sets in a single

page frame register a cache miss, our attack is successful

even with microsecond time resolution.

The attack we propose is also easily applied to mo-

bile devices such as smartphones and tablets. It should

be noted that the Android Browser supports High Reso-

lution Time and Typed Arrays starting from version 4.4,

but at the time of writing the most recent version of iOS

Safari (8.1) did not support the High Resolution Time

API.

5.2 Countermeasures

The attacks described in this report are possible because

of a confluence of design and implementation decisions

starting at the micro-architectural level and ending at the

Javascript runtime: The method of mapping a physical

memory address to cache set; the inclusive cache micro-

architecture; Javascript’s high-speed memory access and

high-resolution timer; and finally, Javascript’s permis-

sion model. Mitigation steps can be applied at each of

these junctions, but each will impose a drawback on the

benign uses of the system.

On the micro-architectural level, changes to the way

physical memory addresses are mapped to cache lines

will severely confound our attack, which makes great use

the fact that 6 of the lower 12 bits of the address are

used directly to select a cache set. Similarly, the move

to an exclusive cache micro-architecture, instead of an

inclusive one, will make it impossible for our code to

trivially evict entries from the L1 cache, making mea-

surement much more difficult. These two design de-

cisions, however, were chosen deliberately to make the

CPU more efficient in its design and in its use of cache

memory, and changing them will exact a performance

cost on many other applications. In addition, modify-

ing a CPU’s micro-architecture is far from trivial, and

definitely impossible as an upgrade to already deployed

hardware.

On the Javascript level, it seems that somewhat re-

ducing the resolution of the high-resolution timer will

make this attack more difficult to launch. However, the

high-resolution timer was created to address a real need

of Javascript developers for applications ranging from

music and games to augmented reality and telemedicine.

11

Browser brand High Resolution Time Support Typed Arrays Support Worldwide prevalence

Internet Explorer 10 11 11.77%

Safari 8 6 1.86%

Chrome 202 7 50.53%

Firefox 15 4 17.67%

Opera 15 12.1 1.2%

Total – – 83.03%

Table 1: Prevalence of vulnerable desktop browsers, according to [1]

A possible stopgap measure would be to restrict access

to this timer to applications which gain the user’s con-

sent (for example, by displaying a confirmation window)

or the approval of some third party (for example, by be-

ing downloaded from a trusted “app store”).

An interesting approach could be the use of heuristic

profiling to detect and prevent this specific kind of attack.

Just like the abundance of arithmetic and bitwise instruc-

tions was used by Wang et al. to indicate the existence

of cryptographic primitives [21], it can be noted that the

various measurement steps of our attack access memory

in a very particular pattern. Since modern Javascript run-

times already scrutinize the runtime performance of code

as part of their profile-guided optimization mechanisms,

it should be possible for the Javascript runtime to de-

tect profiling-like behavior from executing code and then

modify its response accordingly (for example by jitter-

ing the high-resolution timer, dynamically moving arrays

around in memory, etc).

5.3 Conclusion

In this report, we showed how the micro-architectural

side-channel attack, which is already recognized as

an extremely potent attack method, can be effectively

launched from an untrusted web page. Instead of the

traditional cryptanalytic application of the cache attack,

we instead showed how user behavior can be effectively

tracked using this method. The potential reach of side-

channel attacks has been extended, meaning that addi-

tional classes of secure systems must be designed with

side-channel countermeasures in mind.

Acknowledgements

We are thankful to Henry Wong for his investigation of

the Ivy Bridge cache replacement policy and to Burton

Rosenberg for his tutorial about pages and page frames.

References

[1] Statcounter globalstats. Online, January 2015.

http://gs.statcounter.com.

[2] Onur Aciiçmez. Yet another microarchitectural at-

tack: : exploiting i-cache. In Peng Ning and Vijay

Atluri, editors, Proceedings of the 2007 ACM work-

shop on Computer Security Architecture, CSAW

2007, Fairfax, VA, USA, November 2, 2007, pages

11–18. ACM, 2007.

[3] Gorka Irazoqui Apecechea, Mehmet Sinan Inci,

Thomas Eisenbarth, and Berk Sunar. Wait a

minute! A fast, cross-vm attack on AES. In An-

gelos Stavrou, Herbert Bos, and Georgios Portoka-

lidis, editors, Research in Attacks, Intrusions and

Defenses - 17th International Symposium, RAID

2014, Gothenburg, Sweden, September 17-19,

2014. Proceedings, volume 8688 of Lecture Notes

in Computer Science, pages 299–319. Springer,

2014.

[4] Daniel J. Bernstein. Cache-timing attacks on AES.

Online, November 2004. http://cr.yp.to/

papers.html#cachetiming.

[5] Shuo Chen, Rui Wang, XiaoFeng Wang, and Ke-

huan Zhang. Side-channel leaks in web applica-

tions: A reality today, a challenge tomorrow. In

31st IEEE Symposium on Security and Privacy,

S&P 2010, 16-19 May 2010, Berleley/Oakland,

California, USA, pages 191–206. IEEE Computer

Society, 2010.

[6] World Wide Web Consortium. Javascript APIs. On-

line. http://www.w3.org/standards/techs/

js.

[7] ECMA. Standard ECMA-262: ECMAScript

language specification. Online, June 2011.

http://www.ecma-international.org/

publications/standards/Ecma-262.htm.

[8] Thomas Eisenbarth, Timo Kasper, Amir Moradi,

Christof Paar, Mahmoud Salmasizadeh, and Mo-

hammad T. Manzuri Shalmani. On the power of

power analysis in the real world: A complete break

of the keeloqcode hopping scheme. In David Wag-

ner, editor, Advances in Cryptology - CRYPTO

12

http://gs.statcounter.com
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://www.w3.org/standards/techs/js
http://www.w3.org/standards/techs/js
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

2008, 28th Annual International Cryptology Con-

ference, Santa Barbara, CA, USA, August 17-21,

2008. Proceedings, volume 5157 of Lecture Notes

in Computer Science, pages 203–220. Springer,

2008.

[9] Khronos Group. Typed array specification. On-

line, July 2013. https://www.khronos.org/

registry/typedarray/specs/latest/.

[10] Grant Ho, Dan Boneh, Lucas Ballard, and Niels

Provos. Tick tock: Building browser red pills from

timing side channels. In Sergey Bratus and Fe-

lix F. X. Lindner, editors, 8th USENIX Workshop

on Offensive Technologies, WOOT ’14, San Diego,

CA, USA, August 19, 2014. USENIX Association,

2014.

[11] Wei-Ming Hu. Lattice scheduling and covert chan-

nels. In 1992 IEEE Computer Society Symposium

on Research in Security and Privacy, Oakland, CA,

USA, May 4-6, 1992, pages 52–61. IEEE Computer

Society, 1992.

[12] Ralf Hund, Carsten Willems, and Thorsten Holz.

Practical timing side channel attacks against kernel

space ASLR. In 2013 IEEE Symposium on Security

and Privacy, SP 2013, Berkeley, CA, USA, May 19-

22, 2013, pages 191–205. IEEE Computer Society,

2013.

[13] Suman Jana and Vitaly Shmatikov. Memento:

Learning secrets from process footprints. In IEEE

Symposium on Security and Privacy, SP 2012, 21-

23 May 2012, San Francisco, California, USA,

pages 143–157. IEEE Computer Society, 2012.

[14] Paul C. Kocher. Timing attacks on implementa-

tions of diffie-hellman, rsa, dss, and other systems.

In Neal Koblitz, editor, Advances in Cryptology -

CRYPTO ’96, 16th Annual International Cryptol-

ogy Conference, Santa Barbara, California, USA,

August 18-22, 1996, Proceedings, volume 1109 of

Lecture Notes in Computer Science, pages 104–

113. Springer, 1996.

[15] Stefan Mangard, Elisabeth Oswald, and Thomas

Popp. Power analysis attacks - revealing the se-

crets of smart cards. Springer, 2007.

[16] Jatinder Mann. High resolution time. W3C Rec-

ommendation, December 2012. http://www.w3.

org/TR/hr-time/.

[17] Dag Arne Osvik, Adi Shamir, and Eran Tromer.

Cache attacks and countermeasures: The case of

AES. In David Pointcheval, editor, Topics in Cryp-

tology - CT-RSA 2006, The Cryptographers’ Track

at the RSA Conference 2006, San Jose, CA, USA,

February 13-17, 2006, Proceedings, volume 3860

of Lecture Notes in Computer Science, pages 1–20.

Springer, 2006.

[18] David Oswald and Christof Paar. Breaking mifare

desfire MF3ICD40: power analysis and templates

in the real world. In Bart Preneel and Tsuyoshi

Takagi, editors, Cryptographic Hardware and Em-

bedded Systems - CHES 2011 - 13th International

Workshop, Nara, Japan, September 28 - October 1,

2011. Proceedings, volume 6917 of Lecture Notes

in Computer Science, pages 207–222. Springer,

2011.

[19] Colin Percival. Cache missing for fun and profit.

Online, 2005. http://www.daemonology.net/

hyperthreading-considered-harmful/.

[20] Thomas Ristenpart, Eran Tromer, Hovav Shacham,

and Stefan Savage. Hey, you, get off of my cloud:

exploring information leakage in third-party com-

pute clouds. In Ehab Al-Shaer, Somesh Jha, and

Angelos D. Keromytis, editors, Proceedings of the

2009 ACM Conference on Computer and Commu-

nications Security, CCS 2009, Chicago, Illinois,

USA, November 9-13, 2009, pages 199–212. ACM,

2009.

[21] Zhi Wang, Xuxian Jiang, Weidong Cui, Xinyuan

Wang, and Mike Grace. Reformat: Automatic

reverse engineering of encrypted messages. In

Michael Backes and Peng Ning, editors, Computer

Security - ESORICS 2009, 14th European Sym-

posium on Research in Computer Security, Saint-

Malo, France, September 21-23, 2009. Proceed-

ings, volume 5789 of Lecture Notes in Computer

Science, pages 200–215. Springer, 2009.

[22] Yuval Yarom and Katrina Falkner.

FLUSH+RELOAD: A high resolution, low

noise, L3 cache side-channel attack. In Kevin

Fu and Jaeyeon Jung, editors, Proceedings of the

23rd USENIX Security Symposium, San Diego,

CA, USA, August 20-22, 2014., pages 719–732.

USENIX Association, 2014.

[23] Yuval Yarom, Fangfei Liu, Qian Ge, Gernot Heiser,

and Ruby B. Lee. Last-level cache side-channel at-

tacks are practical. In IEEE Symposium on Security

and Privacy (S&P), San Jose, CA, US, may 2015.

[24] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie

Kohler, and David Mazières. Making information

flow explicit in histar. In Brian N. Bershad and

Jeffrey C. Mogul, editors, 7th Symposium on Op-

erating Systems Design and Implementation (OSDI

13

https://www.khronos.org/registry/typedarray/specs/latest/
https://www.khronos.org/registry/typedarray/specs/latest/
http://www.w3.org/TR/hr-time/
http://www.w3.org/TR/hr-time/
http://www.daemonology.net/hyperthreading-considered-harmful/
http://www.daemonology.net/hyperthreading-considered-harmful/

’06), November 6-8, Seattle, WA, USA, pages 263–

278. USENIX Association, 2006.

[25] Yinqian Zhang, Ari Juels, Michael K. Reiter, and

Thomas Ristenpart. Cross-vm side channels and

their use to extract private keys. In Ting Yu, George

Danezis, and Virgil D. Gligor, editors, the ACM

Conference on Computer and Communications Se-

curity, CCS’12, Raleigh, NC, USA, October 16-18,

2012, pages 305–316. ACM, 2012.

[26] Yinqian Zhang, Ari Juels, Michael K. Reiter, and

Thomas Ristenpart. Cross-tenant side-channel at-

tacks in paas clouds. In Gail-Joon Ahn, Moti Yung,

and Ninghui Li, editors, Proceedings of the 2014

ACM SIGSAC Conference on Computer and Com-

munications Security, Scottsdale, AZ, USA, Novem-

ber 3-7, 2014, pages 990–1003. ACM, 2014.

14

	Introduction
	The Memory Architecture of Modern Intel CPUs
	Cache Attacks
	The Web Runtime Environment
	Our Contribution

	Attack Methodology
	Creating an Eviction Set
	Design
	Evaluation

	Identifying Interesting Regions in the Cache

	A Cache-Based Covert Channel in Javascript
	Motivation
	Design
	Evaluation

	User Behavior Tracking Through Cache Attacks
	Design
	Evaluation

	Discussion
	Prevalence of Vulnerable Systems
	Countermeasures
	Conclusion

