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Abstract: The squeeze film effect was discussed in several fields, but mostly under the same
pressure boundary conditions. However, pressures at the inlet and outlet are different for aerostatic
bearings. In this paper, the dynamic Reynolds equation group, with the stiffness and damping
pressure written separately, is deducted and numerically solved with a high-pressure boundary for
a parallel flat and circular thin film. The circular thin film considers the two results of the supply
pressure boundary inside and outside. All dynamic pressure distribution and stiffness curves are
given in a dimensionless form, and a comparative analysis of squeeze film characteristics with and
without external pressure is conducted. From the calculation results, it can be concluded that the
squeeze effect shows damping for zero-frequency and stiffness for infinite-frequency for compressible
lubricants. The dynamic pressure in the static high pressure region is also high at high frequencies
affected by gas compressibility. Based on these analytical results, the transfer functions of the thin
film are given to further analyze the dynamic performance of aerostatic bearings, and the shape of
the response curve approximates an exponential decay form, even when the amplitude increases to
10% of the gas film thickness.

Keywords: squeeze films; Reynolds equation; numerical analysis; dynamic performance; aerostatic
bearings

MSC: 35M12

1. Introduction

When two surfaces separated only by a thin air film have relative normal motion, the
air film has a reaction force against surfaces to block movement tendency, which is the
squeeze film effect. The squeeze film effect is reflected in many mechanical parts, with the
common feature being that all of the boundary is at atmospheric pressure.

For example, the squeeze film damping effect is quite important at ball raceway
contact in ball bearing; the damping of ball bearings is mainly derived from the squeeze
film effect [1–3]. The squeezed film at ball raceway contact is an inherent characteristic
of ball bearings and may also occur at the contact of the outer ring with a bearing seat.
When the outer ring of the bearing is designed to slide freely and bear an additional load
of the axial thermal expansion, there is a small gap in the outer ring of the bearing, and
the squeeze film effect is more obvious. The air damping effect of micro-electromechanical
systems (MEMSs) is also very obvious. Micro-electromechanical systems such as micro-
accelerometers and micro-gyroscopes are limited by technology and packaging conditions,
and their moving structures generally work in an environment with a certain gas pressure.
As the characteristic size of a micro-structure shrinks, its surface area-to-volume ratio
gradually increases, and the air damping effect becomes extremely significant [4]. In the
capacitive micro-machined accelerometer described in [5], when the central plate moves up
and down, the air caught in the gap between the plates is squeezed, then force is exerted
on both plates, and the squeeze film effect can be significant, which provides effective
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damping in a wide-frequency band. Besides these two cases, a squeeze film before clutch
contact affects its performance. A wet clutch soaks the disc in the transmission oil, adopts
oil-immersed heat dissipation, and has a high heat dissipation efficiency. However, the
oil medium delays the physical contact between the parallel disc clutch surfaces, and its
performance is seriously affected [6,7]. The squeeze film effect also contributes to tire
slipping on wet roads. When a car drives over a water-covered road, the lubricating effect
of the water film significantly reduces the coefficient of the friction between a tire and road,
and the tires are then prone to slipping. When the tire speed exceeds a certain limit value,
the dynamic pressure generated by the water flow is sufficient to lift the tire off the ground.
Once hydroplaning occurs, tires will completely lose their drive and braking forces [8].
Similarly, walking with rubber soles on wet or icy surfaces leads to similar problems [9].
Typical examples of making full use of the squeeze film effect are squeeze film dampers and
vibro-tactile texture reproduction techniques. A squeeze film damper is installed between
the rolling bearing and support structure, and an oil gap is formed between the outer
rings of connected oil film. Squeeze oil film dampers can effectively absorb the vibration
energy of rotors and ensure their smooth operation. It is one of the most important research
achievements affecting high-speed rotor dynamics in recent decades. At present, squeeze
film damping technology is widely used in high-speed rotating machinery such as aero-
engines, turbo-compressors, and industrial gas engines [10]. Texture tactile reproduction
is a specific hardware device that generates physical stimuli that act on users when in
contact with a textured surface, thereby simulating the surface characteristics of objects
such as roughness, hardness, and viscosity. Texture haptic technology is used to generate
ultrasonic waves via a touch screen, and the squeeze film effect is used to create an air
gap between the user’s finger and the display, thus reducing the friction and increasing
smoothness [11]. It can be seen that the principle of this technique is identical to that of
squeeze film bearings.

There is one common feature in the aforementioned occasions where the squeeze
film effect exists: all of the boundary is at atmospheric pressure, or more precisely, the
boundary pressure is the same. The problem with constant pressure boundary conditions
has previously been studied [12,13], in particular by Langlois [14], Gross [15], Pan [16],
and Blech [17]. However, for externally pressurized air bearings (EPABs), the pressure
decreases from a high-pressure in the inlet to an atmosphere condition in the outlet, which
possesses different characteristics compared with the same-pressure boundary. In the
early days of air bearing development, discussions of stability were mainly aimed at
understanding whether a bearing is affected by a pneumatic hammer or at assessing
the stability margin [18,19]. There has been much interest in evaluating the damping
capacity of bearings, which is quite critical because EPABs are famous for having relatively
little damping. Analytical, numerical, and experimental methods were used to study the
dynamic performance of EPABs. In addition to experiments, in general, there are two
methods used to solve the dynamic characteristics of an EPAB: one is the time-linearization
or perturbation method, and the other is the time-domain iterative method. The system
is solved through the time domain response and the dynamic stiffness parameters are
identified from it. The basic idea of the perturbation method is to superimpose a gap
change caused by displacement or velocity in the steady-state gap as a small disturbance,
and to approximate the transient Reynolds equation with a small amount, ignoring all
high-order terms [20]. The dynamic characterization of EPABs includes an evaluation
of stiffness and damping coefficients as a function of excitation frequency. A change in
bearing capacity obtained by dynamic pressure integration divided by the disturbance
value is the dynamic stiffness of the gas film. Licht first used the perturbation method to
test the accuracy of lumped parameter models of single-bore thrust bearings [21]. Boffey
analyzed the effect of additional rubber rings using Licht’s calculation method, noting
that external damping can improve stability [22], which was experimentally verified [23].
The advent of high-performance calculation technology made it possible to build complex
numerical models. Stiffler modeled the feedhole boundary between the central disk region
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and the exterior annular region as a line source, and the dynamic pressure distribution
of rectangular and circular EPABs were investigated [24,25]. Miyatake and Yoshimoto
used computational fluid dynamics (CFD) technology to numerically simulate the static
and dynamic performance of a circular EPAB with small feed holes [26]. By introducing
the concept of an infinitesimal radius, Bhat overcame the mathematical difficulty of the
conformal transformation of disc thrust gas bearing center point by the finite element
method (FEM), analyzed the dynamic characteristics of the capillary-restricted air bearing
pad, and determined the dynamic stiffness with the disturbance frequency [27]. These
distributed parameter models can be used to accurately analyze and solve for the dynamic
characteristics of EPABs, but cannot provide a direct link between design parameters and
the performance index. The influence of different parameters on the dynamic characteristics
of bearings is coupled together, and it is difficult to form a systematic design method. To
solve this problem, Colombo et al. proposed a simple lumped parameter (LP) model of
infinite parallel plates [28], which is based on the discretization of the Reynolds equation
and treats the parallel plates as a combination of gas tank and pneumatic restrictors. This
simple LP model is able to correctly predict the damping capacity, unlike the analytical
solution. This basic idea has been adopted to predict the dynamic performance of EPABs,
which can be seen as an assembly of orifices and gas film [29–31]. Starting from this point, if
we can determine the influence of various parameters of the bearing on its transfer function,
then the dynamic performance of EPABs can be appropriately designed, according to the
zero-pole configuration of the control system.

It should be noted that the boundary conditions for normal orifice-type aerostatic
bearings dynamically change, since an orifice not only generates high pressure but also
controls the mass flowing into the gas film surface, which is a major difference from the
constant pressure boundary found in this paper. In fact, the dynamic characteristics of the
gas film solved in this paper are a simplification of a special kind of orifice-type bearing
known as surface-restriction aerostatic bearings, whose main feature is that the boundary
pressure is different, but the external pressure is constant. There are very few studies on
this type of gas bearing, and there is no research on its dynamic characteristics. In this
paper, the squeeze film effect of thin films inside EPABs with a high-pressure boundary
is determined, and compared with that of same-boundary conditions. For both boundary
types, this paper offers an important view on the dynamic performance of air bearings:
air bearings behave according to the squeeze number. For low squeeze numbers, when
the exciting frequency is low or the film is thick, the viscous forces dominate, and the
air is sucked in or forced out of the film when the air gap height oscillates. If there is
no orifice, the air gap should be treated as a viscous damper. For high squeeze numbers
with an increase in exciting frequency or with small air gaps, the compressibility effects
become stronger, which makes the air gap behave like a spring. The key to analyzing the
squeeze film problem is to determine the time-dependent pressure distribution inside the
film caused by the relative motion. When gas compressibility is considered, the results of
the squeezed film solution are complicated, and its properties cannot be intuitively seen,
even for a simple disk boundary. Therefore, this paper aimed to calculate the dynamic
pressure distribution for common components of EAPBs, i.e., infinite long thin films and
circular films considering both inside flow and outside flow.

2. The Compressible Reynolds Equation and Its Perturbation Form
2.1. Reynolds Equation

When the bearing speed is small or the bearing is not moving, the aerodynamic effect
can be neglected, and the Reynolds equation considering the ideal gas compressibility can
be expressed as [32]:

∇·
(

h3

12η
Pabs∇Pabs

)
=

∂(hPabs)

∂t
(1)

Here,∇ is the Laplacian operator, h is the thin film thickness, η is the dynamic viscosity of
the lubricants, and Pabs is the absolute pressure inside a thin film.
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The expansion of Equation (1) in the Cartesian coordinate system is [32]:

∂

∂x

(
h3

12η
Pabs

∂Pabs
∂x

)
+

∂

∂y

(
h3

12η
Pabs

∂Pabs
∂y

)
=

∂(hPabs)

∂t
(2)

The expansion of Equation (1) in the cylindrical coordinate system is [32]:

1
r

∂

∂r

(
h3

12η
rPabs

∂Pabs
∂r

)
+

1
r

∂

∂θ

(
h3

12η

1
r

Pabs
∂Pabs

∂θ

)
=

∂(hPabs)

∂t
(3)

When solving the static characteristics of EPABs, the term on the right side of Equation (1)
is zero. Using the differential equation f d f = d f 2/2, it can be expressed with the pressure
square P2

abs as the variable [33]:

∂

∂x

(
h3 ∂P2

abs
∂x

)
+

∂

∂y

(
h3 ∂P2

abs
∂y

)
= 0 (4)

2.2. The Perturbation Form of the Reynolds Equation

The general problem of fluid lubricated bearings can be analyzed in terms of the three
following aspects [34]: (a) steady-state conditions; (b) transient operating conditions; and (c)
effects due to small-amplitude harmonic changes in geometry. The steady-state conditions
are the starting point of all calculations, describing the conditions for a balanced operation
of the entire system. This step requires the calculation of the bearing capacity, friction loss,
mass flow rate, etc. The transient operating conditions are considered for the time-transient
solution of a coupled dynamical system, and the results can be used to obtain dynamic
stability or study the nonlinear behavior in the case of large offsets.

The position of an air bearing is not fixed. In the process of cutting or under micro-
shocking, the bearing vibrates regularly around the equilibrium position. According to
Newton’s second law, the dynamic displacement of the air film can be calculated by the
following formula:

h1 = v0t +
∫ W1(h1(t)) + external force

M
dt2, W1 =

∫∫
Pabs1dΩ (5)

The direct calculation of the above formula not only includes a the space integral of
dynamic pressure distribution, but also includes the time integral of the position change,
which relatively complicates the solution process. The effects due to small-amplitude
harmonic changes in the geometry are considered to determine the motion of the bearing
in the normal direction of the air film and only determines the dynamic behavior linearized
near a given operating point; that is, the response process of the bearing after a small impact
is analyzed, and the perturbation method is used to handle the time term in the Reynolds
equation [20]. Note that variables such as the pressure and clearance in the gas film are
linearly superimposed by the steady-state item and the time-varying perturbation item,
that is:

Pabs = Pabs0 + Pabs1, h = h0 + h1 (6)

The subscript 0 indicates the steady-state item, which is completely unrelated to time t.
The subscript 1 indicates the dynamic item, and the amplitude of the dynamic item is
much smaller than the steady-state item. The perturbation method linearizes the dynamic
behavior of the air film near the steady-state operating point, and the superposition of the
input leads to the superposition of the output. Therefore, various tools in the linear system
can be used to analyze the characteristics of the system. The gas film is equivalent to the
superposition of a spring and damper, and the stiffness and damping characteristics of the
gas film are solved first.
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By bringing the expression of the variable in Equation (6) into Equation (2) and omit-
ting the high-order small amount, the steady-state Reynolds Equation (4) and perturbation
equations can be obtained, respectively [35]:

2∇·
[

h3
0∇(Pabs0Pabs1)

]
+ 3∇·

[
h2

0h1∇
(

P2
abs0

)]
= 24η

(
h0

∂Pabs1
∂t

+ Pabs0
∂h1

∂t

)
(7)

We can transpose and rearrange the equations as follows:

− h0
∂Pabs1

∂t
+

1
12η
∇·
[

h3
0∇(Pabs0Pabs1)

]
= Pabs0

∂h1

∂t
− 1

8η
∇·
[

h2
0h1∇

(
P2

abs0

)]
(8)

The above equations show that the dynamic pressure and its rate of change are
coupled with the air film gap and its rate of change (the squeeze motion speed). The thrust
of the air film on the air-floating surface is obtained by the pressure integral, so the spatial
distribution of the corresponding air film pressure cannot be obtained by only specifying
the dynamic force; that is, the characteristics of the air film can only be analyzed via the
flexibility method: firstly, we specify the displacement form on the air film, and then solve
the pressure change. Suppose that h1 changes periodically in the following form:

h1 = Re(h̃1ejωt) = Re
[
(h1c + jh1s)ejωt

]
= h1ccos(ωt)− h1ssin(ωt) (9)

dh1

dt
= Re(jωh̃1ejωt) = −ω[h1csin(ωt) + h1scos(ωt)] (10)

For notation convenience, the real part is omitted, and a single-frequency vibration
is directly expressed in the form of a complex exponential. The wavy line indicates a
complex variable. The pressure distribution Pabs1(x, y, t) produces a corresponding periodic
variation:

Pabs1 = Re(P̃1ejωt) = Re
[
(P1c + jP1s)ejωt

]
= P1ccos(ωt)− P1ssin(ωt) (11)

∂Pabs1
∂t

= Re(jωP̃1ejωt) = −ω[P1csin(ωt) + P1scos(ωt)] (12)

By bringing the complex expressions of displacement and pressure into Equation (7),
the complex form of the perturbation Reynolds equation is obtained [35]:

2∇·
[

h3
0∇
(

Pabs0P̃1
)]

+ 3∇·
[

h2
0h̃1∇

(
P2

abs0

)]
= 24η

(
jωh0P̃1 + jωPabs0h̃1

)
(13)

In fact, the above equation can be obtained by performing Laplace transformation
on Equation (7) and letting s = jω. By using the flexibility method to determine the
characteristics of the gas film, the form of displacement can arbitrarily specified. Therefore,
let h1c = 0, and we have h1 = Re

[
jh1sejωt] = −h1ssin(ωt), Pabs1 = Re

[
(P1c + jP1s)ejωt],

Thereby,
2∇·

[
h3

0∇(Pabs0P1s)
]
− 24ηωh0P1c = −3∇·

[
h2

0h1s∇
(

P2
abs0

)]
(14)

12ηωh0P1s +∇·
[

h3
0∇(Pabs0P1c)

]
= −12ηωPabs0h1s (15)

The above equations and Equation (13) indicate that the real part and imaginary
part of the dynamic pressure are mutually coupled; the amplitude of dynamic pressure
Pabs1(x, y, t) is proportional to the forced displacement amplitude h1. However, the phase
of dynamic pressure has a nonlinear relationship with forced displacement frequency ω.

2.3. Stiffness and Damping of the Gas Film

Regardless of the influence of the fluid–solid coupling effect, the sides of the thin film
are treated as a single rigid body, and a transfer function is used to describe the dynamic
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characteristics of the bearing. In this kind of model, the plates composing lubricating film
move as one. When the bearing is in translation, ∂h1

∂x = ∂h1
∂y = 0; therefore, h1 in Equation (7)

can be written outside the brackets, namely

2∇·
[

h3
0∇(Pabs0Pabs1)

]
+ 3h1∇·

[
h2

0∇
(

P2
abs0

)]
= 24η

(
h0

∂Pabs1
∂t

+ Pabs0
dh1

dt

)
(16)

Equation (13) then changes to

2∇·
[

h3
0∇
(

Pabs0P̃1
)]

+ 3h̃1∇·
[

h2
0∇
(

P2
abs0

)]
= 24η

(
jωh0P̃1 + jωPabs0h̃1

)
(17)

and Equation (14) changes to

2∇·
[

h3
0∇(Pabs0P1s)

]
− 24ηωh0P1c = −3∇·

[
h2

0∇
(

P2
abs0

)]
h1s (18)

12ηωh0P1s +∇·
[

h3
0∇(Pabs0P1c)

]
= −12ηωPabs0h1s (19)

The dynamic stiffness of the gas film is defined as follows (note that the positive
and negative of the calculation formula are related to the definition of the displacement
direction, a sign of the real part and imaginary part of the dynamic pressure):

Kb(ω) = K(ω) + jωC(ω) = −W̃1dΩ
h̃1

= −
∫∫

Ω P̃1dΩ

h̃1

= −
[∫∫

Ω P1cdΩ · h1c +
∫∫

Ω P1sdΩ · h1s

h2
1c + h2

1s
+ jω

∫∫
Ω P1sdΩ · h1c −

∫∫
Ω P1cdΩ · h1s

ω(h2
1c + h2

1s)

] (20)

Obviously, the calculation of dynamic stiffness from the above formula is complicated.
When forcing a periodically varying displacement is −h1ssin(ωt) by making h1c = 0, the
formulas for calculating the dynamic stiffness and damping of the air film are as follows:

K(ω) = −
∫∫

Ω P1sdΩ
h1s

, C(ω) =

∫∫
Ω P1cdΩ
ωh1s

(21)

3. Analytical Results with Same Pressure Boundaries
3.1. A One-Dimensional Infinite Width Flat Air Film

Figure 1a shows a one-dimensional infinitely wide flat lubricating film. The gas film is
surrounded by ambient pressure, which means that only two flat plates that are close to
each other form a thin film in the air, and there is no flow when the upper plate does not
move.

h

l
x

z
dh 

Pa Pa

dt 

(a)

r
z Pah

R2

dh 

dt 

(b)

Figure 1. Squeeze film of the one-dimensional constant gap flow model: (a) infinite width flat air
film; and (b) circular air film.

When fluid compressibility is considered, the dynamic Reynolds equation of the
one-dimensional lubricating film in the Cartesian coordinate system is obtained from
Equation (2):

h3 d2P2
abs

dx2 = 24η
d(hPabs)

dt
(22)
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By substituting the perturbation form in Equation (6) and the complex form in
Equation (9), Equation (17) under the condition of a one-dimensional flat gas film is ob-
tained:

d2(Pabs0P̃1)

dx2 +
3
2

h̃1

h0

d2(P2
abs0)

dx2 =
12η jω

h2
0

P̃1 +
12η jωPabs0

h3
0

h̃1 (23)

When there is no high-pressure gas supply at the boundary, that is, the atmospheric
pressure boundary, the steady-state pressure distribution is Pabs0(x) = Pa, which further
simplifies Equation (23) with boundary conditions:

d2(P̃1)

dx2 =
12η jω
Pah2

0
P̃1 +

12η jω
h3

0
h̃1, P̃1(0) = 0, P̃1(l) = 0,

dP̃1

dx

(
l
2

)
= 0 (24)

The analytical solution to this differential equation is:

P̃1(x) = Pa
h̃1

h0

[
cosh[

√
σsejπ/4( x

l −
1
2 )]

cosh(
√

σsejπ/4 1
2 )

− 1

]
, σs =

12ηωl2

Pah2
0

(25)

where σs is the squeeze number. The expanded expression is as follows:

P1s(x∗) =
2

cosh k + cos k

(
cosh

k
2

cos
k
2

cosh kx∗ cos kx∗ + sinh
k
2

sin
k
2

sinh kx∗ sin kx∗
)
− 1

P1c(x∗) =
2

cosh k + cos k

(
sinh

k
2

sin
k
2

cosh kx∗ cos kx∗ − cosh
k
2

cos
k
2

sinh kx∗ sin kx∗
)

and, x∗ =
x
l
− 1

2
, k =

√
σs

2

(26)

Figures 2 and 3 show the distribution of the dynamic pressure of a one-dimensional
flat lubricating film under different compression numbers (no external air supply; only an
atmospheric pressure boundary). Figure 2 shows a schematic diagram of the distribution
of the pressure P1s in the same phase with external excitation, which produces dynamic
stiffness. Figure 3 shows a schematic diagram of the 90-degree-phase pressure distribution
P1c, which produces damping. Since the boundary condition is a constant pressure, the
dynamic pressure at the boundary is zero; thus, intuitively, the compressibility of the gas
causes some of it to be trapped in the central area, and it cannot be removed and inhaled
in time.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

s =1000
s =100

s =10

s =5

|h1s Pa|

x/l
s =1

|P1s h0|

Figure 2. Distribution of P1s inside of the 1D parallel slider.
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Figure 3. Distribution of P1c inside the 1D parallel slider.

The definition of the dynamic stiffness Equation (20) can be used to obtain the dimen-
sionless dynamic stiffness and damping expressions of the air film:

K∗(ω) =
K(ω)

blPa/h0
= Re

1− 2
tanh

(√
σsejπ/4/2

)
√

σsejπ/4

 = 1− 1
k

sinh k + sin k
cosh k + cos k

(27)

C∗(ω) =
C(ω)

ηbl3/h3
0
=

12
σs

Im

1− 2
tanh

(√
σsejπ/4/2

)
√

σsejπ/4

 =
12
σs

1
k

sinh k− sin k
cosh k + cos k

(28)

Figure 4 shows the variation in the dimensionless dynamic stiffness and the damping
coefficient with the squeeze number. It is known that the dynamic coefficients of the
incompressible fluid lubricating film are all constant, the stiffness is zero, and the damping
is constant. As a comparison, the dynamic coefficient of the compressible gas film varies
with the excitation frequency: when the excitation frequency is ω → 0, the squeeze number
σs → 0, and the gas film behaves like the incompressible lubricating film; with the excitation
frequency increasing, the squeeze number increases, and when σs > 100, the air film only
shows rigidity, and the damping is almost negligible.

As shown in Figure 5, the dynamic stiffness amplitude varies with the squeeze number:
as the squeeze number increases, the dynamic coefficient of the incompressible fluid
lubricating film increases linearly, but when the squeeze number σs > 10, the dynamic
stiffness amplitude of the air film no longer increases, and the dimensionless number
approaches the limit 1. With the increase in the squeeze number, the rigid restoring
force of the air film increases, but the damping force decreases. The frequency with the
same amplitude is called the cutoff frequency. For a one-dimensional flat plate on the
atmospheric boundary, the squeeze number corresponding to the crossover frequency is
approximately 10.

The above analysis shows that whether the squeeze film exhibits damping or rigidity
depends on the size of the squeeze number, and the squeeze number, i.e., σs = 674.5 based
on Table 1, is calculated according to Equation (25). It can be seen that, since the gap of
the bearing is small, the stiffness effect produced by the squeeze film is relatively large.
When analyzing the dynamic characteristics of the bearing, the squeeze film effect must be
considered.
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Table 1. Parameters of a typical aerostatic guideway.

Name Viscosity Disturbance
Frequency Characteristic Length Film Thickness

Value 17.9× 10−6 Pa · s 500 Hz 0.1 m 10× 10−6 m

3.2. One-Dimensional Circular Air Film

As shown in Figure 1b, the normal movement of a gas film is superimposed on the
basis of a circular plate gas film. When fluid compressibility is considered, the dynamic
Reynolds equation of the one-dimensional lubricating film in the cylindrical coordinate
system is obtained from Equation (3):

1
r

∂

∂r

(
h3

12η
rPabs

∂Pabs
∂r

)
=

∂(hPabs)

∂t
(29)

By substituting the perturbation form in Equation (6) and the complex form in
Equation (9), the form of Equation (17) inside of a one-dimensional annular flat plate
gas film is:
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d
dr

(
d(Pabs0P̃1)

dr
+

3
2

h̃1

h0

dP2
abs0

dr

)
+

1
r

(
d(Pabs0P̃1)

dr
+

3
2

h̃1

h0

dP2
abs0

dr

)
=

12η jω
h2

0
P̃1 +

12η jωPabs0

h3
0

h̃1 (30)

The solution without supply pressure (the atmospheric pressure boundary) will now
be discussed. Under this condition, the steady-state pressure distribution is Pabs0(r) = Pa,
That is, Equation (30) is further simplified, and there are boundary conditions (the inner
hole radius is equal to zero):

d2P̃1

dr2 +
1
r

dP̃1

dr
=

12η

Pah2
0

jωP̃1 +
12η

h3
0

jωh̃1, P̃1(R2) = 0,
dP̃1

dr
(0) = 0 (31)

The analytical solution to this differential equation is:

P̃1(r) = Pa
h̃1

h0

(
J0(
√

σsejπ/4r∗)
J0(
√

σsejπ/4)
− 1

)
, σs =

12ηωR2
2

Pah2
0

, r∗ =
r

R2
(32)

The expanded expression is as follows:

P1s(r∗) =
ber
√

σs ber (
√

σsr∗) + bei
√

σs bei (
√

σsr∗)
( ber

√
σs)2 + ( bei

√
σs)2 − 1

P1c(r∗) =
bei
√

σs ber (
√

σsr∗)− ber
√

σs bei (
√

σsr∗)
( ber

√
σs)2 + ( bei

√
σs)2

(33)

In applied mathematics, the Kelvin functions berν(x) and beiν(x) are the real and
imaginary parts, respectively, of Jν

(
xe

3πi
4

)
, where x is real, and Jν(z) is the νth order Bessel

function of the first kind.
The definition of the dynamic stiffness of the air film, as given in Equation (20), can be

used to obtain the dynamic stiffness and damping expressions of the air film:

K∗(ω) =
K(ω)

πR2
2Pa/h0

= Re

[
1− 2

J1(
√

σsejπ/4)
√

σsejπ/4 J0(
√

σsejπ/4)

]

= 1−
√

2
σs

ber
√

σs(bei1
√

σs − ber1
√

σs)− bei
√

σs(ber1
√

σs + bei1
√

σs)

(ber
√

σs)2 + (bei
√

σs)2

(34)

C∗(ω) =
C(ω)

ηπR4
2/h3

0
=

12
σs

Im

[
2

J1(
√

σsejπ/4)
√

σsejπ/4 J0(
√

σsejπ/4)
− 1

]

=

√
2
σs

ber
√

σs(ber1
√

σs + bei1
√

σs)− bei
√

σs(bei1
√

σs − ber1
√

σs)

(ber
√

σs)2 + (bei
√

σs)2

(35)

Figure 6 shows the changing trend of the dimensionless dynamic stiffness and damp-
ing coefficient with the squeeze number, and Figure 7 shows the dynamic stiffness ampli-
tude with the squeeze number. Obviously, the squeeze film characteristics of the parallel
circular plate and flat lubricating film are similar, but the dimensionless damping at zero
frequency becomes 1.5 (this is consistent with the damping obtained when compressibility
is not considered), and then the crossover frequency shifts to the left. The squeeze number
corresponding to the crossover frequency is approximately equal to σsc ≈ 6.

Similarly to a guide railway, by substituting Equation (32), the squeeze number of
the common thrust bearing air film shown in Table 2 is estimated σs = 168.6. Since the
clearance of the bearing is small, the stiffness effect of the squeeze film is relatively large.
The result of the above formula shows that the squeeze film effect must be considered when
analyzing the dynamic characteristics of the thrust bearing.
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Figure 6. Dynamic coefficients of the 1D parallel disc.
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Table 2. Parameters of a typical aerostatic thrust bearing.

Name Viscosity Disturbance
Frequency Characteristic Radius Film Thickness

Value 17.9× 10−6 Pa · s 500 Hz 0.05 m 10× 10−6 m

4. Numerical Results with Different Pressure Boundaries

The static and perturbation Reynolds equations are all elliptic differential equations
without time, so they can be conveniently solved by the FEM. With the development of
modern computing technology, the related literature has increased, so the basic theory of
the FEM and the Reynolds equation solving process adopting FEM will not be expanded
upon in detail here. The interested reader can refer to [36,37].

The static characteristics of the aerostatic bearing and the dynamic characteristics are
evaluated considering the stiffness and damping coefficients. The flowchart for solving
the Reynolds equation is shown in Figure 8. Firstly, the steady-state Reynolds equation
is solved and the static performance is determined. Secondly, the coupled perturbation
Reynolds equations are solved to obtain the dynamic performances of the air bearing.
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Figure 8. Flowchart of the calculation procedure.

4.1. A One-Dimensional Infinite Width Flat Air Film

The first example of a numerical solution to the perturbed Reynolds equation is as
follows: The dynamic characteristics in the flat plate with external pressure equal gap as
shown in Figure 9a are calculated. For the one-dimensional flat lubricating film shown
in Figure 9a, when compressibility is considered, the steady-state pressure distribution
is determined by Equation (2), and the dynamic pressure distribution is determined by
Equation (23). In order to make the results more universal, the following variable substitu-
tions are used:

Pabs0 = P∗abs0Pa, Pd = Pa/σ, P̃1 = P̃∗1 Pa, h̃1 = h̃∗1h0, x = x∗l, σs =
12ηωl2

Pah2
0

(36)

where σ is the reciprocal of dimensionless air supply pressure. The dimensionless Equation (23)
is as follows:

d2(P∗abs0P̃∗1 )
dx∗2

+
3
2

h̃∗1
d2(P∗2abs0)

dx∗2
= jσsP̃∗1 + jσsP∗abs0h̃∗1 , P∗abs0 = P∗abs0(σ, x∗) (37)

h

l
x

z
dh 

Pd Pa

dt 

(a)

r
z

Pd

Pa

h

R0R2

dh 

dt 

(b)

Figure 9. Squeeze film of a one-dimensional constant gap flow model with different pressure
boundaries: (a) infinite width flat air film; and (b) circular air film.

The above dimensionless form shows that we only need to solve for different supply
pressure ratios and squeeze numbers to fully understand the dynamic characteristics of one-
dimensional flat films. The FEM was used to solve the above equations. Figures 10 and 11
are the real part P1s and imaginary part P1c of the dynamic pressure distribution with
different air supply pressures σ and different squeeze numbers σs. It can be seen from those
figures that, as the gas supply pressure increases, the high pressure area of the dynamic
pressure is also shifted to the left, where more gas is compressed and concentrated, since the
high-pressure area in the steady-state pressure distribution is near the origin of the x axis.
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Integrating the real and imaginary parts of the dynamic pressure, Figure 12 shows the
dimensionless dynamic stiffness and damping coefficient of the one-dimensional flat plate
with a gas supply boundary, and its definition is the same as that under the atmospheric
pressure gas supply boundary in Equation (27). Because the air supply pressure is greater
than the atmospheric pressure, the value of the dimensionless dynamic stiffness is greater
than 1. The maximum value of stiffness can be seen to increase from 1 to 6 when the
supplying pressure changes from zero to 9 bar. As a comparison, the dimensionless
dynamic stiffness in Figure 4 is always less than 1.

Improving the supply pressure does not improve the amplitude of the damping
coefficient, but delays its decreasing frequency. It can be seen in Figure 12 that the half-
damping squeeze number is increasing from 10 to 70 when the supplying pressure changes
from 0 to 9 bar. It is somewhat strange that the value of stiffness is decreasing with
the improvement in the supply pressure in the low-frequency region. The effects of the
increasing damping and the decreasing stiffness together increase the cut-off frequency
from 10 to 70 with an increase in supply pressure, as shown in Figure 13. Figure 13 clearly
shows that the increase in the air supply pressure increases both the damping force and the
stiffness force.
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4.2. A One-Dimensional Annular Air Film Flowing from the Inside and the Outside

The second example of a numerical solution to the disturbed Reynolds equation is
as follows: the one-dimensional flow model in cylindrical coordinate system shown in
Figure 9b is calculated. Gas will flow from the inside to the outside if the inner diameter
R0 is of a high-pressure boundary and the outer diameter R2 is of an atmospheric pressure
boundary. In the same way, gas will flow from the outside to the inside if the outer diameter
R2 is of a supplying boundary. When considering gas compressibility, the steady-state
pressure distribution of the one-dimensional annular lubricating film is determined by
Equation (3), and the dynamic pressure distribution is determined by Equation (30). The
following variable substitutions are used:

Pabs0 = P∗abs0Pa, Pd = Pa/σ, P̃1 = P̃∗1 Pa, h̃1 = h̃∗1h0,

r = r∗R0, L′2 = R2/R0, σs =
12ηω(R2 − R0)

2

Pah2
0

(38)

where σ is the reciprocal of the dimensionless air supply pressure. The dimensionless
Equation (30) is as follows:

(
d

dr∗
+

1
r∗

)(
d(P∗abs0P̃∗1 )

dr∗
+

3
2

h̃∗1
dP∗2abs0

dr∗

)
= jσsP̃∗1 + jσsP∗abs0h̃∗1 , P∗abs0 = P∗abs0(σ, L′2, r∗) (39)
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The above dimensionless form of P∗abs0 indicates that we need to analyze the dynamic
characteristics of a one-dimensional ring squeeze film with different external and internal
diameter ratios, supply pressure ratios, and squeeze numbers. Using the FEM to solve the
above equations, the real part of the dynamic pressure P1s and the imaginary part P1c with
different air supply pressures σ and different squeeze numbers σs (the ratio of outer and
inner diameters L′2 = 1.5 ) are illustrated in Figures 14 and 15, respectively. These figures
show that more gas is compressed and concentrated close to the inner diameter with the
increase in gas supply pressure, since the high-pressure area is located on the inner edge.
The high-pressure area of the dynamic pressure also shifts to the inner diameter, which is
similar to that of a one-dimensional flat plate.
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Figure 14. Distribution of P1s inside of the 1D parallel ring with high-pressure inside.
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Figure 15. Distribution of P1c inside of the 1D parallel ring with high-pressure inside.

The real part and imaginary part of the dynamic pressure are integrated to obtain
the dimensionless dynamic stiffness and damping coefficient of the ring-type thin film, as
shown in Figure 16, and its definition is similar to the definition under the atmospheric
pressure gas supply boundary:

K∗(ω) =
K(ω)

π(R2
2 − R2

0)Pa/h0
, C∗(ω) =

C(ω)

ηπ(R2
2 − R2

0)(R2 − R0)2/h3
0

(40)

Figure 16 shows the dynamic characteristic coefficient under different ratios of outer
and inner diameters. It is noted that the dimensionless stiffness and damping ordinates in



Mathematics 2023, 11, 742 16 of 23

the figures are exactly the same. With the increase in the ratio of outer and inner diameters,
the maximum stiffness slightly decreases, and the damping coefficient remains almost
unchanged, which shows that the dimensionless value is basically irrelevant to the ratio of
inner and outer diameters, and indicates that the aforementioned dimensionless definition
is appropriate.
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Figure 16. Dynamic coefficients of the 1D ring with supply pressure under different radius ratios.

By carefully analyzing the definition of the dimensionless damping coefficient in
Equation (40), it is clear that, due to the roughly quadratic relationship between the reference
value and the ratio of the outer and inner diameters R2/R0, the radius ratio is key in the
design of thrust bearings.

The solid line in Figure 16 represents the result of the flow from inside to outside,
and the dotted line represents the performance curve of the flow from outside to inside.
As the disturbance frequency increases, the dimensionless stiffness of the flow from the
outside is larger than that from the inside. The definition in Equation (44) shows that,
under the same gap, the larger the area of the high pressure zone, the larger the load value
obtained by integration, and the larger the value of the maximum stiffness. Obviously, the
high-pressure boundary at the outer edge R2 is larger than the high-pressure area at the
inner edge R0. Therefore, the flow direction has little effect on the damping coefficient,
but as the radius ratio increases, the flow direction has a greater impact on the stiffness
coefficient.

Because the air supply pressure is greater than the atmospheric pressure, the value of
the dimensionless dynamic stiffness is greater than 1. It is clear that the maximum value of
the stiffness increases from 1 to 5 when the supplying pressure changes from 0 to 6 bar. As
a comparison, the dimensionless dynamic stiffness in Figure 6 is always less than 1.

Improving the supply pressure does not improve the amplitude of the damping
coefficient, but it does delay its decreasing frequency. In the intermediate frequency region,
the air supply pressure has a very strong influence on the damping (note that the abscissa
is a logarithmic coordinate); it can be seen in Figure 16 that the half-damping squeeze
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number is increasing from 10 to 70 when the supplying pressure changes from 0 to 9 bar.
It is slightly strange that the value of the stiffness is decreasing with the improvement in
the supply pressure in the low-frequency region. The effects of the increasing damping
and decreasing stiffness together increase the cut-off frequency from 10 to 60 as the supply
pressure increases, as shown in Figure 16. Figure 17 clearly shows that the increase in the
air supply pressure increases both the damping force and the stiffness force.
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Figure 17. Dynamic stiffness modulus of the 1D ring with supply pressure under different radius
ratios (flows from inside).

Figure 18 shows the dynamic stiffness modulus of the 1D ring with supply pressure
under different radius ratios when the air flows in from outside. It can be seen that the flow
direction does not cause much difference compared with Figure 16 when the air flows from
inside.
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Figure 18. Dynamic stiffness modulus of the 1D ring with supply pressure under different radius
ratios (flows from outside).
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5. Results and Discussion
5.1. Characteristics of the Thin Film with Exciting Frequency Approaching Zero

Although the calculation results in Equation (16) show that the real and imaginary
parts of the dynamic pressure are coupled, some basic conclusions can be drawn at low
and high frequencies through limit analysis.

When the exciting frequency approaches zero ω → 0, Equation (16) can be simplified:

∇·
[

h3
0∇(Pabs0P1s)

]
+

3
2

h1s∇·
[

h2
0∇
(

P2
abs0

)]
= 0, P1c → 0 (41)

Obviously, the first formula of the above equation is the solution formula of static
stiffness. When the gap distribution is uniform, that is to say, h0 is a constant, it can
be simplified to obtain P1s = 0 by combining with the Laplace Equation (4). Therefore,
purely parallel plates have no static stiffness, regardless of whether the pressure boundary
is uniform. It is clear that if the Laplace Equation (4) is completely unrelated to the
translational gap h, the pressure distribution is also completely unrelated to that gap, so
the bearing capacity is also completely unrelated to it, that is, there is no stiffness.

When there is no gradient in the static pressure distribution (no additional supply
pressure), the simplification can also lead to P1s = 0, the static stiffness of the parallel
plate is 0, and there is only a certain squeeze film damping. However, when the frequency
approaches 0, so does the disturbance velocity and the damping force.

The transposition of Equation (14) (b) leads to the following:

∇·
[

h3
0∇
(

Pabs0
P1c

ωh1s

)]
= −12ηh0

P1s

h1s
− 12ηPabs0 (42)

It should therefore be noted that the damping coefficient (the damping force divided
by the product of the frequency and amplitude) is not zero, and the gas then behaves like
an incompressible liquid.

5.2. Characteristics of the Thin Film with an Exciting Frequency Approaching Infinity

When the vibration frequency approaches infinity ω → +∞, Equation (16) is simplified:

P1s = −Pabs0
h1s

h0
, P1c = 0 (43)

At this time, the air film behaves like a rigid spring. The above formula shows that
the ultimate stiffness coefficient of the bearing is related to the static (absolute) pressure
distribution, and the damping is zero. By bringing the expression of the above formula P1s
into the stiffness calculation Formula (21), we have

K∞ =
∫∫

Ω

Pabs0
h0

dΩ =

∫∫
Ω Pabs0dΩ

h0
(44)

The above formula shows that K∞ is only related to the static pressure distribution and gap
distribution of the gas film, independently of other factors.

5.3. Transfer Function of the Thin Film

The above process shows that a correct analytical solution can be obtained by directly
solving the perturbation Reynolds equation. However, the squeeze film effect of a com-
pressible air film is complicated, and the expression of stiffness and damping are nonlinear
functions of excitation frequency, which makes them difficult to apply directly. Therefore,
using a certain simplified analysis to describe the dynamic characteristics of the air film
simply by using several parameters would be highly beneficial for further design analysis.

Based on the characteristics of thin films with exciting frequencies approaching to zero
and infinity, and observing the real and imaginary parts of the stiffness in
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Figures 5, 7, 13, 17a,b and 18a,b, the air film stiffness can be represented by the transfer
function shown below:

Kb(s) = −
W1(s)
h1(s)

=
As

τs + 1
, Kb(jω) =

ω2 Aτ

τ2ω2 + 1
+ jω

A
τ2ω2 + 1

(45)

By substituting the values at frequencies of zero and infinity, the values of variables A
and τ can be obtained:

A = C(0), τ =
C(0)
K(∞)

(46)

Table 3 shows the values of all the calculation results found. Since the damping at zero
frequency is basically independent of the air supply pressure, and the air film stiffness is
positively correlated with the air supply pressure at high frequencies, the time constant is
negatively correlated with the air supply pressure.

Table 3. Parameters of a typical aerostatic thrust bearing.

Model Boundary Setting A = C(0) K(∞) τ = C(0)/K(∞)

1D flat film Ambient pressure ηbl3/(h3
0) blPa/h0 ηl2/(h2

0Pa)
1D circular film Ambient pressure 3ηπR4

2/(2h3
0) πR2

2Pa/h0 3ηR2
2/(2h2

0Pa)
1D flat film σs = 1/3 1.028ηbl3/(h3

0) 2.148blPa/h0 0.479ηl2/(h2
0Pa)

1D flat film σs = 1/5 1.046ηbl3/(h3
0) 3.393blPa/h0 0.414ηl2/(h2

0Pa)
1D flat film σs = 1/7 1.054ηbl3/(h3

0) 4.652blPa/h0 0.227ηl2/(h2
0Pa)

1D flat film σs = 1/9 1.058ηbl3/(h3
0) 5.911blPa/h0 0.179ηl2/(h2

0Pa)

1D annular film σs = 1, L′2 = 1.25 ηπ(R2
2−R2

0)(R2−R0)2

h3
0

π(R2
2−R2

0)Pa
h0

η(R2
2−R2

0)
h2

0Pa

1D annular film σs = 1/3, L′2 = 1.25 1.031ηπ(R2
2−R2

0)(R2−R0)2

h3
0

2.008π(R2
2−R2

0)Pa
h0

0.513η(R2
2−R2

0)
h2

0Pa

1D annular film σs = 1/5, L′2 = 1.25 1.050ηπ(R2
2−R2

0)(R2−R0)2

h3
0

3.158π(R2
2−R2

0)Pa
h0

0.336η(R2
2−R2

0)
h2

0Pa

1D annular film σs = 1/7, L′2 = 1.25 1.058ηπ(R2
2−R2

0)(R2−R0)2

h3
0

4.324π(R2
2−R2

0)Pa
h0

0.245η(R2
2−R2

0)
h2

0Pa

1D annular film σs = 1, L′2 = 2.0 ηπ(R2
2−R2

0)(R2−R0)2

h3
0

π(R2
2−R2

0)Pa
h0

η(R2
2−R2

0)
h2

0Pa

1D annular film σs = 1/3, L′2 = 2.0 1.041ηπ(R2
2−R2

0)(R2−R0)2

h3
0

1.901π(R2
2−R2

0)Pa
h0

0.547η(R2
2−R2

0)
h2

0Pa

1D annular film σs = 1/5, L′2 = 2.0 1.064ηπ(R2
2−R2

0)(R2−R0)2

h3
0

2.940π(R2
2−R2

0)Pa
h0

0.362η(R2
2−R2

0)
h2

0Pa

1D annular film σs = 1/7, L′2 = 2.0 1.075ηπ(R2
2−R2

0)(R2−R0)2

h3
0

4.003π(R2
2−R2

0)Pa
h0

0.268η(R2
2−R2

0)
h2

0Pa

In order to verify the accuracy of the transfer function, Figures 19 and 20 illustrate the
difference in dimensionless stiffness and damping coefficients between the fitted transfer
function and numerically calculated Reynolds equation result. The figures show that the
fitting results are relatively consistent in the low-frequency region, and the stiffness value
obtained in the high frequency region is relatively higher.

The above calculations illustrate the dynamic characteristics of the flat air film in the
frequency domain. By transforming them into the time domain, the accuracy of parameter
fitting can also be evaluated through a step response. Assume that the boundary structure
of an air film is subjected to an impact, and the upper plate produces a displacement
h1(t) = huu(t) in an instant, where u(t) represents a unit step function. From the definition
of stiffness, the force generated by the air film on the upper plate can be obtained:

W1(t) = L−1{−Kb(s)h1(s)} = L−1{− As
τs + 1

hu

s
} = −Ahu

τ
u(t)e−

t
τ = −K∞huu(t)e−

t
τ (47)

Obviously, the force on the upper plate is an exponential decay function, and its decay
constant is the time constant τ.
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Figure 19. Fitted transfer function of dimensionless stiffness.
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Figure 20. Fitted transfer function of dimensionless damping.

Figure 21 shows the time-domain response calculated by the FEM and the response
curve obtained by inversely transforming the fitted function. Note that this figure uses
dimensionless units: the ordinate represents the ratio of the air film force to K∞hu, and
the abscissa represents the ratio of time to the decay constant τ, so the fitting result curve
is identical to that in Figure 21a,b. It can be seen that the fitting results can represent the
characteristics of thin gas films well. Figure 21b also shows the calculation results of the
FEM at different step amplitudes. When the amplitude of the gap variation hu accounts
for a small proportion of gas film gaps (in the figure, this value is 0.1% of h0), the response
amplitude is highly consistent with the result of linear fitting. As the amplitude of the
gap variation accounts for a large proportion, a nonlinear effect gradually appears, but the
shape of the response curve also approximates an exponential decay form, even when the
amplitude increases to 10% of h0.
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Figure 21. The time-domain response calculated by the FEM and obtained by inversely transforming
the fitted function.

6. Conclusions

In contrast to the equations representing the squeeze film effect with the same pressure
boundary conditions, a group of dynamic Reynolds equations with stiffness and damping
pressure were derived, and parallel flat and circular thin films were analyzed considering a
high-pressure boundary. The following conclusions can be drawn:

(1) The various dynamic pressure distribution and stiffness curves of the circular thin
film were obtained by calculations of the supply pressure both inside and outside the
boundary. The characteristics of the squeeze films with and without external pressure
were compared.

(2) The squeeze effect of compressible lubricants causes damping at a zero frequency
and stiffness at an infinite-frequency. Due to the influence of gas compressibility, the
dynamic pressure is still high at high frequencies. The crossover squeeze number, which
indicates the frequency at which the stiffness and the damping force are the same, is
equal to 10 given a one-dimensional flat plate and 6 given a parallel disc with an atmo-
spheric boundary. The crossover squeeze number increases when the supplying pressure
becomes larger.

(3) Based on our models, the fitting results of the time-domain response calculated
by the FEM matches well with the response curve obtained by inversely transforming
the fitted function. Both accurately represent the characteristics of a thin gas film. As the
amplitude of the gap variation accounts for a large proportion, a nonlinear effect gradually
appears, but the shape of the response curve approximates an exponential decay form,
even when the amplitude increases to 10% of the gas film thickness.
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Abbreviations
The following abbreviations are used in this manuscript:

η Viscosity of lubricants (Pa·s)
ω Exciting frequency (rad/s)
σ Reciprocal of dimensionless supply air pressure
σs Squeeze number
σsc Cut-off frequency
∇ Laplacian operator
Ω Thin-film domain
h Film thickness (µm)
j Unit of imaginary number
l Length of gas film (m)
t Time (s)
C Damping of air bearing (N·s/m)
K Stiffness of air bearing (N/m)
Kb Dynamic stiffness (N/m)
K∞ Ultimate stiffness (N/m)
R0 Radius of inner annular film (m)
R2 Radius of outer annular film (m)
L′1 Ratio of the outer and inner diameters of annular air film
Pa Ambient pressure (bar)
Pabs Absolute pressure (Pa)
Pd High pressure (bar)
W Load-carrying capacity (N)
Subscripts
0 Steady-state item
1 Dynamic item
s Real part
c Imaginary part
Superscript
˜ Complex variables
∗ Dimensionless variable
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