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Abstract 

The Capacitated Vehicle Routing Problem (CVRP) is a well known problem 
which has long been tackled by researchers for several decades now, not only be-
cause of its potential applications but also due to the fact that CVRP can be used 
to test the efficiency of new algorithms and optimization methods. The objective 
of our work is to present SR-GCWS, a hybrid algorithm that combines a CVRP 
classical heuristic with Monte Carlo simulation using state-of-the-art random 
number generators. The resulting algorithm is tested against some well known 
benchmarks. In most cases, our approach is able to compete or even outperform 
much more complex algorithms, which is especially interesting if we consider that 
our algorithm does not require any previous parameter fine-tuning or set-up proc-
ess. Moreover, our algorithm has been able to produce high-quality solutions al-
most in real-time for most tested instances. Another important feature of the algo-
rithm worth mentioning is that it uses a randomized constructive heuristic, capable 
of generating hundreds or even thousands of alternative solutions with different 
properties. These alternative solutions, in turn, can be really useful for decision-
makers in order to satisfy their utility functions, which are usually unknown by the 
modeler. The presented methodology may be a fine framework for the develop-
ment of similar algorithms for other complex combinatorial problems in the rout-
ing arena as well as in some other research fields. 
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1   Introduction 

In the Capacitated Vehicle Routing Problem (CVRP) a set of customer demands 
have to be served with a fleet of vehicles from a depot or central node. Each vehi-
cle has the same capacity (homogeneous fleet) and each customer has a certain 
demand that must be satisfied. Additionally, there is a cost matrix that measures 
the costs associated with moving a vehicle from one node to another. These costs 
usually represent distances, traveling times, number of vehicles employed or a 
combination of these factors.  

More formally, we assume a set Ω  of 1+n  nodes, one of which represents the 
vehicle origin and destination (depot node) and the rest of which the delivery 
points (demanding nodes). The nodes are numbered from 0  to n , node 0  being 
the depot and the remaining n  nodes the delivery points. A demand 0>iq  of 
some commodity has been assigned to each non-depot node i  (1 i n≤ ≤ ). On the 
other hand, { }( , ) / ,  ;  E i j i j i j= ∈Ω <  represents the set of the ( 1) / 2n n⋅ +  ex-
isting edges connecting the 1n +  nodes. Each of these links has an associated ap-
rioristic cost, 0ijc > , which represents the cost of sending a vehicle from node i  
to node j . These ijc  are assumed to be symmetric ( jiij cc = , nji ≤≤ ,0 ), and 

they are frequently expressed in terms of the Euclidean distance, ijd , between the 
two nodes. The delivery process is to be carried out by a fleet of NV  vehicles 
( 1≥NV ) with equal capacity, { }max /1iC q i n>> ≤ ≤ . Some additional con-
straints associated with the CVRP are the following [32]: 

1. Each non-depot node is supplied by a single vehicle, 
2. All vehicles begin and end their routes at the depot (node 0 ), 
3. A vehicle cannot stop twice at the same non-depot node, 
4. No vehicle can be loaded exceeding its maximum capacity. 

Different approaches to the CVRP have been explored during the last decades [52, 
22]. These approaches range from the use of pure optimization methods, such as 
linear programming, for solving small-size problems with relatively simple con-
straints to the use of heuristics and meta-heuristics that provide near-optimal solu-
tions for medium and large-size problems with more complex constraints. Most of 
these methods focus on minimizing an aprioristic cost function subject to a set of 
well-defined constraints. However, real-life problems tend to be complex enough 
so that not all possible costs, e.g., environmental costs, work risks, etc., constraints 
and desirable solution properties, e.g., time or geographical restrictions, balanced 
work load among routes, solution attractiveness, etc., can be considered a priori 
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during the mathematical modeling phase [45, 27]. For that reason, there is a need 
for more flexible methods able to provide a large set of alternative near-optimal 
solutions with different properties, so that decision-makers can choose among dif-
ferent alternative solutions according to their specific necessities and preferences, 
i.e., according to their utility function, which is usually unknown for the re-
searcher. Furthermore, in a recent critical review by Laporte [29], the author 
clearly states “When reporting results, most researchers concentrate on solution 
quality and computing time. While these two measures are undoubtedly important, 
they do not tell the whole story. Other qualities such as simplicity of implementa-
tion and flexibility are also important (…) It is also important to design algorithms 
that can easily handle the numerous side constraints that arise in practice”. Conse-
quently, the main purpose of this paper is to present SR-GCWS (Simulation in 
Routing via the Generalized Clarke & Wright Savings heuristic), a hybrid algo-
rithm that combines the parallel version of the classical Clarke & Wright Savings 
(CWS) heuristic with Monte Carlo simulation (MCS) and state-of-the-art random 
number generators to produce a set of alternative solutions for a given CVRP in-
stance. Each solution in this set outperforms the CWS heuristic, but it also has its 
own characteristics and therefore constitutes an alternative possibility for the deci-
sion-maker where several side constraints can be considered. Moreover, the best 
solution provided by the algorithm is competitive, in terms of aprioristic costs, 
with the best solution found so far by using existing state-of-the-art algorithms, 
which tend to be more complex and difficult to implement than the method pre-
sented in this paper and, in some cases, require parameter fine-tuning or set-up 
processes. 

The rest of the paper is structured as follows: Section 2 is dedicated to back-
ground and literature review; Section 3 presents a global intuitive description of 
our proposed approach; Section 4 explains some technical details; Section 5 ana-
lyzes the suitability of our approach by carrying out several experimental tests re-
garding some very well known benchmark files; Section 6 discusses the main con-
tributions of our work. Finally, Section 7 summarizes and concludes the paper. 

2   Background and literature review 

As with many other Operations Research problems, CVRP research started with 
exact methodologies like linear programming, dynamic programming or branch 
and bound algorithms. Some noteworthy examples are the branch and cut methods 
in [41, 17, 2]. In [2] the authors are able to reach decent levels of performance for 
exact methods, where exact solutions to problems up to 100 customers are ob-
tained. However, the success rate is variable [29]. Furthermore, the computational 
times are extreme in some cases and adding new real constraints is a challenge in 
such specialized exact methodologies. Recently, some authors have been able to 
extend some formulations and lower bounds to a set of different variants of the 
VRP [3]. As far as we know, this is a first attempt at a more general exact frame-
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work for routing problems. Reviews of exact techniques for VRP problems are 
available [30, 51]. Unfortunately, exact techniques to more complex VRP variants 
are not so well performing. For example, the well known VRP with time windows 
or VRPTW is significantly more challenging as far as exact methods are con-
cerned. Accordingly, the state-of-the-art results presented in [10, 26], among many 
others, show techniques that solve problems with far less customers. 

The literature is also very rich on heuristic approaches for the VRP, largely mo-
tivated by the limited results obtained by exact techniques in large realistic prob-
lems. Clarke and Wright’s Savings (CWS) constructive algorithm [8] is probably 
the most cited heuristic to solve the CVRP. This procedure uses the concept of 
savings. Generally speaking, at each step of the solution-construction process, the 
edge with the most savings is selected if and only if the two corresponding routes 
can feasibly be merged and if the selected edge comprises of nodes that are not in-
terior to its respective route (a node is interior to a route if it is not adjacent to the 
depot). The CWS algorithm usually provides relatively good solutions, especially 
for small and medium-size problems, but it also presents difficulties in some cases 
[18]. Many variants and improvements of the CWS have been proposed in the lit-
erature. For instance, [40] generalized the definition of the savings function, intro-
ducing two parameters for controlling the savings behavior. Similarly, other au-
thors developed a procedure based upon the CWS algorithm, using the same 
savings function but introducing a solution perturbation scheme in order to avoid 
poor quality routes [23]. In [5], the CWS method was adapted in order to use it to 
optimize inter-customer travel times. Correspondingly, in [11] a version of the 
CWS method for the Stochastic VRP can be found. Two years later, in [43] the 
main characteristics of the CWS method and its performance in generic VRP were 
analyzed. Recently, the CWS heuristic has been finely tuned by means of genetic 
algorithms experimentation [4]. For a more comprehensive discussion on the vari-
ous CWS variants, the reader is referred to [31, 29]. 

Another important approach to the CVRP are the so called petal methods, start-
ing with the most basic sweep method [21] and its extensions proposed by many 
authors. As noted in [29], these petal-based algorithms like those in [48, 47] are, 
on average, better performers than CWS-based methodologies developed so far. 

Using constructive heuristics as a basis, metaheuristics became popular for the 
VRP during the nineties. Some early examples are the Tabu Route method [19] or 
the Boneroute method [50]. Tabu search algorithms, like those proposed in [49, 
53] are among the most popular metaheuristics. Genetic algorithms have also 
played a major role in the development of effective approaches for the VRP. Some 
examples can be found in [1, 6, 46]. More recent works are those presented in [37, 
38], among many others. Advanced crossover operators are put forward in [42]. 

Large sized problems can be efficiently solved by means of variable neighbor-
hood search (VNS) methods as shown in [28]. Similarly, other authors proposed 
the use of general local search methods working over adaptive large neighbor-
hoods [44]. 

As we can see, the literature on the VRP is vast and large. We have also cited 
many modern papers, which demonstrate that the VRP is still a very active and 
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proficient research field. Obviously, due to space limitations, a complete review of 
the vast VRP literature is not given here. For more detailed reviews, the reader is 
referred to [9, 29, 20]. 

The methodology we present in this paper combines the CWS algorithm with 
the use of Monte Carlo simulation (MCS), which can be defined as a set of tech-
niques that make use of random numbers and statistical distributions to solve cer-
tain stochastic or deterministic problems [33]. MCS has proved to be extremely 
useful for obtaining numerical solutions to complex problems which cannot be ef-
ficiently solved by using analytical approaches. Buxey [7] was probably the first 
author to combine MCS with the CWS algorithm to develop a procedure for the 
CVRP. This method was revisited in [12], who introduced an entropy function to 
guide the random selection of nodes. MCS has also been used in [16, 13, 24, 25] 
to solve the CVRP.  

3   Designing the SR-GCWS algorithm 

In our opinion, recent advances in the development of high-quality pseudo-
random number generators [35] have opened new perspectives as regards the use 
of Monte Carlo simulation (MCS) in combinatorial problems. To test how state-
of-the-art random number generators can be used to improve existing heuristics 
and even push them to new efficiency levels, we decided to combine a MCS 
methodology with one of the best-known classical heuristics for the CVRP, 
namely the Clarke & Wright Savings (CWS) method. In particular, we selected 
the parallel version of this heuristic as described in [39], since it usually offers bet-
ter results than the corresponding sequential version [52].  

So, our aim was to introduce some nice random behavior within the CWS heu-
ristic in order to start an efficient search process inside the space of feasible solu-
tions. Each of these feasible solutions will consist of a set of roundtrip routes from 
the depot that, altogether, satisfy all demands of the nodes by visiting and serving 
all them exactly once. As stated in Section 2, at each step of the solution-
construction process, the CWS algorithm always chooses the edge with the highest 
savings value. Our approach, instead, assigns a probability of selecting each edge 
in the savings list. Moreover, this probability should be coherent with the savings 
value associated with each edge, i.e., edges with higher savings will be more 
likely to be selected from the list than those with lower savings. Finally, this selec-
tion process should be done without introducing too many parameters in the meth-
odology –otherwise, it would be necessary to perform fine-tuning processes, 
which tend to be non-trivial and time-consuming–. To reach all those goals, we 
employ different geometric statistical distributions during the CWS solution-
construction process: each time a new edge must be selected from the list of avail-
able edges, a (quasi-) geometric distribution is randomly selected (details are 
given in the next section); this distribution is then used to assign (quasi-) exponen-
tially diminishing probabilities to each eligible edge according to its position in-
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side the savings list, which has been previously sorted by its corresponding sav-
ings value. That way, edges with higher savings values are always more likely to 
be selected from the list, but the exact probabilities assigned are variable and they 
depend upon the concrete distribution selected at each step. By iterating this 
methodology, a random but efficient search process is started. Notice that this 
general approach has similarities with the Greedy Randomized Adaptive Search 
Procedure (GRASP) [14, 15]. GRASP is a typically two-phase approach where in 
the first phase a constructive heuristic is randomized. The second phase includes a 
local search phase. Our proposed approach does without the expensive local 
search phase and includes a more detailed randomized construction step. By doing 
so we have a more general and less instantiated method as local search needs to be 
instantiated for every different problem. 

4   A more formal description of the edge selection process 

As we have explained in the previous section, during the solution-construction 
process, each time a new edge needs to be selected from the savings list, a differ-
ent quasi-geometric distribution is chosen. For each edge in the savings list, this 
distribution defines its probability of being selected at the current edge-selection 
step of the process. More precisely, each time a new edge must be selected, we 
choose a real value α , 10 <<α , and then consider the following probability dis-
tribution for the random variable X  = “node k -th is selected at the current step”, 
where sk ,...,2,1= , being s  the current size of the list: 

( ) εαα +−⋅== −11)( kkXP  sk ,...,2,1=∀  

where: 

( ) ( )∑∑
=

−
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+=

− −⋅−=−⋅=
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k
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k

1

1

1

1 111 ααααε
 

Even when the distribution defined here is clearly inspired on the geometric one, 
the latter assigns a positive probability to every value in the interval ),1[ +∞  and, 
therefore does not consider the error term ε . Because of this, we qualify the for-
mer distribution as a quasi-geometric distribution. 

Notice that the list size s  diminishes as the process evolves and new edges are 
extracted from it. Roughly speaking, if the size of the savings list in the current 
step is large enough, the term ε  is close to zero and, therefore, the parameter α  
can be interpreted as the probability of selecting the edge with the highest savings 
value at the current step of the solution-construction process. As Figure 1 shows, 
choosing a relatively low α -value (e.g. 05.0=α ) implies considering a large 
number of edges from the savings list as potentially eligible, e.g.: assuming 

100=s , if we choose 05.0=α  then the list of potentially eligible edges will 
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cover about 44 edges from the sorted savings list, since 9.0)44( ≈≤XP . On the 
contrary, choosing a relatively high α -value (e.g. 35.0=α ) implies reducing the 
list of potential eligible edges to just a few of them, e.g.: assuming 100=s , if we 
choose 35.0=α  then the list of potentially eligible edges will be basically re-
duced to approximately 5 edges, since 9.0)5( ≈≤XP . Once a value for α  is 
chosen, the first edge must be selected, this same value can be used for all future 
steps. In that case, the selection of the α -value might require some minor fine-
tuning process. However, based on the tests we have performed so far, we prefer 
to consider this α -value as a random variable whose behavior is determined by a 
well-known continuous distribution, e.g.: a uniform distribution in the interval 

)25.0,05.0(  or a trimmed normal with 15.0=µ  and 0.05σ =  (in this second 
case, any randomly-generated value outside the beforementioned interval is omit-
ted). This way, we not only avoid a fine-tuning processes, but we also have the 
possibility to combine different values of this parameter at different edge-selection 
steps of the same solution-construction process. In other words, we are interested 
in the possibility of combining different strategies regarding the number of edges 
to be considered as eligible at different steps through the solution-construction 
process. 
 

 
Fig. 1. Effects of the chosen parameter on the geometric distribution 
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5    Experimental tests 

The methodology described in this paper has been implemented as a Java applica-
tion. At the core of this application, some state-of-the-art pseudo-random number 
generators are employed. In particular, we have used some classes from the SSJ 
library [34], among them, the subclass GenF2W32, which implements a generator 
with a period value equal to 2800-1. Using a pseudo-random number generator with 
such an extremely long period is especially useful when performing an in-depth 
random search of the solutions space. In our opinion, the use of such a long-period 
RNG has other important advantages: the algorithm can be easily parallelized by 
splitting the RNG sequence in different streams and using each stream in different 
threads or CPUs. This can be an interesting field to explore in future works, given 
the current trend in multi-core processors and parallel computing. 

In order to verify the goodness of our approach and its efficiency as compared 
with other existing methodologies, a total of 15 classical CVRP benchmark in-
stances were selected from the web http://www.branchandcut.org, a reference 
site which contains detailed information regarding a large number of benchmark 
instances. The selection process was based on the following criteria: (a) all 6 sets 
of instances (A, B, E, F, M and P) were considered; (b) only instances offering 
complete information, e.g. specific routes in best known solution, were considered 
(an exception to this rule was made in the case of the M-n200-k17.vrp file, since 
we were interested in testing an instance with 200 nodes); and (c) instances with 
less than 45 nodes were avoided, since they can be easily optimized by using exact 
methods. The selected benchmark files are shown on Table 1. These instances dif-
fer in the number of nodes (ranging from 45 to 200) and also in the location of the 
depot with respect to the clients. Figure 2 shows the best solution found so far by 
using our methodology for the E-n51-k5.vrp file, where the depot is at the center.  
 

 
Fig. 2. Best solution found so far for the E-n51-k5.vrp (depot at the center) 

Depot 
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Analogously, Figure 3 shows the best solution found so far for the A-n80-
k10.vrp file. This time, the depot is located at one corner of the scatter plot de-
fined by the set of nodes. 
 

 
Fig. 3. Best solution found so far for the A-n80-k10.vrp (depot at one corner) 

 
Table 1. Comparison of methodologies for the fifteen selected CVRP instances 

Instance Nodes CWS-p  
solution (1) 

Gap  
(1) – (2) 

Best-known 
solution* (2) 

SR-GCWS  
solution (3) 

Gap  
(2) – (3) 

A-n45-k7 45 1,199.98 4.59% 1,147.28 1,146.91 -0.03% 
A-n60-k9 60 1,421.88 4.87% 1,355.80 1,355.80 0.00% 
A-n80-k10 80 1,860.94 5.35% 1,766.50 1,766.50 0.00% 
B-n50-k7 50 748.80 0.54% 744.78 744.23 -0.07% 
B-n52-k7 52 764.90 1.98% 750.08 749.97 -0.01% 
B-n57-k9 57 1,653.42 3.10% 1,603.63 1,602.29 -0.08% 
B-n78-k10 78 1,264.56 2.87% 1,229.27 1,228.16 -0.09% 
E-n51-k5 51 584.64 11.37% 524.94 524.61 -0.06% 
E-n76-k10 76 900.26 7.51% 837.36 839.13 0.21% 
E-n76-k14** 76 1,073.43 4.55% 1,026.71 1,026.14 -0.06% 
F-n135-k7 135 1,219.32 4.16% 1,170.65 1,170.33 -0.03% 
M-n121-k7 121 1,068.14 2.20% 1,045.16 1,045.60 0.04% 
M-n200-k7 200 1,395.74 6.10% 1,315.43 1,313.71 -0.13% 
P-n70-k10 70 896.86 10.56% 830.02 831.81 0.22% 
P-n101-k4 101 765.38 8.05% 692.28 691.29 -0.14% 
Averages   5.19%   -0.02% 

(*) Best-known solution according to the information available at http://www.branchandcut.org/ 
(**) For this instance our best solution employs a total of 15 routes 

Depot 
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A standard personal computer, Intel® Core™2 Duo CPU at 2.4 GHz and 2 GB 
RAM, was used to perform all tests. Results of these tests are summarized in Ta-
ble 1, which contains the following information for each instance: (a) number of 
nodes; (b) costs C′  associated with the solution given by the parallel version of 
the CWS heuristic; (c) costs C  associated to the best-known-so-far solution ac-
cording to the information available at the referred web site; (d) gap between C  
and C′  defined as the quotient CCC /)( −′  and expressed as a percentage value; 
(e) costs C ′′  associated with the best-known-so-far solution provided by our algo-
rithm; and finally (e) gap between C  and C ′′  calculated as the quotient 

CCC /)( −′′  and expressed as a percentage value. Notice that, as defined, a posi-
tive gap between C  and C ′′  will imply that our solution costs are higher than the 
ones associated with the best-known-so-far solution, while a negative gap will im-
ply just the opposite, i.e., better solutions found by our approach. 

From Table 1 it can be deduced that, for each of the 15 selected instances, our 
methodology was able to provide a virtually equivalent solution to the one consid-
ered as the best-known-so-far. In fact, in 10 out of the 15 instances, our methodol-
ogy has been able to slightly improve the best-known solution, offering negative 
gaps. When considering all instances together, the average gap is still negative (its 
value is equal to -0.02%). Generally speaking, according to these results, it seems 
licit to say that the SR-GCWS methodology is able to generate excellent CVRP 
solutions for instances of different dimensions and topologies, including those 
which have the depot at a corner and those with clusters, as the one in Figure 4. 
 

 
Fig. 4. Best solution found so far for the B-n57-k9.vrp (cluster topology) 
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6    Discussion of results 

As described before, our approach makes use of an iterative process to generate a 
set of random feasible solutions. According to the experimental tests that we have 
carried out in the previous section, each algorithm iteration is completed in just a 
few milliseconds by using a standard computer. By construction, odds are than the 
generated solution outperforms the one given by the CWS heuristic. This means 
that our approach provides, in almost real-time (even for the instance with 200 
nodes), what we call “a class C solution”, i.e., a feasible solution which outper-
forms the CWS heuristic in aprioristic costs (Figure 5). Moreover, as verified by 
testing, hundreds of alternative class C solutions can be obtained after some min-
utes of computation, each of them having different attributes regarding non-
aprioristic costs, workload balance, visual attractiveness, etc. By doing so, a list of 
alternative solutions can be constructed, thus allowing the decision-maker to filter 
this solutions list according to different criteria. This offers the decision-maker the 
possibility to choose, among different solutions with similar aprioristic costs, the 
one which best fulfills his or her preferences according to his or her utility func-
tion. 
 

 
Fig. 5. Different classes of solutions provided by our algorithm 

Furthermore, and again according to experimental results, our algorithm is able to 
provide a “class B” solution, i.e., a feasible solution inside the 2% gap from the 
best-known solution, in just some hundred or some thousand iterations, which in 
small- and medium-size instances takes only a few seconds to run (for example, 
results in Figure 5 were obtained in about 11 seconds of computation time). Of 
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course, as it has been already discussed in the previous section, with more com-
puting time our algorithm is capable to provide “class A” solutions, i.e., feasible 
solutions that are virtually equivalent, or even better in some cases, to the best-
known-so-far solution for every tested instance. 

Another important point to consider here is the simplicity of the presented 
methodology. In effect, our algorithm needs little instantiation and does not re-
quire any fine-tuning or set-up processes. This is quite interesting in our opinion, 
since according to [27] some of the most efficient heuristics and metaheuristics are 
not used in practice because of the difficulties they present when dealing with 
real-life problems and restrictions. On the contrary, simple hybrid approaches like 
the one introduced here tend to be more flexible and, therefore, they seem more 
appropriate to deal with real restrictions and dynamic work conditions. 

Finally, it is convenient to highlight that the introduced methodology can be 
used beyond the CVRP scenario: with little effort, similar hybrid algorithms based 
on the combination of Monte Carlo simulation with already existing heuristics can 
be developed for other routing problems, e.g. [36] and, in general, for other com-
binatorial optimization problems, e.g. [54]. In our opinion, this opens a nice range 
of potential applications that could be explored in future works. 

7 Conclusions 

In this paper the SR-GCWS methodology for solving the Capacitated Vehicle 
Routing Problem has been presented. This methodology, which does not require 
any particular fine-tuning or configuration process, combines the classical Clarke 
& Wright heuristic with Monte Carlo simulation using a quasi-geometric distribu-
tion and a state-of-the-art pseudo-random number generator. Results show that our 
methodology is able to provide top-quality solutions which can compete with the 
ones provided by much more complex metaheuristics, which usually are difficult 
to implement in practice. Moreover, being a constructive approach, it can generate 
hundreds of alternative good solutions in a reasonable time-period, thus offering 
the decision-maker the possibility to apply different non-aprioristic criteria when 
selecting the solution that best fits his or her utility function. According to the tests 
that we have carried out, which include some scenarios of different dimensions, 
our methodology has always been able to provide a competitive solution in almost 
real-time. Finally, because of its simplicity and flexibility, we think that this 
methodology can easily be adapted to other variants of the vehicle routing prob-
lem and even to other combinatorial problems.  
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Appendix: additional data for solutions with a negative gap 

A-n45-k7 
Route # Nodes Costs Demand 

1 0-2-6-28-3-11-43-41-27-0 219.33 96 
2 0-35-34-26-4-12-0 83.63 93 
3 0-31-29-36-19-5-32-0 208.58 99 
4 0-40-20-16-7-18-0 99.95 56 
5 0-9-22-30-37-1-42-8-0 220.50 100 
6 0-13-38-17-23-25-15-10-0 159.87 99 
7 0-21-24-44-33-14-39-0 155.05 91 
 Totals 1,146.91 634 

 
B-n50-k7 

Route # Nodes Costs Demand 
1 0-3-10-42-16-27-24-43-14-18-25-30-0 100.13 100 
2 0-7-41-31-0 84.73 48 
3 0-12-39-26-13-1-23-0 115.47 99 
4 0-15-28-32-40-0 85.25 93 
5 0-37-11-20-8-5-36-45-21-0 150.55 87 
6 0-35-4-29-46-9-38-22-33-47-0 103.59 97 
7 0-34-49-44-19-17-48-2-6-0 104.51 85 
 Totals 744.23 609 

 
B-n52-k7 

Route # Nodes Costs Demand 
1 0-21-11-28-3-31-24-39-14-45-4-0 215.02 92 
2 0-2-48-9-16-46-13-26-0 138.87 100 
3 0-23-12-50-22-17-49-15-19-34-32-38-0 165.61 94 
4 0-47-51-7-43-35-33-0 84.96 87 
5 0-44-10-5-8-27-29-37-0 53.73 99 
6 0-36-6-25-41-0 30.43 47 
7 0-40-42-20-30-18-1-0 61.34 87 
 Totals 749.97 606 
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B-n57-k9 

Route # Nodes Costs Demand 
1 0-4-30-49-35-48-38-12-0 144.88 100 
2 0-5-47-36-21-41-29-53-0 116.15 72 
3 0-6-56-0 103.18 43 
4 0-7-16-23-26-39-19-0 228.30 99 
5 0-8-15-51-25-37-11-33-0 249.66 100 
6 0-10-17-45-24-52-54-43-0 204.61 94 
7 0-20-2-13-44-34-14-42-0 212.90 96 
8 0-22-46-50-3-40-32-0 126.89 100 
9 0-31-55-9-28-18-27-1-0 215.73 99 
 Totals 1,602.29 803 

 
B-n78-k10 

Route # Nodes Costs Demand 
1 0-16-66-60-6-62-54-20-3-75-0 204.42 100 
2 0-10-41-14-36-4-59-35-55-33-13-9-0 223.63 99 
3 0-50-61-39-48-74-28-19-0 162.06 99 
4 0-11-64-40-53-68-18-25-42-0 153.96 100 
5 0-1-24-52-21-43-67-69-72-17-0 28.66 100 
6 0-58-38-56-27-49-63-2-0 69.61 98 
7 0-71-22-51-31-73-76-32-7-57-0 124.34 99 
8 0-15-45-46-34-12-8-0 116.17 98 
9 0-26-44-23-77-0 66.13 48 

10 0-47-65-37-29-70-30-5-0 79.19 96 
 Totals 1,228.16 937 

 
E-n51-k5 

Route # Nodes Costs Demand 
1 0-8-26-31-28-3-36-35-20-22-1-32-0 118.52 149 
2 0-38-9-30-34-50-16-21-29-2-11-0 99.33 159 
3 0-27-48-23-7-43-24-25-14-6-0 98.45 152 
4 0-12-37-44-15-45-33-39-10-49-5-46-0 99.25 160 
5 0-18-13-41-40-19-42-17-4-47-0 109.06 157 
 Totals 524.61 777 
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E-n76-k14 

Route # Nodes Costs Demand 
1 0-4-30-2-68-0 37.85 88 
2 0-45-29-5-37-36-47-0 73.53 100 
3 0-48-69-71-60-70-20-15-57-0 105.55 99 
4 0-8-19-54-13-27-52-0 65.18 95 
5 0-26-46-34-67-0 29.86 94 
6 0-75-0 6 20 
7 0-7-11-66-65-0 76.14 98 
8 0-53-59-14-35-0 77.78 87 
9 0-23-56-41-42-64-22-0 104.47 98 

10 0-6-33-63-43-1-73-0 68.32 99 
11 0-62-28-61-21-74-0 77.51 100 
12 0-72-31-10-38-58-0 86.78 97 
13 0-12-9-40-17-0 48.74 98 
14 0-39-25-55-18-50-32-0 95.04 100 
15 0-3-44-24-49-16-51-0 73.39 91 
 Totals 1,026.14 1,364 

 
F-n135-k7 

Route # Nodes Costs Demand 
1 0-17-81-113-129-128-127-121-122-123-124-126-

112-125-111-110-69-70-68-133-0 
222.34 2,118 

2 0-82-20-83-84-85-86-87-89-90-92-16-13-15-88-14-
12-11-10-5-6-7-8-9-4-2-42-41-3-40-44-43-45-94-93-
29-28-27-26-25-21-91-0 

189.90 2,145 

3 0-22-24-30-31-62-52-51-50-49-34-48-1-75-47-72-0 55.85 2,094 
4 0-23-59-58-57-56-105-97-96-38-39-95-37-35-36-99-

98-100-101-104-103-102-53-55-54-61-60-0 
65.09 2,078 

5 0-46-118-18-132-116-131-117-119-130-65-19-0 205.33 2,029 
6 0-73-74-32-134-76-77-64-78-63-79-67-80-33-71-66-

0 
96.48 1,947 

7 0-120-109-108-107-106-114-115-0 335.34 2,209 
 Totals 1,170.33 14,620 
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M-n200-k17 

Route # Nodes Costs Demand 
1 0-111-184-116-68-150-80-177-109-12-154-28-0 50.94 198 
2 0-81-9-120-164-34-78-169-121-29-24-163-134-0 100.63 191 
3 0-122-20-188-66-65-136-35-135-71-161-103-51-0 116.52 195 
4 0-10-189-108-90-126-63-181-32-131-160-128-30-

70-0 
97.09 200 

5 0-76-196-77-3-158-79-129-185-33-157-102-50-0 58.58 191 
6 0-167-127-190-31-162-101-1-176-132-69-27-0 49.51 180 
7 0-166-118-60-83-199-125-45-174-8-114-18-0 66.91 192 
8 0-96-98-37-100-192-14-119-44-38-140-86-113-17-

173-84-0 
110.64 200 

9 0-5-61-16-141-191-91-193-85-93-104-99-0 67.55 200 
10 0-123-19-107-175-11-64-49-143-36-47-168-124-46-

82-0 
130.76 200 

11 0-52-153-106-194-7-48-182-62-159-148-88-146-0 73.43 200 
12 0-89-147-6-183-94-95-117-13-137-152-58-0 44.90 196 
13 0-112-156-0 10.06 48 
14 0-2-115-178-57-15-43-142-42-172-144-87-97-151-

92-59-0 
88.62 200 

15 0-54-130-165-55-25-170-67-39-187-139-155-4-0 95.50 199 
16 0-53-40-21-73-171-74-75-56-186-23-133-22-41-

145-0 
87.58 200 

17 0-105-180-198-72-197-110-179-195-149-26-138-0 64.49 196 
 Totals 1,313.71 3,186 

 
P-n101-k4 

Route # Nodes Costs Demand 
1 0-6-96-99-93-59-92-37-98-100-91-85-61-16-86-38-

44-14-42-43-15-57-2-87-97-95-94-0 
152.42 392 

2 0-53-26-12-80-68-29-24-54-4-55-25-39-67-23-56-
75-41-22-74-72-73-21-40-58-13-0 

171.06 384 

3 0-28-76-77-3-79-78-34-35-71-65-66-20-32-90-63-
64-49-36-47-46-8-45-17-84-5-60-83-18-89-0 

226.08 382 

4 0-27-69-1-50-33-81-9-51-30-70-10-62-11-19-48-82-
7-88-31-52-0 

141.73 300 

 Totals 691.29 1,458 
 


