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One sentence summary:

Patient iPSC-based models indicate Src/c-Abl inhibitors a i-ALS therapeutics.
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Abstract

Amyotrophic lateral sclerosis (ALS), a fatal motor neuron (MN) disease causing progressive
MN death, still has no effective therapeutics. Here we developed a phenotypic screen to
reposition existing drugs with a readout of MN survival using ALS patient induced

pluripotent stem cells (iPSCs) with mutations in Cu/Zn superoxide dis se 1 (mutant

SOD1). Results of the screen showed that over half of the hit drugs were inclu®gd in the
Src/c-Abl-associated signaling pathway. Src/c-Abl inhibitors iggreased$ghe ival rate of
ALS MNs, and a knock-down approach rescued ALS MNs. On hese drugs improved
impaired autophagy, reduced misfolded SOD1 protein, a tenuated#he energy shortage
with altered mitochondria-relevant gene expression gf de®gted by single-cell transcriptome

analysis of ALS MNs. This drug was ajso effe r r genetic types of iPSC-derived

MNs including mutant TAR DNA-bingsiy

preggigs43 kDa (TDP-43), C9orf72 repeat
expansion-associated familial AL and sy ALS. Furthermore, the Src/c-Abl inhibitor
extended the survival pef@d pf mutan D1-associated ALS model mice. Therefore, our

chemical-biology approach 1PSC-based drug repositioning could identify both

candidate drugs an molecular pathway for ALS therapeutics.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes
progressive loss of motor neurons (MNs) [1, 2]. The disease progression is fast and there is

no radical treatment. Most cases are classified as sporadic ALS (SALS), while about 10%

are familial (FALS). Approximately 25% of the FALS cases are associated mutations in
Cu/Zn superoxide dismutase 1 (mutant SODI) [3]. Although mutant SODI1 transg8gic mice

recapitulate ALS phenotypes [4] and have been used for preglinical §u

development, only a limited number of compounds have been teste®Thus, We developed a
phenotypic screening assay for testing a number of comp s with a #€adout of ALS MN

survival. In previous studies of ALS, many kinds

tive genes were discovered and

discovery of iPSC technology, many scree
[5-11]. In this study, we Rgrgeuced tr iption factors using the piggyBac vector system
[12] to generate disease MINs§ith, scale merit and simplicity for MN generation. In the
phenotypic assay, s1 it deemed useful to accelerate therapeutic development, we
repositioned e «% [13] and found that several Src/c-Abl inhibitors attenuated ALS
MN degdnerati

Src and C-Abl are ubiquitous non-receptor tyrosine kinases (RTKs) that were identified
as the mammalian homologs of the oncogene products of Rous sarcoma virus and Abelson
murine leukemia virus, respectively. Activation of Src, which is associated with cell

proliferation, angiogenesis, apoptosis and invasion, has been observed in cancers, and it is
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considered a target of cancer therapy [14]. Ber-Abl fusion protein, one of the oncogenic forms
of c-Abl fusion kinase, is known to cause chronic myelogenous leukemia (CML) and
Philadelphia chromosome-positive adult acute lymphoblastic leukemia (Ph+ALL), and c-Abl
inhibitors were developed as anti-CML drugs [15]. Src/c-Abl is associated with various
cellular functions [16, 17], and several studies have shown the involve f Src family
proteins and c-Abl in neurodegenerative diseases [18-24].

In the present study, we repositioned existing drugs using ggutant SD, iated ALS

1PSCs and identified multiple anti-Src/c-Abl cancer drugs, inve$tidy¢ed thé mechanism of
Src/Abl inhibitors in ALS MNs, and demonstrated that bl inhib#ion attenuated MN
death with a reduction of misfolded protein accumujafioMy These drugs were also effective

for other genetic forms of ALS patienf MNss ARG, model mice, indicating that the
er!

Src/c-Abl pathway could be viewed as a apeutic target of ALS MNs.

Results \/
To screen many compoun&8gwith MN vulnerability as a readout phenotype using patient

1PSCs, we required e-sclg,maturation-aligned MNs. We developed MN differentiation
methods by tra %\, 34qranscription factors, LIM homeobox protein 3 (Lhx3), neurogenin
2 (Ngn2Q and I§L LIM homeobox 1 (Isll). These factors were reported to induce mature
spinal MNs frOm neural precursor cells using adenovirus vectors [25]. A polycistronic vector
containing Lhx3, Ngn2, and Is/] under control of the tetracycline operator was introduced
into iPSCs (fig. SIA-D and table S1 and S2) using the piggyBac vector, and vector-

introduced clones were established as stable iPSC clones after neomycin selection. After
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doxycycline treatment, MNs were generated from iPSCs within 7 days (Fig. 1A). The
generated MNs showed MN markers (Fig. 1B and C) and functional property (Fig. 1D-F and
fig. S2A-C).

To establish an ALS MN phenotypic screening system, we generated iPSCs from ALS

patients with a mutation of L144FVX in SOD1 gene (ALS1) (fig. STA-D) corrected the

mutation in the established iPSCs using CRISPR-Cas9 to generate isogeniy control

ALSI1-1, and 60.3 £2.8% in ALS1 (Fig. 1G and fig. In the generated MNs, we

nd I and fig. S2H and I), which

plays a pathological role in mutant S -assq ALI26, 27]. Furthermore, we found

vulnerability in ALS MNs compared
o

).

MNs including mutation-corrected

1sogenic control (Fig. 1J a

Using this cellular mN&A, we set uppfompound screening with a readout of the survival

of ALS MNs. iPSCs differ@ggated to MNs for 7 days, and chemical compounds were
added for anothepZ daygJollo®ing evaluation of the surviving MNs by high-content analysis
using immunosWy of BII-tubulin, since nearly 100% of BIIl-tubulin-positive neurons

expressed§HBY XFig. 2A and fig. S2J and K). Assay performance was determined by
calculating the Z’ factor (Z’ factor = 0.42 = 0.30 (mean £ SD)). For positive control assays,
cells were treated with 50 uM kenpaullone, which was identified as a candidate drug for ALS
[28], and we confirmed its positive effect; in negative control assays, the cells were treated

with vehicle (DMSO). We conducted through-put screening of 1,416 compounds that
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included existing drugs both on the market and undergoing clinical trials. The results of the
screening are shown in Fig. 2B. Hit compounds were defined as over 3 standard deviations
(3SD) from negative controls, and 27 compounds were identified as hits (hit ratio 1.7%)
(table S3). Representative figures showing the neuroprotective effect of hit drugs are shown
in Fig. 2C. We were able to confirm dose-dependency of the protective t of some hit
drugs (Fig. 2D).

Fourteen of the 27 hits were included in the Src/c-Abl-aggociatedgpa (Fig. 2E).
Thus, we focused on Src/c-Abl as a common target of these hit %ﬁ Ns. We re-
evaluated other Src/c-Abl inhibitors in non-hit drugs, and %jb they also presented
a protective effect, although with lesser efficacy ,domMgred with hit drugs (fig. S3A).
Furthermore, knock-down of Src or c-4bl pro %al of MNs (Fig. 2F), and the

knock-down effects were cancelled by si

T rms of Src or c-Abl overexpression

o
(fig. S3B and C). These results dgmonstiige and c-Abl as therapeutic targets of ALS

MNs. Among Src/c-Abl Wghipitors of Wgeit drugs, we focused on drugs that have direct

inhibitory activity for Src/c-A

such as bosutinib and dasatinib. Bosutinib presented dose-

dependency on M

and the protectt

From thege results, we selected bosutinib for further investigation.

without the bell-shaped responses observed with dasatinib,

as exhibited at lower dose compared with other hit drugs in vitro.

We investigated the protein level and phosphorylation of Src/c-Abl in ALS MNs.
Phosphorylation of Src/c-Abl was increased in mutant SOD1 MN culture compared with
control, and treatment with bosutinib decreased phosphorylation as detected by western blot

analysis (Fig. 2G and H). Typical immunocytochemistry figures of phosphorylated Src (p-
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Src)/phosphorylated c-Abl (p-c-Abl) are presented in Fig 2I. Using ELISA, we also
confirmed that phosphorylation of Src/c-Abl was increased in mutant SOD1 MN culture
compared with control, and treatment with bosutinib decreased them (Fig. 2J). Next, we
evaluated the protein level and phosphorylation of Src/c-Abl in other types of cells. ALS

astrocytes generated from i1PSCs (fig. S3D) and ALS iPSCs ex d increased

phosphorylation of Src without increased phosphorylation of c-Abl (fig. S3E-H).

To analyze the protective mechanism of bosutinib on g¢LS Mg, investigated
misfolded protein degradation. We found that p62 levels were eléval®d in AES MNs, which
were then reduced by bosutinib treatment, and the ch of the LC3-II/LC3-I ratio,
suggestive but not definitively pointing to an autgrhad¥y effect, in ALS MNs was also
attenuated by bosutinib treatment (Figa3A-C) n whether the autophagy process
was associated with ALS MNs, we inve e fect of the inhibition of mTOR. The
mTOR inhibitor rapamycin, w%i is k promote autophagy, and mTOR siRNA
increased MN survival (%%ggesﬁng that autophagy was impaired in ALS

MNs. Then, to investigate wh&er the protective effect of bosutinib is associated with the

autophagy pathway;

with bosutinib t.

of bosutigib (Fig. 3F). Thus, our data suggested that the protective effect of bosutinib was

ad autophagy inhibitors, LY294002 and chloroquine, to MNs

hese autophagy inhibitors partially blocked the protective effect

associated with the promotion of autophagy. Furthermore, we found that bosutinib treatment
reduced the misfolded SODI protein levels in ALS MNs by western blotting (Fig. 3G) and
ELISA (Fig. 3H) without decreasing SOD1 mRNA expression levels (Fig. 31). ALS MN

culture also presented a decreasing ATP level, and bosutinib had an attenuating effect on the
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shortage of intracellular ATP (Fig. 3J). These data suggested that bosutinib promoted the
degradation of misfolded SODI protein and improved cellular energy shortage. To further
explore the molecular background of ALS MNss, transcriptome analysis was performed using
single-cell RNA sequencing (table S4 and S5). We conducted Gene Set Enrichment Analysis

(GSEA) to reveal the biological significance of differentially express nes between

control and ALS MNs. We found that the increase in mRNA expressions was associed with
TCA cycle and respiratory electron transport in ALS MNs, gdicating ¢ sation for
energy shortage (Fig. 3K). After treatment with bosutinib, the m xpresstons associated

with TCA cycle and respiratory electron transport were de ed in ALS MNs (fig. S4).

Furthermore, we evaluated the effects of Src/c ibitor on other genetic types of

familial ALS MNs including mutant T) at expansion-associated familial

ALS, and on sporadic ALS. Diagnosis gé=gmi S was confirmed by genotype (Fig.

g encing using patient fibroblasts (table S2).

TDP-43 inclusions were dgsewed in s MNs of a SALS patient (SALS1) by postmortem

o
S1A), and sporadic ALS was examjned b

pathological analysis. MNs w&g generated from each iPSC (Fig. 4A), and treatment with

bosutinib increase

sporadic ALS ).

proteins fn MNsyof familial and sporadic ALS (fig. S5A-C).

s in the different types of familial ALS and a part of

reatment with bosutinib decreased accumulations of abnormal

To analyze whether Src/c-Abl inhibitor is effective in vivo, we administered bosutinib
to mutant SOD1 transgenic (Tg) mice, a known model for mutant SOD1-asssociated ALS.
To investigate the effect of Src/c-Abl inhibitor on MN degeneration in vivo, the same as our

in vitro ALS model, treatment with bosutinib (5mg/kg/day) by intraperitoneal injection was

10
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started at age of 8 weeks, and was continued until 13 weeks. Bosutinib delayed disease onset
(Fig. 4C) and extended the survival period of mutant SOD1 Tg mice (Fig. 4D). Src/c-Abl
were inhibited (fig. S5D), and misfolded SODI1 proteins in spinal cord were decreased in

bosutinib-treated mutant SOD1 Tg mice compared with vehicle treatment (Fig. 4E). The

inhibition protected MNs from misfolded SOD1-mediated neurgglegenemgfi ivo. These
data were compatible with previous reports of nilotinib/bosutfni®ytreatnicht attenuating
misfolded TDP-43 protein levels in other ALS model mp®J29], and/that treatment with

another Src/c-Abl inhibitor, dasatinib, also prolonge

mice [24].
Finally, we investigated the po e hal cord tissue of ALS patients.

L )
Immunoreactivity of phosphorylatgd Src eased in the remaining MNs of ALS spinal

vival period of mutant SOD1 Tg

cords (fig. S6A, table S6\as svell as t f phosphorylated c-Abl [24], although the trend
toward increased phosphorylaiNg of Src in whole ALS spinal cords was not significant (fig.

S6B). Since phosphoMNgatio Src was increased in ALS patient iPSC-derived MNs, these

results suggest sp orylation of Src may occur at early stage in ALS, and that patient

1PSCs wquld beywseful to analyze ALS patient MNs at early stage before clinical onset.

Discussion
We developed a phenotypic screen assay with a readout of MN survival using familial

ALS patient iPSCs with mutation in SOD/. Using this assay, we showed that Src/c-Abl

11
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inhibitors and the knock-down approach of Src/c-Abl rescued ALS MNs. Further analysis
revealed that these drugs promoted autophagy, reduced misfolded SOD1 protein levels, and
restored the energy shortage in ALS MNs. Furthermore, treatment with the Src/c-Abl
inhibitors rescued other genetic types of ALS MNs including mutant TDP-43-, C9orf72
expansion mediated-familial ALS, and sporadic ALS MNs. Finally, we fo at the Src/c-
Abl inhibitor prolonged the survival period in ALS model mice.

Mutations in SODI cause its protein-conformationalgchange ing, and
aggregation that are specifically localized in pathologically affectéd Mgions iiT'animal models
and human ALS patients [30]. We showed that Src/c-Abl i itors reduetd misfolded SOD1
level in ALS MNs. As a mechanism for the redugtipn & mistolded SODI1, we explored
proteolysis, observing that Src/c-Abl ighibitor ot gutophagy, which was supported
by previous reports of enhancement of h%rc/c-Abl inhibitors [31, 32]. It was
demonstrated that misfolded 88D indu tress, mitochondrial dysfunction [7], and
changes in membrane pr

33]. served ATP shortage in ALS MNs, speculating

ery |
that misfolded mutant protein Wgovoked ER stress and/or altered the membrane property of

hyperexcitability as€grevionsly demonstrated [34, 35], and/or caused mitochondrial
dysfunction an @ decreased ATP levels (Fig. 3J). Increased gene categories and their
reversior}f by Sgic/c-Abl inhibition of the TCA cycle and respiratory electron transport
explored by our single ALS MN analysis indicated a compensated response against ATP
shortage of ALS MNs. A computational model of MN degeneration showed ATP shortage
with mitochondrial involvement [36]. We supposed that Src/c-Abl inhibitors restored ATP by

autophagy with decreasing misfolded proteins. Furthermore, ATP binding to Src/c-Abl is

12
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required for its own activation, and Src/c-Abl inhibitors blocked ATP binding [37] and may
have contributed to the increases in ATP levels. Although it remains unclear why
phosphorylated Src/c-Abl is increased in ALS MNs, as shown both in this study and in a

previous report of postmortem ALS patients MNs [24], we speculated that a RTK-mediated

rotelns 1S

cancer signaling such as BCR-Abl or EML4-ALK [38]. BCRgr EML
dimerized, leading to activation of Abl or ALK and to inductiOnNy cell proliferation in

dividing cells. In contrast, misfolded proteins associated RTK mdy be oligomerized,
leading to activation of Src/c-Abl and to induction of pfurdggeneration in non-dividing cells,
ALS MN:s. c-Abl activation is known tq result j 0 eration of adult mouse neurons

[20] and apoptotic response [39].
ALS is a heterogeneous gs se, a ous disease phenotypes it has in common

are derived from multipl§capses inclWipge different gene mutations. It is a certainty that

multiple molecular mechanistiare involved in the cause of ALS, but these mechanisms
remain unknown [2].9]tho this heterogeneity of ALS may complicate the identification
of prospective % tic, the analysis of patient iPSCs from multiple types of ALS should
be usefuljfor solying this issue. Our data showed that Src/c-Abl inhibition was effective not
only in mutant SOD1 but also in mutant TDP-43 and C9orf72-repeat expansion-associated
familial ALS and a part of sporadic ALS MNSs. It was reported that TDP-43 formed oligomers

that exhibited reduced DNA binding capability and neurotoxicity [40]. C9orf72-repeat

expansion formed toxic RNA foci and accumulations of dipeptide repeat protein, which is

13
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produced via repeat-associated non-ATG translation and causes cytotoxicity [10]. Sporadic
ALS is characterized by accumulations of inclusions consisting of TDP-43 in MNs [41],
which was also observed in postmortem tissues of the sporadic ALS patient in this study. We

observed that these abnormal, misfolded proteins, which contribute to ALS pathogenesis,

were decreased by Src/c-Abl inhibitor, and speculated that a common pat for neuronal
death such as the apoptotic pathway would be suppressed by Src/c-Abl inhibifggs. Both
studies of mutant SOD1 Tg mice with dasatinib and TDP-43 Tg gice witlgni 1k/bosutinib
showed attenuation of ALS phenotypes, supporting our data [24, 29

In our screening, the Z’ factor was below 0.5, suggg®N\g the assdy might not meet a

requirement for prevailing standards of compound sgiffenWyg. This score may stem from the

fact that the screening takes 7 days to gbserve atiNggthout any additional toxins, and

this longer than usual period might causgwgian eviations in the assay. Although we
o \
confirmed the effect of both Src ang c-AbINg siRINA experiments, many kinase inhibitors are

not truly selective for a s¥gglg kinase The possibility that the efficacy of the drugs on
MNs was associated with comWon off-target effects can also not be ruled out, although we
evaluated the protectiMg effc®g,0f multiple drugs on MNs, which all had different structures
from each oth@ ore, we also considered that Src and c-Abl may have interacted
with eacljother i the pathway of MN death. Further study would be needed to identify more
specific targets between the Src family, including c-Src, Lck, and Lyn [43], and c-Abl.
Since the results of our iPSC study targeted MN survival, we administered one of the
hit drugs to ALS model mice from the time point of the beginning of MN death, before

clinical onset, to the time point of glial cell involvement. The proper dose of bosutinib for

14
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mouse experiments could be determined based on the dose of clinical use in humans.
Furthermore, the bosutinib dose in this study was used in a previous study [29]. We found
that bosutinib delayed the onset of disease and elongated the survival period of mutant SOD1
Tg mice significantly, although the actual improvement of survival of mutant SOD1 Tg mice

was modest. These in vivo results confirmed the in vitro data, but also s sted that this

drug treatment was not ready for clinical translation. It may be important to exarfyge other
doses of bosutinib or other Src/c-Abl inhibitors, such as those shgwing ef§ci eability
of the blood-brain barrier, in future studies. Although ALS ro®y mice are useful for
evaluating new therapeutics, studies of them might not a s predictdiuman responses in
clinical trials [44]. It may be important to combine the ffesMgs of ALS patient iPSCs and ALS

model mice simultaneously.

This study indicated that a chemic, roach with iPSC-based phenotypic

screening of existing drugs 1dent1ﬁ d bot /trged molecular target and candidate drugs

for ALS. We are hope at iPS ed drug repositioning will hasten therapeutic
development for ALS.

Materials and

Study ddsign )

The objective of our study was to identify a candidate drug or a target for ALS treatment.
Through-put drug screening was performed using cellular phenotype of ALS MNs generated
from patient iPSCs following disease modeling of ALS. Among hit drugs, candidate targets

for ALS treatment were focused upon and validated using multiple ALS iPSC clones. This

15
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study was extended to ALS model mice to analyze the effects in vivo. Generation and use
of human iPSCs was approved by the Ethics Committees of the respective departments
including Kyoto University. All methods were performed in accordance with approved
guidelines. Formal informed consent was obtained from all subjects. All mice analyzed in

this study were cared for, the procedures were performed in accordancg”Ngth the Kyoto

University Animal Institutional Guidelines, and all experiments were approved byWge CiRA
Animal Experiment Committee. Human postmortem samples vgfh writt d consent
were obtained from the Department of Medicine and Graduate S s of MCdicine, Kyoto

University, Jichi Medical University, and Kansai Medical PRgyersity.

Generation of iPSCs
1PSCs were generated from skin ﬁbrob% lood mononuclear cells (PBMCs) or

immortalized B-lymphocytes us.m retro x2, Kl1f4, Oct3/4, and c-Myc), sendaivirus

(Sox2, Klf4, Oct3/4, and\g-Mpyc) or efggmal vectors (Sox2, Klf4, Oct3/4, L-Myc, Lin28,

and p53-shRNA) as reported pagviously [45-47], and were cultured on an SNL feeder layer

with human iPSC m (Nel

Japan) supplew~

penicillifystreptgmycin.

ate embryonic stem cell medium; ReproCELL, Yokohama,

4 ng/ml basic FGF (Wako Chemicals, Osaka, Japan) and

Supplementary materials
#. Supplemental materials and methods

#. fig. S1- S6

16
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#. table S1- S8
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Figure Legends

Fig. 1. Generation of MNs using transcription factors and modeling ALS-MNs

A. Protocol for MN generation. Scale bars, 10 um.

B. Generated MNs present spinal MN markers HB9, ChAT, and SMI-32. Scale bars, 10 pm.
C. Real-time PCR analysis shows increase in mRNA levels of HB9 and Ch Day 7 (each

group represents mean + SEM, n = 3; Student #-test, *p<0.05).

D. Co-cultures with human myoblasts, Hu5/E18. Neurites oggMNs og-lgCaNged with o-
bungarotoxin-labeled acetylcholine receptors. Scale bar, 10 pm. \’

E. Action potentials from current clamp recordings.

F. Functional neurotransmitter receptors on generate valuated by electrophysiological

analysis. Addition of 500 uM glutamatq

500 u gat 00 uM GABA induced inward
currents during voltage clamp recordings

AN

G. The percentage of HB9-positivg cells
H. Modeling ALS MNs. Mist®&ed SODI1 protein accumulated in MNs with mutant SOD1

gene. Scale bars, IQ
L. Accumulatiof ded SOD1 protein were shown in mutant SOD1 ALS MN culture

using imfunoprgcipitation assay.

(each group represents mean = SEM, n =

3).

J,K. MN survival assay. Numbers of MNs on Day 7 and on Day 14 were counted by high-
content analysis, and the ratio of surviving MNs (Day 14/Day 7 (%)) is shown. The surviving
ratio was decreased in mutant SOD1 (L144FVX) compared with control and mutation-

corrected clone (each group represents mean + SEM, n = 6; one-way ANOVA, p<0.05,
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*p<0.05). Scale bars, 10 um.

Fig. 2. Phenotypic screening using ALS MNs and identification of therapeutic targets

A. Overview of screening flow for ALS MN survival assay.

B. Through-put screening using MNs with mutant SODI gene ( VX). 1,416

compounds consisting of existing drugs and clinical trial-testing drugs were screenc¥y Scatter
plots show screening results and the highlighted compounds sh@vn in F

C. Representative figures of assay results. Treatment with bosutifiib ¥crease survival.
Scale bar, 100 pm.

D. Hit drugs showed dose-dependent effects (each gigfip rdggesents mean = SEM, n = 6; one-

way ANOVA, p<0.05, *p<0.05).

E. Targets of hit drugs. 14 of 27 hit drugs=g ed in receptor tyrosine kinase (RTK)

and Src/c-Abl-associated signalinggpathw ; protein kinase C.
F. Knock-down of Src or increase survival rate of mutant SOD1 ALS MNs (ALS1)

(each group represents mean + n = 6; one-way ANOVA, p<0.05, *p<0.05).

G,H. Phosphorylatio

inhibited this

mean £ EM, n g 3; two-way ANOVA, p<0.05, *p<0.05).

bl was increased in mutant SOD1 ALS MNs, and bosutinib

lation according to western blot analysis (each group represents

I. Typical figures of immunocytostaining of p-Src/p-c-Abl in MNs. Scale bars, 10 pm.
J. Increase of phosphorylation of Src/c-Abl was inhibited by treatment with bosutinib
according to ELISAs (each group represents mean = SEM, n = 3; two-way ANOVA, p<0.05,

*p<0.05). bos; bosutinib.
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Fig. 3. Mechanistic analysis of neuroprotective effects of Src/c-Abl inhibitors on mutant
SOD1 ALS MNs

A,B. Bosutinib treatment decreased the amount of p62, which was increased in mutant SOD1
MN culture, and attenuated the ratio of LC3-II/LC3-I (each group repres ean + SEM,
n = 3; two-way ANOVA; p<0.05, *p<0.05).

C. Increase of p62 was exhibited in mutant SOD1 ALS MNgby EL bosutinib

treatment decreased the amount of p62 (each group represents meanQSEM, I = 3; two-way

ANOVA; p<0.05, *p<0.05). M
D. Rapamycin increased survival rate of mutant LS s (ALS1) (each group
0.083p<

represents mean £ SEM, n = 6; one-wax ANOV 0.05).

E. Knock-down of mTOR increased survy at tant SOD1 ALS MNs (ALS1) (each
group represents mean + SEM,gZ 6; Stu st, p<0.05).

F. Autophagy inhibitors,QLY 294002 hloroquine, decreased the protective effect of

bosutinib on MN survival as (each group represents mean = SEM, n = 6; two-way

ANOVA, p<0.05, *p

G, H. Immunti

decreaseq the myisfolded SODI protein level, which was elevated in mutant SOD1 MN

analysis (G) and ELISA (H) showed that bosutinib treatment

culture.
I. Bosutinib treatment did not decrease SOD1 mRNA expression level.
J. Intracellular ATP level was decreased in mutant SOD1 MN culture. Bosutinib partially

attenuated the ATP shortage (each group represents mean = SEM, n = 6, Two-way ANOVA;
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p<0.05, *p<0.05).
K. Gene Set Enrichment Analysis of single-cell RNA sequencing showed up-regulation for
genes in TCA cycle and respiratory electron transport (control 1; n = 10, control 2; n = 11,

ALS1;n=23, ALS3; n=21). bos; bosutinib.

Fig. 4. Effect of Src/c-Abl inhibitor on iPSC-derived MNs with different geno®pes and
on ALS model mice ®

A. 1PSC-derived MNs of each clone on Day 7. Scale bars, 100 prfi.

B. Bosutinib increased MN survival of mutant TDP-43-/%gd C9orf#Z-repeat expansion-
mediated familial ALS and from a part of sporadic AL§ (c¥&h group represents mean + SEM,

n = 6; one-way ANOVA, p<0.05; post hoc test, ).

C. Kaplan-Meier analysis showed that b d disease onset of mutant SOD1 Tg

L
mice (bosutinib; 123.2£9.1 days, vehic 41t 14.4 days, mean + SD, log-rank test,
p=0.0021, n = 26 per gro

D. Kaplan-Meier analygis sho that bosutinib extended the survival time of mutant SOD1

Tg mice (bosutinib; 1+

p=0.0019, n = oup).

E. Misfojed SQD1 protein in spinal cord at 12 weeks of age was evaluated by ELISA.

days, vehicle; 156.3 8.5 days, mean + SD, log rank test,

Bosutinib decreased the misfolded SODI1 accumulations in spinal cord (each group
represents mean = SEM, non-transgenic littermates (non-Tg); n = 3, Tg treated with vehicle;
n =3, Tg treated with bosutinib; n = 3, one-way ANOVA, p<0.05; post hoc test, p<0.05).

F. Typical image of Cresyl violet-stained section of ventral horn from the lumbar spinal cord
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at the late symptomatic stage. Scale bars, 50 um.
G. The number of MNs on one side of the lumbar spinal cord was quantified (each group
represents mean = SEM, non-Tg; n = 4, Tg treated with vehicle; n = 5, Tg treated with

bosutinib; n = 5, one-way ANOVA; p<0.05, *p<0.05). bos; bosutinib.
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Fig. S4

Gene set enrichment:

TCA cycle and respiratory electron transport
Down regulated in mSOD1 Up regulated in mSOD1
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Fig. S6
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