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Abstract

SRI International’s real-time intrusion-detection expert

system (IDES) system contains a statistical subsystem
that observes behavior on a moniioreci cornpuier sys-

tem and adaptively learns what is normal for individ-
ual users and groups OJ users. The statistical subsys-

tem also monitors observed behavior and iclentifes be-

havior as a potential intrusion (or misuse by authorized

users) if it deviates significantly from expected behavior.

The multivariate methods used to profile normal behav-
ior and identify deviations from expected behavior are

ezplained in detail. The statistical test for abnormahiy
contains a number of parameters that must be initial-

ized and the substantive issues relating to setting those

parameter values are discussed.

Overview

The SRI IDES1 system is a real-time intrusion detection
expert system that observes behavior on a monitored
computer system and adaptively learns what is normal
for individllal users, groups, remote hosts and the over-
all system [1]. Observed behavior is flagged as a poten-
tial intrusion if it deviates signillca,ntJy from expecled
behavior or it triggers a rule in the expert-system rule
base. This paper describes the multivariate statistical
engine.

The IDES statistical anomaly detector, maintains a
statistical subject knowledge base consisting of pro-

jiles. A profile is a description of a subject’s nor-
mal (i. e., expected) behavior with respect to a set of
intrusion-cletcction measures. I+ofiles are designed to
require a minimum amount of storage for historical data
ancl yet record sufficient information that can readily
be decoded and interpreted during anomaly detection.

Rather than storing all historical audit data, the profiles
keep only statistics such aa frequency tables, means, and
covari an ces.

The deductive process used by IDES in determining
whether behavior is anomalous is based on statistics,
controlled by dynamica,lly adjustable para.lneters? many
which are specific to each subject. Auclited act,lvity is
clescri bed by a vector of intrusion-detection variables,
corresponding to the measures rccorclecl in the profiles.
Measures can be turned “on” or “off’ (i.e., included
in the s(ratis(lica] tesls), depending on whether they arc
cieemcd to be useful for that target system. As each

‘ IDES is SIII>IX-WId by tllc U.S. Navy, SPAWA R, which fumle{l
SRI tl)rougl] (J.S. (lovemment Coll(ra((. No. NCJW39-8CI-C-CXJ50.

audit record arrives, the relevant profiles are retrieved
from the knowledge base and compared with the vector
of intrusion-detection variables. If the point in N-space
defined by the vector of intrusion-detection variables is

sufllciently far from the point defined by the expected
values stored in the protllcsj with respect to the histor-

ical covariances for the variables stored in the profiles,
then the record is considered anomalous. Thus, the sta-

tistical procedures pay attention not only to whether
an audit variable is too high or too low, but also to
whether any audit variable is too high or too low rela-
tive to the values of the other audit variables (in other
words, the correlation between variables). Thus, lD13S
evaluates the total usage pattern, not just how the sub-
ject behaves with respect to each measure considered
singly.

The statistical knowledge base is updated daily using
the most recent day’s observed behavior of the sub-
jects. Before incorporating the new audit data into the
profiles, the frequency tables, means, and covariances
storecl in each profile are first aged by multiplying them

by an exponential decay factor. Although this factor
can be set by the user, we believe that a value that

recluccs the contribution of knowledge by a factor of 2
for every 30 days is appropriate (this is the daily profile
aging factor). This method of aging has the effect of
creating a moving time window for the profile data, so

that the expected behavior is influenced most strongly
by the most recently observecl behavior. Thus, IDES

adaptively learns subjects’ behavior patterns; as sub-
jects alter their behavior, their corresponding profiles
change.

The cleta.ils of the implementation of the SRI IDES sta-
tistical anomaly detector are contained in the following
sections, which are briefly summarized below:

The IDES Score Value. Each time an audit record
is generatecl, a summary test statistic (denoted 1S)
is generated, reflecting the clegree to which recent
beh:lvior is similar to the historical profile. Large
values are indicative of abnormal behavior. The

security otllcer can track changes in the sum ma.ry
test statis(,ic using a ti lne series ancl is alerted when
appropriate thresholds are exceedecl,

110701S is Formed froIt). IIIdividual Mmsvrcs. l’hc
1,$ statistic is forlnc(l fro])) Inany iudividllal coll-

stil(llllellt, Incasurcs ((lv)totcci ,S’j). The formula, for

colnpu(liag IS fronl IIIc .S; is provided.
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Individual Measures. Each individual measure S$

reflects the extent, to which a particular type of

recent behavior (such as file acccsscs or CPU tirnc
used) is silnilar to the historical profile for that type

of behavior.

Heuristic Description of the Relationship of S to Q,

Each Si statistic is a transformation of a more basic
statistic Qi. For example, if S’i reflects the degree
of abnormality of recent CPU time usage, then the
corresponding Qi is a measure of how much CPU
time was actually used in the recent past. Si is
computed by comparing the current value of Qi to
its historical profile (that is, the historical proba-

bility distribution of Qi). When the most recent
value for Qi has a low probability of occurrence, Si

has a large value, and vice-versa,

Algorithm for Computing S from Q. The formula
for deriving Si from Qi is provided, under the as-
sumption that the historical probability distribu-
tion for Q; is available.

Computing ihe Q Siatisiic for Ordinal Measures.
The procedure for computing a Qi statistic when

the underlying measure is ordinal e.g., a count-

!ing measure such as CPU time or /0 counts) is

pr<scntecl. Qi is ShOWII LO kIC au cxpoll~llliidly

welghtecl sum of the changes that IIa,ve occurrccl

in the underlying measure. l’hc half-life of the Qi
statistic is typically on the order of few hours or a
few hundred audit records.

Computing the Frequency Distribution for Q. The

procedure for computing the historical profile for

Qi is pyesented. The historical profile is also an ex-
ponentlal]y weighted sum with a half-life typically
on the order of 30 days. It is updated nightly.

Computing the Q statistic for Categorical h4ea-

sures. The general formula for computing a Qi
statistic for a categorical measure (such as the
names of files accessecl or the names of terminals
used for logging in) is presented. Qi is au exponen-

tially weighted sum. It tends to attain large values
when the categories for the underlying measures

that have been recently observed (for example, the
names of the particular files accessed) have been
only infrecjliently observed in the past. Depend-
ing on the parameters used in the formula for Qi,
this statistic may also be sensitive to the number
of recent occurrences of infrequently occurring cat-
egories.

The Binary, Linear Binary, and Intermediate

Forms for lhe Categorical Q Siatistic. The values
of two parameters in the formula for the Q statistic
for categorical measures may be varied to achieve
different forms for the Q statistic, which are dis-
cussed hercln.

Speczficatlon of the Likelihood of Occurrence Vol-

ues j,,,. Icw each categorical measure, a variety of

b

b

procedures are available for quantifying the rela-

tive frequency with which categories of the mea-
sure have occurred in the past. The following

\

three scctious The l’ixcd Chronological Time Pe-

riod Method, T be lielalive Frequency of Occurrence

Method, and the A bsolutc Exponentially Weighted

Int erarrival Time Meihod) discuss three such pro-
cedures.

Specification of the Function go. This section de-
scribes another “parameter” of the formula for the
Q statistic for categorical measures.

Decision Opiions Af7ecting the Q Sialistic. This
section and the following three sections CHOW

Probabilities of Diflerent Magnitudes A.feet tke Q

Statistic, How Multiple Occurrences Affect the Q

statistic, and Whether Time Should Be Chronolog-
ical or Count Related) discuss factors that should
be taken into account when setting the parameters
of the Q statistic.

The IDES Score Value

For each audit record generated by a user, the IDES
system generates a single test s~atistic value (the IDES

score value, denoted 1S) that summarizes tile degree of

id)llOrlllality in tllc user’s hchavior ia the ‘(near” p~ast.

(’1’hc concept of ‘(near” p,ast is dcfinecl later.) Conse-
quently, if the user gcnera~cs 1000 audit records in a
clay, there will be 1000 assessments of the abnormal-
ity of the user’s behavior. Because each assessment is
based on the user’s behavior in the near past, these as-
sessments are not independent.

Large values for IS are indicative of abnormal behav-
ior, and values close to zero are indicative of normal
behavior (e.g., behavior consistent with previously ob-
served behavior). For the IS statisti~, we select one or
more “critical” values that are associated with approp-
riate levels of concern and inform the security ofKcer
when these levels are reached or exceeded. For example

lS values between O and 22.0 might be associated witJl
no concern? values between 22.0 and 28.0 might be as-
sociated w] th a “yellow” alert, and values in excess of
28.0 might be a.ssociatecl with ‘(red” alerts. The criti-
cal values are selected so that they have a probabilistic
interpretation; for example, we might expect false red
alerts only once every 100 days. However, the secu-
rity officer has the freeclom to raise or lower the critical
values for each system user, in case there is a need to

monitor a particular user’s behavior more closely or in
c,ase the standard critical values result in too many false
alerts for a particular user.

13ecause the IS statistic summarizes behavior over the
near past, and secluential values of 1S are dependent,
the 1S values will slowly trend upward or downward.
Once the IS statistic is in the red alert zone, it will take
a number of audit records before it can return to the
yellow or green zone. To avoid inundating the security
officer with notification of continued reel alerts we only
!Iot)ify the security office when a change occurs in the
alert status, or when Lhe user has remained ill a yellow
or red zone for a specific time. In addition, the security
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oflicer is able to generate a time plot of the 1S values
for a user and thus assess whether or not the user’s IS

statistic indicates a return to more normal behavior.

How IS is Formed from Individual Mea-

sures

The 1S statistic is itself a summary judgement of the
abnormality of many measures. Suppose that there are

n such constituent measures, and let us denote these in-
dividual meawures by Si, 1< i ~ n, Let the correlation
between Si and Sk be denoted by c~h, where c~~ = 1.0.
Then the 1S statistic can be written

IS = (sl, s2,,,., sn)c-l(sl, s2,. . .,sn)t

where C’- 1 is the inverse of the correlation matrix of
the vector (S1, S2, 0. O,Sri), and (S1, S2,. o., Sn)~ is the
transpose of that vector. Each of the S{ measures is
constructed in such a manner that it can take only pos-
itive values, and for the most part the correlations also
tend to be positive or zero. (For technical reasons, the
correlations are not allowed to exccecl 0.90 in absolute

magnitude). 1S tellcls to accumulate evidence from the
separate measures in an additive f,ashion. For exam-

ple, if all the measures were indcpcnclent, the correla-
tion matrix would bc the identity lnatrix, and 1S would

silnp!ify 10 S? + S: + . . . + s:, Lhc Sllm of th squaws
of the measures. When two merwurcs are higl)ly corre-
la~ed, then because of the way the Si are defined, the
effect of the inverse correlation matrix is to usually give
each measure approximate] y half of the weight that it

would otherwise receive. The IS statistic cloesn’t tell
the security officer which constit.uel}t measures are con-
tribu~ing the most to the decision that behavior is ab-
normal, only the summary judgen)ent that behavior is
abnormal. However, when the IS slatistic is large, the
security ofllcer interface indicates which individual mea-
sures have substantially contributed to the IS value.

Individual Measures

The individual S measures each represent. some aspect
of behavior. For example? an S measure might rep-
resent file accesses, CPU tnne used, or terminals used
to log on. Two S measures migl)t also represent only
slightly different ways of examining tl)e same aspect of
behavior. For example, both S’i an(l Sj might represent

slightly different ways of exs.min i[lg file access, where
the differences manifest themselves in diflerent selec-
tions of parameters used to constrict these measures.
In many such cases, we would exlxx:t their correlations
to be high. Fortunately, the 1S sta ~istic wi II afljust
automatically (via Lhe correlation mat, rix) for the cli-
minishing usefulness in examining the same aspect of
behavior from more and more view poi]lts that do not
represent fundamentally different it>l)(!ctsof behavior.

Heuristic Description of the Relationship

of Sto Q

Each S measure is derived from a corresponding statis-
tic that we will call Q. In fact, each S measure is a
transform of the Q statistic that indicates whether the
Q value associated with lhc currcn~ audit record and

its near past is unlikely or nok. I?or example, consider
an S measure that represents CPU time used. The cor-
responding Q statistic would also measure CPU time
used in the near past, and might be expressed in units
of milliseconds. 13y observing the values of Q over many
audit records, and by selecting appropriate intervals for
categorizing Q values, we could build a frequency distri-
bution for Q. For example, we might find the following:

. 0.570 of the Q values are in the interval O to 1 mil-
lisecond

. 770 are in the interval 1 to 2 milliseconds

● 1570 are in the interval 2 to 4 milliseconds

c 42% are in the interval 4 to 8 milliseconds

● 12% are in the interval 8 to 16 milliseconds

The S statistic WOUICIbe a large positive value when-

ever Q was in the inlerval O to 1 millisecond (because
this is a relatively unusual value for Q) a.lld would be

close to zero whenever Q was in the interval 4 to 8 mil-
liseconds (bccausc this is a rela.ti vel y frequently seen
interval). We do not require that the frcqllency dis-
Lril.)utioll of Q bc llnilnod;d. I’or exa.lnplcj if a lxwtic-

ular user CIOCSC1’U-noninlc;}si vc hsks on smnc days
and CPU-intensive tasks on olher clays, wc might ex-
pect that the CPU Q measure would have a bimodal
distribution. The selection of appropriate intervals for
categorizing Q is important, and it is better to err on
the side of too many intervals than too few. We are
currently using 16 intervals for each Q Incasure, with
interval spacing determined clyna.mically for each user.
The last interval does not have an upper bound, so that
all values of Q belong to some interval.

Algorithm for Computing S from Q

Assume for the moment that we have defined a method
for updating the Q value each time a new audit record
is received, and that we have clefined intervals that we
have used to clevelop a historical frequency distribution
for Q. The algorithm for converting individual Q values
to S values is as follows:

●

●

T,et P,,, dellotc the relative frequency with which

Q belongs to the mth interval. In ollr example the
first interval is O to 1 mi 1Iisecond and PI equals

0.5%.

Let il denote the intcrva.] with the smal lest P value,
i2 denote the inlerva] with the second smallest P
value an(l so forth. For example, we ]night tlncl that
the first interval has t]le smallest P wduc, the 10th
interval has the scconcl slnallcst P vallle, aIld so on,
in wllicll case il = 1, i2 = 10, and so Iortll.

318



● Let TPROB1 = P~~, TPROB2 = Pi~ + P~2,
TPROB3 = Pil + Pi2 + Pi3, and so forth. The
TPROBi values increase as i increases and the fi-
nal TPROB value is equal to 1,0.

. For each TPROBi value, find the value si such that
the probability that a normally distributed variable
with mean O and variance 1 is larger than si in ab-

solute value equals TPROBi. The value of Si satis-
fiCS the equation P~06(lN(0, 1)1 ~ si) = TPROBi,

or Si = @-1(1 – +) where @ is the cunm-

lative distribution function of an JV(O, 1) variable.
For example, if TPROBi is 5%, then Si is equal

to 1.96. If TPROBi is zero, then we set si equal
to 3.0. The S1 value corresponding to TPROB1 is

the largest s value, and the s value corresponding
to the largest TPROB value is equal to 0.0. The

following graph in Figure 1 shows the relationship
between TPROBi values and the corresponding Si
values.

3.0

2.5
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2.0
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A 1.5
L
u 1,0
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0.0

0,0 0.2 0.4 0.6 0.8 1.0
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Figure 1: Relationship of S to TPROB

● Suppose that after processing an audit record we
find that the Q value is in the mth interval. Fur-
thermore, tJle mth interval is the interval with the
ith largest P value. Then S is set equal to si, the
s value corresponding to TPROBi.

In practice this algorithm is easy to implement, allcl
the calculations of the si values are done only once at
update time (usually close to midnight). Each interval
for Q is associated with a single s value, and when Q is
in that interval, S takes the corresponding s value.

Computing the Q Statistic for Ordinal

Measures

The simplest version of the Q statistic occurs when the
underlying measure is ordinal (i.e., a counting measure).
For example, the ordinal measure mighl be CPU time,
the number of files accessed (without regard to whicl)
files are acccsscd), ti)c nunlber of logons from locatio))fi

outside the faci Iity (wit bout regard to where outside

tlIc facility t.lm logoII occllrs), and so fortl]. This secliol}

exalnincs how t lie Q statistic is defined for such ordhlil I
measures.

When a user is first audited, that user has no history.

Consequently, we chose some convenient value to begin
the Q statistic history. For example, we might let each
Q statistic be zero, or some value close to the mean
value for other (we hope, similar) users.

The Q statistic for each measure is updated each time
a new ‘ta.ppropriate” audit record is generated. There
are two possible definitions for appropriate. The first is
to consider any audit record to be appropriate, whether
or not it contains any additional information about the

measure being examined by Q. The second definition
is to consider on] y those audit records that contain in-

formation about the measure being examined by Q to
be appropriate. For example, if the measure being ex-
amined is 1/0 activity, then under the first definition
of appropriate, Q would be updated each time an audit

record arrived, even if that audit record contained only
information about file accesses, and none about 1/0 ac-
tivity. In this case, the updating procedure would effec-
tively assume that 1/0 activity is unchanged from its
last value. (As explained later, the value for Q might

2
change even if the 1/0 activity is unchanged. Under
the second definition for appropriate, we WOU1 not up-
date Q until an audit record appeared that contained
additional information about 1/0 activity. The first
definition has the advantage of uniformity across all Q
statistics. In addition, as discussed later, it is easier to
define the “recent” past in terms of a known time inter-
val or number of audit records generated. The second

definition has the advantage that for measures of rare
activity (for example, network usage) Q need not be up-
dated for the many irrelevant intervening audit records,
and these irrelevant records will not alter the value for
Q, (Note: these update procedures for Q should not
be confused with the daily profile update operation dis-

cussed ca.rlicr.)

Let us now consider how to update Q. Let Qn be the
value for Q after the nth appropriate audit record, and
let Q,,+l be the value for Q after the (TZ+ l)st appro-
priate audit record. The formula for updating Q is as
follows:

Qn+I = ~(A, J%+I)+ 2-” x Q.

The symbols in the formula for Qn~l denote the follow-

ing:

●

●

An represents the nth appropriate audit record and
An~l represents the (n + l)st appropriate audit
record.

D(An, An+ 1) denotes the change that has occurred
in the ~neaaure being examined from A~l to A~+l.

For cxanlple, if Q is 1/0 activity, then D(A~, A~~l)
representl$ t]le incrcmcut in the 1/0 count that has
occurre(l between the nth and (?~+ l)st approprirttc
ail(l it rccortl. If al I audit rmmls arc considwxl to

1)0 al)l)rol)riat.c, and A,)+l COlltil ills 110ill forlnid,ioll

about 1/() activity, lhcli tlw 1/0 count is assumed
not to have cha.ngecl, ar)d D(A,,, A,, +l) is O.
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●

●

The variable t represents the “time” that has
elapsed between An and An+l. There are two pos-
sible units for “time”. The first is clock time. In
this case, if An is generated at 2:08:32 and An+l is

generated at 2:09:45, then t is equal to 73 seconds.
If time is measured chronologically, it is probably
preferable to define all audit records as appropri-
ate, although it is not necessary to do so. The
second possible unit of time is appropriate audit
record counts. In this case, t k always equal to
1.0, because An 1 is always one appropriate audit

trecord after An regardless of how many actual au-
dit records have occurred between An and A~+l).

The decay rate r determines the “half-life” of the
measure Q. Large values of r imply that the value
of Q will be primarily influenced by the most re-
cent few appropriate audit records. Small values of
the decay rate r mean that Q will be influenced by
audit records in the more distant past. For exam-
ple, if time is measured chronologically in hours,
then a half-life of 4.0 hours corresponds to an r
value of 0.25 = – log2(0.5)/4.0. If time is mea-
sured in appropriate audit records, lJ~en a half-life
of 100 appropriate audit records corresponds to an
r value of 0.01.

In our example, Q is the sum of 1/0 activity over the
entire past usage, exponentially weighted so that the
more current usage has a greater impact on the sum.

Thus Q is more a measure of “near” past behavior than
of distant past behavior, even though all past behavior
has some influence on Q. The Q statistic has the impor-
tant property that it is not necessary to keep extensive
information about the past to update Q. For example,
if Q had been baaed on a moving window of 200 appro-
priate audit records, then it would have been necessary
to keep information on the most recent 200 appropri-
ate audit records in memory, and this would probably
preclude real-time processing.

We note that we can write Q in a closed formula as
follows:

where

k is an index of appropriate audit records with k =

1 denoting the most recent appropriate audit record
and the sum extending over all appropriate audit
records.

Dk
\

= D Ah, Ak+l) is the change that occurred
between t le (k + l)st and kth appropriate auclit
records.

tk k the time that has elapsecl between the kill and
most recent appropriate audit record.

The three important decisions involved in clefining Q
were as follows:

●

●

●

Decision #1: Determine whether Q should be up-

dated after any audit record or only after audit

recorcls that contain new information about the be-
havior being examined by Q (i.e., what is the defi-

nition of an “appropriate” record for updating).

Decision dt2: Determine whether time should be,,
measured chronologically or using appropriate au-
dit record counts. We recommend that if Q is

updated after any audit record, then time should
be measured chronologically, and if Q is updated
only after audit records that contain new infor-
mation about the behavior being examined, then
time should be measured using appropriate record
counts.

Decision #3: Determine the half-life of the Q
statistic. This half-life should be sufilciently short
that Q can respond rapidly to changes in behav-
ior, but also sr.dliciently long that it is based on a

reasonable amount of data on which to judge be-
havior.

Some of the issues that should be taken into account in
these decisions are described later. It should be noted
that these three decisions are also necessary when com-
puting Q statistics for categorical measures.

Computing the Frequency Distribution

for Q

We have previously alluded to the frequency distribu-
tion for Q, without specifying how that frequency distri-
bution should be calculated. As before, let P,,, denote
the relative frequency with which Q is in the mth inter-
val. The formula for calculating Pn, is as follows:

where

k is an index of audit records with k = 1 denoting
the most recent audit record and the sum extend-
ing over all audit records for the user being n~oni-
tored (not just audit records for the measure being
exammcd by Q). It is important that the sum ex-
tend over all audit records because the 1S statistic,
which is ultimately derived from the Q statistics,
is assessed after each audit record.

Wrnk is an indicator fUtICtiOll that attains the value
of 1 if, aller the processing of the kth audit record,
Q is in t.lle mth interval.

th is the time that has elapsecl between the kth
and lnos(. recent a.udi t record. ‘rime may be mea-
sured ci thcr chronologically, or by a counting vari-

able tha I is incrcmcntcd by 1 al the arrival of any
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new audit record, We recommend that time be
measured in the same way (e.g., either chronologi-

cally or as counts) as determined in decision #2.

. 1)is the decay rate of the data being used to com-
pute Pn,, For example, if t were rncasurcd in days,
a half-life of 60 days would correspond to a “b”
value of 0.0116.

To ca]culatc the values of Pm we must make an acldi-

tioual decision:

● Decision #4: Determine the half-life of lhe fre-
quency distribution of the Q statistic. This half-life

should be sufficiently long that the normal behav-
ior of the Q statistic can be quantified, but nol so
long that behavior in the very distant past signif-
icantly influences our perception of the normality
of current behavior.

Although the formula for Pn, indicates that it should
be updated after every audit record, it is sufllcient to
calculate Pm once at update time as. long as the inter-
val between updates is short, relative to the half-life of

the data used to calculate P,~. This greatly reduces the
computational burden on the IDES system. For exam-
ple, if t is measured chronologically and updating occurs
once per day, the procedures for updating the frequency
distribution for Q are as follows:

. We maintain a historical count (also called effective
n) for Q as well as a vector of historical probabilities

(i.e., Pm). These summarize behavior up to and
including the last update.

● Between upclatc intervals, we accumulate counts of
the number of times that Q occurs in each interval
in a daily accumulation vector. Note that regard-
less of the definition of “appropriate”, each time an
audit recorcl arrives, one of the values in the daily
accumulation vector is incremented by one.

● At update time, the following operations are per-
formed:

1. $~’o;ffective n value is aged by the daily aging

2. The probabilities in the historical profile are
converted to counts by multiplication by the
newly aged effective n value.

3. The counts in the daily accumulation vec-
tor (accumulated since the last update) are
added, interval by interval, to the historical
counts.

4. Today’s total count (tile sum of the counts
in the daily accumulation vector which equals
the nunlber of audit rccorcl processecl) is
aclded to the old effective n. to yield a new
effective rr.

5. The upcla.tecl counts in the newly computed
historical profile are divided by the new effec-
tive n to give the new blstorical profile (i.e.,
the new P,,, ).

6. The daily accumulation vector is reset to zero.

Computing the Q Statistic for Categori-

cal Measures

Categorical measures are those that involve the names
of particular resources being used, for example, the
names of files being accessed, terminals being USCCI,ancl
locations from which Iogons are attemptecl. The Q
statistic for categorical measures is more complex than
that for ordinal variables, and involves the specification
of additional parameters.

The General J?orm for the Q Statistic

The general form of the Q statistic for categorical vari-
ables is as follows:

Q = ~ {9(fm) x [&wm,2-“*]”’x P’”’l’-k}
m=l

where

●

●

●

●

●

●

●

●

M denotes the total number of categories of the
resource that have been used. For example, M

unique files may have been accessecl. Therefore
the first sum extends over the categories of the re-
source.

~m is a measure of the likelihood of the occurrence

of the mth category. .fm is not necessarily a proba-
bility, although it will be between O and 1 in mag-
nitude.

o() is. a functional transfornl of its argument. This

function transforms s]l}all valLlcs 0[ ~~ (which in-
dicate the occurrence of rarely observed categories
of the measure being exaln ined) into large values
of ~(~m) so that the Q statistic will be large.

i is an index over all audit records that indicate use

of some category of the measure being examined,
with i = 1 indicating the most recent audit record
indicating such use.

W,~, is an indicator variable that attains the value
of 1.0 if the ith audit record indicates the use of
the rnth calegory of the measure being examined.

tiis the tirnc since the ith i]IIdit record. ‘1’ime may
be measured chronologically or as counts of suclit
records that indicate use of some category of the

measure being examined.

r is decay rate of the statistic Q. For cxanlple, the
clecay rate Inight be set so tliat the half-life of Q
is on the order of 4 hours or 100 appropriate audit
records.

T,n is the time since the mos( recent audit recorcl in
which the mth category of lllc resource was used.
If the current audit record i]ltlicates the use of the
7nth category of lhe resou rec. t]len T,,3 = O.
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● k and v are parameters, such that k is O or 1, and
O < v ~ 1. Criteria for selecting values for k and v
will be discussed below.

We find it convenient to write Q as follows:

Q= ~ {d.fm)x [Mnlvkx [2-”T”’1l-k}
m=l

where Nm is the exponentially decayed count of the

number of audit records that indicate usage of the rnth
category of the resource. That is,

ivm= x wmk2-”* ’.

i~l

The Binary, Linear, and Intermediate

Forms for the Categorical Q Statistic

If k is set equal to O, the formula for Q simplifies to

Q = ~ d.fm)2-rT”.

m=l

We call this the “binary categorical” form for Q. It is
affected only by the time interval since the most recent
occurrence of the rnth category of the resource being
measured, and not by how frequently that category has
been used in the past. Note that it is relatively easy
to update the value of Q if we keep separate data ele-

ments containing the most recent value of 2-”rm. To re-
duce the number of data elements that the IDES system
must store, we specify that a category can be dropped

from the summation whenever 2“Tm becomes less than
0.001, or some other suitably small number.

If k snd v are each set equal to 1.0, the formula for Q
simplifies to

m=l

In this event, Q has attained what we have called its
“linear categorical” form. In its linear categorical vari-
able form, Q is dependent upon the number of times
that the mth category of the measure being examined
has been used. This contrasts with the binary cate-
gorical form for Q, which only depends on the time of
occurrence of the most recent usage of the mth cate-
gory. For exalnple, if a category has an dfdive count

of 9. 0, it will il(l(l approximately nine tinles as much to
the Iinear categorical form for Q as it does to the bi-
nary categorical form for Q. It is pa~t. icularly easy to

update the value of Q when it is in the linear categori-

cal form. If we let Q~+l denote the value of Q after the

(n+ l)st audit record indicating use of some category of
the measure being examined, assume that the (n+ l)st
audit record indicates usage of the mth category of the
measure being examined, and let t be the time since the
nth audit record, then

Qta+I = g(.fm) + 2-rtQ.

This is reminiscent of the updating formula for ordinal
measures.

If k is set equal to 1.0, and v is set to a value between O
and 1, then we observe “partial” counting of the num-

ber of records that use the mth category of the resource.
The result is a Q value that lies between the binary cat-

egorical and linear categorical forms for Q. We call this
an intermediate categorical form. For example, ccm-

sider v = $. In this case, if a category haa an effective

count of 9.0, it will add about onc third as much to
the intermediate categorical form for Q as to the linear
categorical form for Q, and about three times as much
to intermediate categorical form for Q as. to the binary
categorical form for Q.

The specification of values for k and v is the fifth de-
cision that must be made in implementing the general
statistical framework:

● Decision #5. Determine appropriate values for k

and v for any Q statistics b&ed on categorical nlea-
sures. A value of k = O corresponds to the “binary
categorical” form for Q. Values of k = 1 and v = 1
correspond to the “linear categorical” form for Q.
Values of k = 1 and v values between O and 1 cor-
respond to intermediate forms for Q.

Specification of the Likelihood of Occur-

rence Values j’m

The formula for Q reqllires the specification of the pscu-
doprobability values ~m. We are currently considering
four methods for calculating ~nl: (1) probability of oc-
currence during a fixed chronological time period, (2)
relative frequency of occurrence, (3) absolute exponen-
tially weighted interarrival times, and (4) relative ex-
ponentially weighted interarrival times. These methods
are explained below.

The Fixed Chronological Time Period

Method

1n the probahi Iity of occurrence method for a fixed
chrono]ogica I time ])eriod, ~,n is an estimate of the prob-

ability that the mth category of the measure being ox-

atnined will occilr ill n randomly selcctcd time period
of a fixed lellgtll. ‘1’he formula for calculating ~nl is as
follows:
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where

● k is an index of time units. For example, if the

time unit is a day, then k indexes days. Let k = 1
denote the most recent time period.

● Wm~ is an indicator function that attains the value
of 1 if the rnth category of the measure was used

in the kth time period, and is O otherwise.

● b is the half-life of the data being used to compute

~~. For example, if the fixed time period is 1 day,
then a half-life of 60 days would correspond to a
“b” value of 0.0116. We recommend that b be set
so that the half-life of ~m is the same as the half-life
of the frequency distribution of the Q statistic.

We do not currently recommend the use of this method,
because it imposes a fixed time constraint (e.g., 1 day)
where there is no natural time constraint. We note that
the values for ~~ are absolute in the sense that they
do not depend on how frequently or infrequently other
ca~egories of the measure occur. That is, all j,n values
could be equal to 1.0, or equal to 0.0.

The Relative Frequency of Occurrence

Met hod

In the relative frequency of occurrence method, ~~ is
an estimate of the relative number of times that the

rnth category of the measure occurs. ‘1’he formula for
calculating P,n is as follows:

E Wmkz-bb

fna = ‘2’ Z_*t,

x
k>l

where

● k is an index of audit records that indicate the use
of some category of the measure, with k = 1 denot-
ing the most recent such audit record.

. Wm~ is an indicator function that attains the value
of 1 if the rnth category of the measure was used

on the kth audit record, and is O otherwise.

● ik is the lilne that has elapsed bctwccn lIIc kth and
most recent audit rccorcl indicating the use of some
category of tile measure. ‘1’irne may be measured ei-

Lher chronologically, or by a counting variable that
is incremented by 1 at Lhe arrival of a new audit
record indicating the use of some category of the
measure being examined.

● b is the decay rate of the data being used to com-

pute ~~. For example, if t were measured in days, a

half-life of 60 days would correspond to a “b” value
of 0.0116,

We are currently using the relative frequency of occur-
rence method when Q is specified to be in its linear
categorical form,

To reduce the computational burden on the IDES sys-
tem, we simplify the procedure for calculating jm using
the relative frequency of occurrence method aa follows:

A set of weighted counts is maintained of the num-
ber of audit records that have been processed in the
past that indicated that category m of the measure
occurred. Let R~ be the weighted number of times
that the rnth category of the measure haa been ob-
served on previous days.

A set of unweighed counts is maintained of the
number of audit records in the current day that in-
dicate the usage of category m of the measure. Let
Um be the number of audit records on the current
day indicating the usage of category m.

At the end of the day (or other appropriate update
time), the values of Rm are updated as follows:

NewRm = U~ + 2-bg x (OldR~)

where b is the decay rate of tbc R,,, collnt,s (usually

on the order of 30 to 60 clays) and t is lhe time
that has elapsed since the last update (e.g., usual]y

1 day).

The values for .f~ are calculated at update time as

NewRn,
ftn= N

~,here N is the s~lm of the &,~ over al] categories.

This value of ~n, is used until the next update time.

This updating procedure is essentially identical to that
used to maintain the frequency distribution for Q.

The Absolute Exponentially Weighted In-

terarrival Time Method

In the absolute variant of the exponentially weighted
interarrival time method, f~ is given by the following
formula:

fm =
.2-cAm

where

● A,~ is the cxpmlcnlially wcightcfl iutcrarriva] lilnc
for autlit records iudica~illg the use of the ?nth calc-
gcrr~ of the lneasurc being exwni ucci. k’or exan]plc,

if t]me is Ineasured in hours, L]IeJI an A,,, vaiue of
3.4 would denole that an audit record indicating

the use of the mth category of the measure being

exanlined arrives on average oIIcc every 3.4 hours.
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c is a scalirm factor allowing the IDES analvst to
vary the rela~ionship betwee; interarrival tire-e and

the magnitude of j.,. For example, if t is mea-
sured in days and c = 1 then an interarrival time

of 1.0 days would correspond to an .fm value of 0.5,
whereas if c = 0.1 then an interarrival time of 10

days would correspond to an ~,n value of 0.5. By
setting c properly, the value of ~m can be made
to approximate the values obtained from the daily
probability of occurrence method. For example,
consider six categories of the measure being exam-
ined that arrive on average 0.1, 1, 2? 3, 4, and 10
days apart. Under the daily probablhty of occur-
rence method their fm values would be approxi-
mately 1.0, 1.0, 0.5, 0.33, 0.25, and 0.10. If we set
c = 0.5, then the corresponding fm values under
the first variant of the weighted interarrival time
method would be 0.97, 0.71, 0.50, 0.35, 0.25, and

0.03. By selecting different values for c, we can
also approximate hourly or weekly probabilities of
occurrence.

The average interarrival time Am is calculated as fol-
lows:

A m=

where

● k is an index denoting all audit records that indi-
cate usage of the mth category of the measure be-
ing examined. The most recent such audit record
is denoted k = 1,

tm,k is the time that elapsed between the kth audit
record and the most recent audit record in the sum-
mation. Time may be measured chronological] y or
as counts of appropriate audit records.

b is the decay rate of the data used in computing
A.,. We recommend a half-life equal for Am equal
to the half-life used in cornt)utinc Lhe freauencv dis-. .
tribution of Q.

. .

We note that if audit records indicatil]g the use of the
mth category of the measure arrive infrequent 1y, then

Am will be large and ~m will be small. Furthermore $m
is always between O a.ncl 1, so it is scaled the same as a
probability, even though lt is not a probability.

The Relative Exponentially Weighted In-

terarrival Tilme Method -

In the relative exponentially weighted interiwrival
methocl, ~,n is given by tl~e following formula:

time
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mink (A~ )
.fm= A

m

where the minimum function extends over all categories

of the measure being examined. If m is tJle category
that arrives the most frequently, then ~~ = 1.0. If the
interarrival time for the mth category is five times as
long as the interarrival time for the category that ar-
rives most frequent] y, then j~ = 0.2.. Note ~hat this
variant of the exponentially weighted mterarrwal time

method yields results that are comparable to the rela-
tive frequency of occurrence method.

As discussed above, in calculating the values for fm the
IDES analyst must make the following decision:

● Decision #6. Determine whether the values for
~m shall be calculated using the probability of oc-
currence method for fixed time periods, the rela-
tive freauencv method, the absolute ex~onentiall~
weighted int&arrival time method, or the relativ~
exponentially weighted interarrival time method. If
the first method is chosen, determine the appro-
priate time period. If the third method is chosen
determine the appropriate value for the scaling pa-

rameter used to relate inkrarrival times to wducs
for fm.

Specification of the Function go

As seen earlier, the formula for calculating a Q statistic
based on a categorical measure involves the function

go, which is applied to the likelihood value ~,n. This
function allows the IDES/STAT system to transform
small values of ~“1 (which indicate i%e occurrence of an
infrequently seen category) into large values of g(~m ),
and consequent ly into large values for Q.

The general functional form for go that we are exam-
ining is as follows:

g(x) = [– log2(x)]y

where logz(x) is the log-based 2 of z. The parameter y is
a number greater than 1.0. We are currently examining
the effect of choosing v = 1 or u = 2. The next section
describes the ration~li for choiing between these two
values of y. We record the necessary decision:

. Decision #7. Complete the functional specification
of go by selecting a value for the exponent y.

Decision Options Affecting the Q Statis-

tic

The seven decisions listed above deternline the specific
form for the Q statistic. In this section we discuss some
of the factors that shot] Id be considered in lnaking those
decisions.



How Probabilities of Different Magnitudes

Affect the Q Statistic

In making decision #7 (concerning the expoucnt y in
the functional form for the go function) we need to
consider how probabilities of different magnitudes for
various categories affect the Q sta6istic.

Consider a categorical measure for which we have cal-

culated 11 Jn, va.lucs using the relative frequency of oc-

currence methocl, Let the ~m values for the first nine

categories bc denoted ~1 through fg, and suppose that
each of these values 1s equal to 0.10. Further suppose
that ~lo = 0.01 and that ~11 = 0,001.

If the exponent of the go function is 1.(), then g(~) =
– log (~). In this case g(~j) = 3.3 for 1 ~. i ~ 9,

$g(t10 = 6.6, and g(~ll) = 9.9. TIIUS every time that
category 1 through 9 occurs, Q is incremented by 3.3,
whereas if category 10 or 11 occurs., Q is incremented by

6.6 and 9.9 respectively. If categories 1 and 2 each occur
once, Q is incremented by 6.6, the same as if category
10 occurs by itself. That is, accessing two different files
that each occur one-tenth of the time counts equally
to accessing one file that occurs one-hundredth of the
time. If categories 1, 2, aud 3 each occur once, Q is
incremented by 9.9, the same as if category 11 occurs
once by itself. That is, accessing three diflerent files
that each occur one-tenth of the time counts equally

to accessing one file that occurs one-thousandth of the
time.

If the exponent of the go function is 2.0, then g(~) =

[- log,]’. In this case fl(~~) = 11.0 for 1$ i <9,

!/( flrl) = 44.1, :*11(1O(fll) = 99.3. Thus every hme that
category 1 throllgll 9 occurs, Q is incrcmcntcd by 11.0,

whereas if calegory 10 or 11 occurs, Q is incremented

by 44,1 and 99.3 respectively. If categories 1, 2,3, and 4

each occur once, Q is incremented by 44.1, {he same as if
katcgory 10 occurs by itself. That is, accessing four dif-
ferent [iIes that each occur one-tenth of the time counts
equally to accessing one file that occurs one-hundredth
of the time. If each of categories 1 through 9 is ac-
cessecl o]lcej Q will be incremented by 99.3, the same as
if category 11 occurs by itself,

In the near future we will be conducting experiments to
clctermine the appropriate magnitude for the exponent
of the go function. We curreutly recommend that this
exponent be larger than 1.0. It is our subjective judge-
ment t.llat the level of concern that shoulcl be raised by
using a file that is only accessed one time per 1000 file
accesses should be considerably higher than the level of
conccrl 1 t.lmt should be raised by accessing three files,
each of wIlicll is accessed one time in 10 file accesses.

We bcl icvc lhat t<lle former occurrence is more indica-
tive of’:] a intrusion attempt than the latter occurrence.

On this basis, we currently recommend an exponent of
2 or even 3.

How Multiple Occurrences Affect the Q

Statistic

In mak i I Ig decision #5 (concerning the exponents k and
v in the Q statistic for categorical measures) we neecl to
considrr how nl~}l{iple occurrences of a catlcgory affect

the Q statistic,

Continuing witJl the example from the previous section,
consider a categorical measure for which we have cal-
culated 11 ~t,l values using the relative frequency of oc-
currence methocl. Let the ~m values for the first nine
categories be dcllotwl -fI through ~~, ancl suppose that

each of these values is equal to 0.10, lhrthcr suppose
that /10 = 0,01 and that fll = 0,001.

If the expo]lent k for the Q statistic has been set equal

to 0,0, then Q counts only the most recent occurrence
of each category. That is, Q is incremented by approx-
imately the same amount whether the category occurs
once or multiple times. For example, Q would be in-
cremented by ~(.01) if the last nine audit records were
all occurrences of category 1, but would be incremented
by 9 x g(.01) if the last nine audit records were single
occurrences of categories 1 through 9.

If the exponent k for the Q statistic has been set equal
to 1.0, and v has been set equal to 1.0, then Q counts

number of occurrences of each category. That is, Q is
incremented by the same amount whether the category
1 occurs nine times in the last nine audit records, or
categories 1 through 9 occur once each in those same
audit recorcls.

If the exponent k for the Q statistic haa been set equal
to 1,0, and v has been set equal to 0,5, then Q counts

the square root of the number of occurrences of each
category. For exmnplc, if it has been a while since
any of categories 1 through 9 have been used, then
Q is incrcmcntcd by approximatc]y lhe same amount
wllclllcr Cilt(’J?jOl’y 1 occlrrs nine lirncs ill the ltad nine

audit records, or categories 1, 2, and 3 occur once each

in the last thrwc audit records.

In the near future we will be conducting experiments
to de(errnine the appropriate values for k and v. We
currently believe thal if a single category occurs n times,
it should colint more than a single occurrence of that
category, but shoLIlcl not count as much as n occurrences
of equally likely, but difrerent categories. This suggests
that k should equal 1.0 and v shoulcl be an intermediate
value such as 0.5.

Whether Tinle Should Be Chronological or

Count Related

In making decision #2 (whether time shoulcl be mea-
sured chronologically or should be incremented by 1
each time an appropriate audit record is processed) we

neecl to consicler both the stability (e.g., coefficient of
variation) of tile Q statistic and how rapidly it can re-

spond to irltrilsions. For the purposes of tl)is seclion,

let us assume that Q either is based 011an orclinal nlea-

surc, or is based on a categorical measure with k = 1
and v = 1.

If time is lneasllrcd chronologically, the principal
strength of Q is that Q tends to concentrate on ac-
tivity ia the past few hours (assuming a half-life in the
range of 1 to 4 hours). That is, behavior more than
a half-clay in tl)e past will have very little effect on Q.
A rela.tcd strength is that Q will ten,1 to be sensitive
to large amounts of audit record actrvi(jy that occur in
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a period of time that is short relative to the half-life.
For example, if a user typically generates only 100 or
so audit records an hour, and the half-life is 4 hours,
thenit might bepossible to detect increases to200 au-
dit records an hour for an hour or two, or to larger
increases for shorter periods of time.

If time is measured chronologically, a principal weak-
nessof Q is instability because Qdepends on avariable
numbero fauditrccords. Thcva.lucf orQwillt endto bc
low at the beginning of the work day, because its value
haabecn decaying overnight. Thevalue for Qwill tend
to be high at the end of the workday (or during very

busy times during the middle of the workday) because
Q will then be based on many audit records whose ef-

fect has not had an opportunity to decay. That is, the
effective number of audit records on which Q is based
will tend to be low in the morning and high in the after-
noon. This variability in the effective number of audit
records spreads out the frequency distribution of Q, and
results in a wider range of Q values being classified as

normal. It also concentrates Q values early in the morn-
ing in the lower part of the distribution, so that even a
reasonable amount of intrusive behavior may not raise
Q to a sufficiently high level to be declared abnormal.
Thus, it will be relatively easy to conduct an undetected
intrusion if it is scheduled for, say, 5 a.m. (or any time
during the day when the user is on vacation or on busi-
ness travel). A related shortcoming is that Q will tend

to be insensitive to intrusions that do not generate sub-
stantial numbers of audit records. When an intrusion is

detected it may take many hours for the Q statistic to
return to normal through the usual decay process.

If time is measured in terms of appropriate audit record
counts, a principal strength of Q is stability. Q bccomcs
based on what is essentially a fixed nunlbcr of audit
records. This stabilizes the distribution of Q and min-

imizes its coefficient of variation, which should make
it easier to detect intrusions. Also, time is effectively

i
suspended overnight or in any periods of low audit ac-
tivity) and is resume when audit activity resumes, so
that the Q statistic will not be smaller than usual in
the morning. Another strength is that Q will tend to

be more sensitive to short intrusions. For example, con-
sider a short intrusion that generates only, say, 50 audit
records, and suppose that the half-life of Q were 100
appropriate audit records. Fifty audit records is a re-
spectable percentage (approximately 34’XO)of the total
effective number of audit records (e.g., 145) in the Q
statistic. This might be enough to force Q toward large
s-values. A related advantage is that the Q statistic
based on appropriate record counts may recover more
rapidly from an intrusion attempt than one baaed on

chronological time. For example? after 150 or so normal
audit records are generated, the mtrusion-generated au-

dit records will have been sufllciently decayed so that
lhe IDES/STA’~ syslem ceases to issue intrusion warn-
ings.

If time is measured in terms of appropriate audit record
counts, a principal weakness of Q is the potentially ex-

tended or compressed time frame of past activity that
affects the value for Q. For example, if Q is based on a
half-life of 100 audit records of network activity, and the
user generates only a few network access audit records
each week, then the Q statistic may be summarizing be-
havior over the past few months. On the other hand, if
the user is rapidly generating audit records, then the Q
statistic may be summarizing activity over only the past
fcw minutes. Ihrrthcrmore, diflerent Q statistics, based
on different measures, may have dramatically different
half-lives as measured in clock time, with some summa-
rizing behavior over many weeks and others over a few

minutes. This problem might be ameliorated by having
measures of specific decay factors based on the number

of audit records generated per day by a user, so that
the half-life is the number of audit records generated in

1 or 2 hours of user activity in the middle of the day.
A second disadvantage of measuring time in terms of
appropriate audit records is that Q will not be sensitive
to intrusions that increase the number of audit records
generated but where the individual audit records ap-
pear to be normal, For example, suppose that a user

normally generates an average of 100 1/0 audit records
per day with an average of 12 reacl/writes per 1/0 au-
dit record. The user’s account is broken into, and the
perpetrator generates 1000 1/0 audit records in one-
half hour, with an average of 12 read/writes per audit
record. In this case the Q statistic (with time measured

in audit record counts) will not vary from its historical
mean value and the intrusion WOUIC1not be detected.
For this reason, whenever time is measured in audit
record counts, there should be at least one additional

measure, i.e., the number of audit records, measurecl in
chronological time.

We will bc conducting experiillelltls to detcrmiuc
whether time should bc mecasured chronologically or in
terlns of appropriate audit record cmmts. Currently we
believe that measurement in terms of appropriate audit
record counts is preferable, but 10 a large extent this is
still an open issue.
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