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Abstract

SRI International’s real-time inirusion-detection expert
system (IDES) system conlains a statisical subsysiem
thal observes behavior on a montiored compuler sys-
tem and adaptively learns what is normel for individ-
ual users and groups of users. The stalistical subsys-
tem also monitors observed behavior and identifes be-
havior as a potential intrusion (or misuse by authorized
users) if it deviates significantly from expecied behavior.
The mullivariate methods used to profile normal behav-
tor and identify deviations from ezpected behavior are
explained in detail. The staiislical tesi for abnormalily
contains a number of parameters that must be initial-
wzed and the substanlive issues relaling lo setting those
parameler values are discussed.

Overview

The SRIIDES! system is a real-time intrusion detection
expert system that observes behavior on a monitored
computer system and adaptively learns what is normal
for individual users, groups, remole hosts and the over-
all system [1]. Observed behavior is flagged as a poten-
ial intrusion if it deviates significantly from expecled
behavior or it triggers a rule in the expert-system rule
base. This paper describes the multivariate statistical
engine.

The IDES statistical anomaly detector, maintains a
statistical subject knowledge base consisting of pro-
files. A profile is a description of a subject’s nor-
mal (i.e., expected) behavior with respect to a set of
intrusion-detection measures. Profiles are designed to
require a minimum amount of storage for historical data
and yet record sufficient information that can readily
be decoded and interpreted during anomaly detection.
Rather than storing all historical audit data, the profiles
keep only statistics such as frequency tables, means, and
covariances.

The deductive process used by IDES in determining
whether behavior is anomalous is based on statistics,
controlled by dynamically adjustable parameters, many
which are specific to each subject. Audited activity is
described by a vector of intrusion-detection variables,
corresponding to the measures recorded in the profiles.
Measures can be turned “on” or “off” (i.e., included
in the statistical tesis), depending on whether they arc
deemed to be usclul for that target system. As each

HDES is supported by the U.S. Navy, SPAWAR, which funded
SRI through U.S. Government Contract. No. N00039-89-C-0050.

CH2986-8/91/0000/0316$01.00 © 1991 IEEE

316

audit record arrives, the relevant profiles are retrieved
from the knowledge base and compared with the vector
of intrusion-detection variables. If the point in N-space
defined by the vector of intrusion-detection variables is
sufficiently far from the point defined by the expected
values stored in the profiles, with respect to the histor-
ical covariances for the variables stored in the profiles,
then the record is considered anomalous. Thus, the sta-
tistical procedures pay attention not only to whether
an audit variable is too high or too low, but also to
whether any audit variable 1s too high or too low rela-
tive to the values of the other audit variables (in other
words, the correlation between variables). Thus, IDES
evaluates the total usage pattern, not just how the sub-
ject behaves with respect to each measure considered
singly.

The statistical knowledge base is updated daily using
the most recent day’s observed behavior of the sub-
Jjects. Before incorporating the new audit data into the
profiles, the frequency tables, means, and covariances
stored in cach profile are first aged by multiplying them
by an exponential decay factor. Although this factor
can be sct by the user, we believe that a value that
reduces the contribution of knowledge by a factor of 2
for every 30 days is appropriate (this is the daily profile
aging factor). This method of aging has the eflect of
creating a moving time window for the profile data, so
that the expected behavior is influenced most strongly
by the most recently observed behavior. Thus, IDES
adaptively learns subjects’ behavior patterns; as sub-
jects alter their behavior, their corresponding profiles
change.

The details of the implementation of the SRI IDES sta-
tistical anomaly detector are contained in the following
sections, which are briefly summarized below:

o The IDES Score Value. Each time an audit record
Is generated, a summary test statistic (denoted 15)
is generated, reflecting the degree to which recent
behavior is similar to the historical profile. Large
values are indicative of abnormal behavior. The
security oflicer can track changes in the summary
test statistic using a time series and is alerted when
appropriate thresholds are exceeded.

e low IS is Formed from Individual Mecasures. The
15 statistic is foried from many individual con-
stitulent measures (denoted 5;). The formula for
computing 1§ from the S; is provided.



o Individual Measures. Each individual measure S;
refllects the extent to which a particular type of
recent behavior (such as file accesses or CPU time
used) is similar to the historical profile for that type
of behavior.

Heuristic Description of the Relationship of S 10 Q.
FEach S; statistic is a transformation of a more basic
statistic Q;. For example, if S; reflects the degree
of abnormality of recent CPU time usage, then the
corresponding €); is a measure of how much CPU
time was actually used in the recent past. Si is
computed by comparing the current value of @); to
its historical profile (that is, the historical proba-
bility distribution of @;). When the most recent
value for ¢); has a low probability of occurrence, S;
has a large value, and vice-versa.

Algorithm for Compuling S from Q. The formula
for deriving S; from @; is provided, under the as-
sumption that the historical probability distribu-
tion for Q; is available.

Computing the Q Statistic for Ordinal Measures.
The procedure for computing a ); statistic when
the underlying measure is ordinal %e.g., a count-
ing measure such as CPU time or 1/O counts) is
presented.  @; is shown to be an cxponentially
weighted sum of the changes that have occurred
in the underlying measure. The half-life of the ¢
statistic is typically on the order of few hours or a
few hundred audit records.

Computing the Frequency Distribution for Q. The
procedure for computing the historical profile for
Q; is presented. The historical profile is also an ex-
ponentially weighted sum with a half-life typically
on the order of 30 days. It is updated nightly.

Computing the Q statislic for Calegorical Mea-
sures. 'The general formula for computing a Q;
statistic for a categorical measure (such as the
names of files accessed or the names of terminals
used for logging in) is presented. (J; is an exponen-
tially weighted sum. It tends to attain large values
when the categories for the underlying measures
that have been recently observed (for example, the
names of the particular files accessed) have been
only infrequently observed in the past. Depend-
ing on the parameters used in the formula for @,
this statistic may also be sensitive to the number
of recent occurrences of infrequently occurring cat-
egories.

The Binary, Linear Binary, and Inlermediale
Forms for the Calegorical Q Statistic. The values
of two parametlers in the formula for the @ statistic
for categorical measures may be varied to achieve
different forms for the @ statistic, which are dis-
cussed hercin.

Specification of the Likelihood of Occurrence Val-
ues fm. For cach categorical measure, a varicty of
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procedures are available for quantifying the rela-
tive frequency with which categories of the mca-
sure have occurred in the past. The following
three sectious SThc Fized Chronological Time Pe-
riod Method, The Relalive Frequency of Occurrence
Method, and the Absolute Exponentially Weighted
Interarrival Time Method) discuss three such pro-
cedures.

e Specification of the Funclion g(). This section de-
scribes another “parameter” of the formula for the
Q statistic for categorical measures.

o Decision Oplions Affecting the Q Stalistic. This
section and the following three sections (Ifow
Probabilities of Different Magniludes Affect the Q
Statistic, How Multiple Occurrences Affect the Q
statistic, and Whether Time Should Be Chronolog-
ical or Count Related) discuss factors that should
be taken into account when setting the parameters
of the @ statistic.

The IDES Score Value

For each audit record generated by a user, the IDES
system generates a single test statistic value (the IDES
score value, denoted IS) that summarizes the degree of
abnormality in the uscer’s behavior in the “near” past.
(The concept of “ncar” past is defined later.) Conse-
quently, if the user generales 1000 audit records in a
day, there will be 1000 assessments of the abnormal-
ity of the user’s behavior. Because each assessment is
based on the user’s behavior in the near past, these as-
sessments are not independent.

Large values for IS are indicative of abnormal behav-
ior, and values close to zero are indicative of normal
behavior (e.g., behavior consistent with previously ob-
served behavior). For the IS statistic, we select one or
more “critical” values that are associated with appro-
priate levels of concern and inform the security oflicer
when these levels are reached or exceeded. For example
IS values between 0 and 22.0 might be associated with
no concern, values between 22.0 and 28.0 might be as-
sociated with a “yellow” alert, and values in excess of
28.0 might be associated with “red” alerts. The criti-
cal values are selected so that they have a probabilistic
interpretation; for example, we might expect false red
alerts only once every 100 days. However, the secu-
rity officer has the {reedom to raise or lower the critical
values for each system user, in case there is a need to
monitor a particular user’s behavior more closely or in
case the standard critical values result in too many false
alerts for a particular user.

Because the IS statistic summarizes behavior over the
near past, and sequential values of IS are dependent,
the IS values will slowly trend upward or downward.
Once the IS statistic is in the red alert zone, it will take
a number of audit records before it can return to the
yellow or green zone. To avoid inundating the security
officer with notification of continued red alerts we only
notify the security office when a change occurs in the
alert status, or when the user has remained in a yellow
or red zone for a specific time. In addition, the security



officer is able to generate a time plot of the IS values
for a user and thus assess whether or not the user’s IS
statistic indicates a return to more normal behavior.

How IS is Formed from Individual Mea-
sures

The IS statistic is itself a summary judgement of the
abnormality of many measures. Suppose that there are
n such constituent measures, and let us denote these in-
dividual measures by S;,1 < i < n. Let the correlation
between S; and Si be denoted by C;i, where Cj; = 1.0.
Then the IS statistic can be written

15 = (51’52’ °t ',Sn)C—l(sl,Sz, . ')Sn)t

where C~! is the inverse of the correlation matrix of
the vector (Sy,S2,---,S5s), and (S1,82,--+,Sn)! is the
transpose of that vector. Each of the S; measures is
constructed in such a manner that it can take only pos-
itive values, and for the most part the correlations also
tend to be positive or zero. (For technical reasons, the
correlations are not allowed to excced 0.90 in absolute
magnitude). IS tends to accumulaie evidence from the
separate measures in an additive (ashion. For exam-
ple, if all the measures were independent, the correla-
tion matrix would be the identity matrix, and IS would
simplify to S? + S% + -+ - + S2, the sum of the squares
of the measures. When two measures are highly corre-
laled, then because of the way the S; are defined, the
effect of the inverse correlation matrix is to usually give
each measure approximately half of the weight that it
would otherwise receive. The IS slatistic doesn’t tell
the security oflicer which constituent measures are con-
tribuling the most to the decision that behavior is ab-
normal, only the summary judgement that behavior is
abnormal. However, when the IS statistic is large, the
security officer interface indicates which individual mea-
sures have substantially contributed to the IS value.

Individual Measures

The individual S measures each represent some aspect
of behavior. For example, an S measure might rep-
resent file accesses, CPU time used, or terminals used
to log on. Two S measures might also represent only
slightly diflerent ways of examining the same aspect of
behavior. For example, both S; and S; might represent
slightly different ways of examining lile access, where
the differences manifest themselves in diflerent selec-
tions of parameters used to construct these measures.
In many such cases, we would expect their correlations
to be high. Fortunately, the IS5 statistic will adjust
automatically (via the correlation matrix) for the di-
minishing usefulness in examining the same aspect of
behavior from more and more viewpoints that do not
represent fundamentally different aspecis of behavior.
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Heuristic Description of the Relationship
of S to Q

Each S measure is derived from a corresponding statis-
tic that we will call Q. In fact, each S measure is a
transform of the @ statistic that indicates whether the
Q) value associaled with the current audil record and
its near past is unlikely or nol. For example, consider
an S measure that represents CPU time used. The cor-
responding @ statistic would also measure CPU time
used in the near past, and might be expressed in units
of milliseconds. By observing the values of Q) over many
audit records, and by selecting appropriate intervals for
categorizing @ values, we could build a frequency distri-
bution for ¢). For example, we might find the following:

o 0.5% of the @ values are in the interval 0 to 1 mil-
lisecond

7% are in the interval 1 to 2 milliseconds

15% are in the interval 2 to 4 milliseconds

e 42% are in the interval 4 to 8 milliseconds

¢ 12% are in the interval 8 to 16 milliseconds

The S statistic would be a large posilive value when-
ever (J was in the inlerval 0 to 1 millisecond (because
this is a relatively unusual value for Q) and would be
close to zero whenever ¢ was in the interval 4 to 8 mil-
liseconds (because this is a relatively frequently seen
interval). We do not require thal the frequency dis-
tribution of @ be unitnodal. For example, 1l a partic-
ular uscr docs CPU-nonintensive tasks on somne days
and CPU-intensive tasks on other days, we might ex-
pect that the CPU @ measure would have a bimodal
distribution. The selection of appropriate intervals for
categorizing @) is important, and it is better to err on
the side of too many intervals than too few. We are
currently using 16 intervals for each @ measure, with
interval spacing determined dynamically for each user.
The last interval does not have an upper bound, so that
all values of @ belong to some interval.

Algorithm for Computing S from @

Assume for the moment that we have defined a method
for updating the @ value each time a new audit record
is received, and that we have defined intervals that we
have used to develop a historical frequency disttibution
for Q. The algorithm for converting individual Q values
to S values is as follows:

o Let P, denote the relative frequency with which
@ belongs to the mth interval. In our example the

first interval is 0 to 1 millisecond and Pj equals
0.5%.

o Let il denole the interval with the smallest P value,
12 denote the interval with the second smallest P
value and so forth. For example, we might find that
the first interval has the smallest P value, the 10th
interval has the second smallest P value, and so on,
in which case il = 1, 72 = 10, and so forth.



o Let TPROBy = Py, TPROB; = P; + Py,
TPROB3 = P;; + Py + Pi3, and so forth. The
TP RO B; values increase as 7 increases and the fi-
nal TPROB value is equal to 1.0.

e For each TPRO B; value, find the value s; such that
the probability that a normally distributed variable
with mean 0 and variance 1 is larger than s; in ab-
solute value equals TP RO B;. The value of s; satis-
fies the equation Prob(|N(0,1)| > s;) = TPROB;,
or 5; = &~}(1 — TEROB) where & is the cumu-
lative distribution function of an N(0, 1) variable.
For example, if TPROB; is 5%, then s; is equal
to 1.96. If TPROB; is zero, then we set s; equal
to 3.0. The s, value corresponding to TPROB; is
the largest s value, and the s value corresponding
to the largest TPROB value is equal to 0.0. The
following graph in Figure 1 shows the relationship
between T'P RO B; values and the corresponding S;
values.

3.0

2.5

2.0

1.6

1.0

maer»< w

0.5

TN

0.0

0.4 0.6 0.8 1.0

TPROB VALUE
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o Suppose that after processing an audit record we
find that the Q value is in the mth interval. Fur-
thermore, the mth interval is the interval with the
ith largest P value. Then § is sct equal to s;, the
s value corresponding to TPROB;.

In practice this algorithm is easy to implement, and
the calculations of the s; values are done only once at
update time (usually close to midnight). Each interval
for @ is associaled with a single s value, and when @ is
in that interval, S takes the corresponding s value.

Computing the @ Statistic for Ordinal
Measures

The simplest version of the Q) statistic occurs when the
underlying measure is ordinal (i.e., a counting measure).
For example, the ordinal measure might be CPU time,
the number of files accessed (without regard to which
files are accessed), the number of logons from locations
outside the lacility (withoul regard to where outside
the facility the logon occurs), and so forth. This section
examines how the Q statistic is defined for such ordinal
measures.
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When a user is first audited, that user has no history.
Consequently, we chose some convenient value to begin
the @ statistic history. For example, we might let each
Q statistic be zero, or some value close to the mean
value for other (we hope, similar) users.

The @ statistic for each measure is updated each time
a new “appropriate” audit record is generated. There
are two possible definitions for appropriate. The first is
to consider any audit record to be appropriate, whether
or not it contains any additional information about the
measure being examined by (). The sccond definition
is to consider only those audit records that contain in-
formation about the measure being examined by @ to
be appropriate. For example, if the measure being ex-
amined is 1/O activity, then under the first definition
of appropriate, @ would be updated each time an audit
record arrived, even if that audit record contained only
information about file accesses, and none about I/O ac-
tivity. In this case, the updating procedure would effec-
tively assume that I/O activily is unchanged from its
last value. (As explained later, the value for @ might
change even if the I/Q activity is unchanged.) Under
the second definition for appropriate, we would not up-
date @ until an audit record appeared that contained
additional information about I/O activity. The first
definition has the advantage of uniformity across all @
statistics. In addition, as discussed later, it is easier to
define the “recent” past in terms of a known time inter-
val or number of audit records generated. The second
definition has the advantage that for measures of rare
activity (for example, network usage) @ need not be up-
dated for the many irrelevant intervening audit records,
and these irrelevant records will not alter the value for
@. (Note: these update procedures for @ should not
be confused with the daily profile update operation dis-
cussed carlicr.)

Let us now consider how to update Q. Let Qn be the
value for  after the nth appropriate audit record, and
let @n41 be the value for @ after the (n + 1)st appro-
priate audit record. The formula for updating @Q is as
follows:

Qn+1 = D(An,An+1) + 277 x Qn

The symbols in the formula for Qa1 denote the follow-
ing:

e Ap represents the nth appropriate audit record and
Apqy represents the (n + 1)st appropriate audit
record.

e D(An, Any1) denotes the change that has occurred
in the measure being examined {from A, to A,41.
For example, if @ is I/O activity, then D(A,, Ant1)
represents the increment in the I/O count that has
occurred between the nth and (n-+1)st appropriate
andit, record. I all audit records are considered to
be appropriate, and A, 4y contains no inlormation
about 1/0 activity, then the 1/O count is assumed
nol to have changed, and D(An, Ans1) is 0.



o The variable t represents the “time” that has
elapsed between A, and Ap4y. There are two pos-
sible units for “time”. The first is clock time. In
this case, if A, is generated at 2:08:32 and An4q is
generated at 2:09:45, then ¢ is equal to 73 seconds.
If time is measured chronologically, it is probably
preferable to define all audit records as appropri-
ate, although it is not necessary to do so. The
second possible unit of time is appropriate audit
record counts. In this case, ¢ is always equal to
1.0, because A,y is always one appropriate audit
record after A, (regardless of how many actual au-
dit records have occurred between A, and Ant1).

e The decay rate r determines the “half-life” of the
measure (). Large values of » imply that the value
of @ will be primarily influenced by the most re-
cent few appropriate audit records. Small values of
the decay rate » mean that () will be influenced by
audit records in the more distant past. For exam-
ple, if time is measured chronologically in hours,
then a half-life of 4.0 hours corresponds to an r
value of 0.25 = —log,(0.5)/4.0. If time is mea-
sured in appropriate audit records, then a half-life
of 100 appropriate audit records corresponds to an
r value of 0.01.

In our example, @ is the sum of I/O activity over the
entire past usage, exponentially weighted so that the
more current usage has a greater impact on the sum.
Thus @ is more a measure of “near” past behavior than
of distant past behavior, even though all past behavior
has some influence on Q. The @ statistic has the impor-
tant property that it is not necessary to keep extensive
information about the past to update ¢J. For example,
if @ had been based on a moving window of 200 appro-
priate audit records, then it would have been necessary
to keep information on the most recent 200 appropri-
ate audit records in memory, and this would probably
preclude real-time processing.

We note that we can write @ in a closed formula as
follows:

Q= ZD" x 27Ttk

E>1
where

¢ k is an index of appropriate audit records with k =
1 denoting the most recent appropriate audit record
and the sum extending over all appropriate audit
records.

e D) = DSAk,AkH) is the change that occurred
between the (k + 1)st and kth appropriate audit
records.

o t} is the time that has elapsed between the kth and
most recent appropriate audit record.

The three important decisions involved in defining @
were as {ollows:
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¢ Decision #£1: Determine whether @ should be up-
dated after any audit record or only after audit
records that contain new information about the be-
havior being examined by @ (i.e., what is the defi-
nition of an “appropriate” record for updating).

o Decision #2: Determine whether time should be
measured chronologically or using appropriate au-
dit record counts. We recommend that if @ is
updated after any audit record, then time should
be measured chronologically, and if @ is updated
only after audit records that contain new infor-
mation about the behavior being examined, then
time should be measured using appropriate record
counts.

o Decision #3: Determine the half-life of the Q
statistic. This half-life should be sufficiently short
that @ can respond rapidly to changes in behav-
ior, but also sufficiently long that it is based on a
reasonable amount of data on which to judge be-
havior.

Some of the issues that should be taken into account in
these decisions are described later. It should be noted
that these three decisions are also necessary when com-
puting @ stalistics for categorical measures.

Computing the Frequency Distribution
for Q

We have previously alluded to the frequency distribu-
tion for @, without specifying how that frequency distri-
bution should be calculated. As before, let P,, denote
the relative frequency with which @ is in the mth inter-
val. The formula for calculating P, is as follows:

Zka2—btk

k1

Fm = ZQ—M,,

E>1
where

¢ k is an index of audif records with & = 1 denoting
the most recent audit record and the sum extend-
ing over all audit records for the user being moni-
tored (not just audit records for the measure being
examined by @). It is important that the sum ex-
tend over all audit records because the IS statistic,
which is ultimately derived from the @ statistics,
is assessed after each audit record.

o Wik 1s an indicator function that attains the value
of 1if, alter the processing of the kth audit record,
Q is in the mth interval.

e 1 is the time that has elapsed between the kth
and most recent audit record. Time may be mea-
sured cither chronologically, or by a counting vari-
able that is incremented by 1 al the arrival of any



new audit record. We recommend that time be
measured in the same way (e.g., either chronologi-
cally or as counts) as determined in decision #2.

¢ b is the decay rate of the data being used to com-
pute Pp,. For example, if { were measured in days,
a half-life of 60 days would correspond to a “b”
value of 0.0118.

To calculate the valucs of P, we must make an addi-
tional decision:

¢ Decision #4: Determine the half-life of the fre-
quency distribution of the @ statistic. This half-life
should be sufficiently long that the normal behav-
ior of the @) statistic can be quantified, but nol so
long that behavior in the very distant past signif-
icantly influences our perception of the normality
of current behavior.

Although the formula for P,, indicates that it should
be updated after every audit record, it is sufficient to
calculate Py, once at update time as long as the inter-
val between updates is short, relative to the half-life of
the data used to calculate P,,. This greatly reduces the
computational burden on the IDES system. For exam-
ple, if ¢ is measured chronologically and updating occurs
once per day, the procedures for updating the frequency
distribution for @ are as follows:

¢ We maintain a historical count (also called effective
n) for @ as well as a vector of historical probabilities
(i.e., Py). These summarize behavior up to and
including the last update.

¢ Between update intervals, we accumulate counts of
the number of times that @ occurs in each inlerval
in a daily accumulation vector. Note that regard-
less of the definition of “appropriate”, each time an
audit record arrives, one of the values in the daily
accumulation vector is incremented by one.

¢ At update time, the following operations are per-
formed:

1. The effective n value is aged by the daily aging
factor.

2. The probabilities in the historical profile are
converted to counts by multiplication by the
newly aged effective n value.

3. The counts in the daily accumulation vec-
tor (accumulated since the last update) are
added, interval by interval, Lo the historical
counts.

4. Today’s total count (the sum of the counts
in the daily accumulation vector which equals
the number of audit record processed) is
added to the old effective n to yield a new
effective n.

5. The updated counts in the newly computed
historical profile are divided by the new effec-
tive n to give the new lustorical profile (i.e.,
the new P,,).

6. The daily accumulation vector is reset to zero.
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Computing the @ Statistic for Categori-
cal Measures

Categorical measures are those that involve the names
of particular resources being used, for example, the
names of files being accessed, terminals being uscd, and
locations from which logons are attempted. The @
statistic for categorical measures is more complex than
that for ordinal variables, and involves the specification
of additlional parameters.

The General Form for the @ Statistic

The general form of the @ statistic for categorical vari-
ables is as follows:

M
Q=)
m=1

{g(fm) X [Eime.T”']vk % [z—rTm]l-k}

where

e M denotes the total number of categories of the
resource that have been used. For example, M
unique files may have been accessed. Therefore
the first sum extends over the categories of the re-
source.

o [ is a measure of the likelihood of the occurrence
of the mth category. f,, is not necessarily a proba-
bility, although 1t will be belween 0 and 1 in mag-
nitude.

e ¢g() is a functional transform of its argument. This
function transforms small values of f,,; (which in-
dicate the occurrence of rarely observed categories
of the measure being exainined) into large values
of g(fm) so that the @Q statistic will be large.

o 1 is an index over all audit records that indicate use
of some category of the measure being examined,
with i = 1 indicating the most recent audit record
indicating such use.

o Wy, is an indicator variable that attains the value
of 1.0 if the i/th audit record indicates the use of
the mth calegory of the measure being examined.

e {; is the time since the #th audit record. Time may
be measured chronologically or as counts ol audit
records that indicate use of some category of the
measure being examined.

e 7 is decay rale of the statistic Q). For example, the
decay rate might be set so Lhal the hall-life of Q
is on the order of 4 hours or 100 appropriate audit
records.

o T, is the time since the most recent audit record in
which the mth category of the resource was used.
If the current audit record indicates the use of the
mth category of the resource. then T, = 0.



¢ k and v are parameters, such that k is 0 or 1, and
0 < v < 1. Criteria for selecting values for k and v
will be discussed below.

We find it convenient to write @ as follows:

M
Q=3 {athn) x V] x 77"}
m=1

where N, is the exponentially decayed count of the
number of audit records that indicate usage of the mth
category of the resource. That is,

Np =) Wm, 27,
i>1

The Binary, Linear, and Intermediate
Forms for the Categorical ) Statistic

If k is set equal to 0, the formula for @) simplifies to

M
Q=" g(fm)27" .

m:=1

We call this the “binary categorical” form for Q. It is
affected only by the time interval since the most recent
occurrence of the mth category of the resource being
measured, and not by how frequently that category has
been used in the past. Note that it is relatively easy
to update the value of @ if we keep separate data ele-
ments containing the most recent value of 2-"7m. To re-
duce the number of data elements that the IDES system
must store, we specifly that a category can be dropped
from the summation whenever 2~"T= becomes less than
0.001, or some other suitably small number.

If k£ and v are each set equal to 1.0, the formula for Q
simplifies to

M
Q= {9(fm) x N}

m=1

In this event, Q has attained what we have called its
“linear categorical” form. In its linear categorical vari-
able form, @ is dependent upon the number of times
that the mth category of the measure being examined
has been used. This contrasts with the binary cate-
gorical form for @, which only depends on the time of
occurrence of the most recent usage of the mth cate-
gory. For example, if a category has an cffective count
of 9.0, it will add approximately nine times as much to
the linear categorical form for @ as it does to the bi-
nary categorical form for Q. It is particularly easy to
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update the value of @ when it is in the linear categori-
cal form. If we let Q41 denote the value of @ after the
(n+1)st audit record indicating use of some category of
the measure being examined, assume that the (n + 1)st
audit record indicates usage of the mth category of the
measure being examined, and let ¢ be the lime since the
nth audit record, then

Qny1 = g(fm) + 2~rth

This is reminiscent of the updating formula for ordinal
measures.

If k is set equal to 1.0, and v is set to a value between 0
and 1, then we observe “partial” counting of the num-
ber of records that use the mth category of the resource.
The result is a @ value that lies between the binary cat-
egorical and linear categorical forms for Q. We call this
an inlermediate categorical form. For example, con-
sider v = -;— In this case, if a category has an effective
count of 9.0, it will add about one third as much to
the intermediate categorical form for @) as to the lincar
categorical form for @, and about three times as much
to intermediate categorical form for @ as to the binary
categorical form for Q.

The specification of values for k and v is the fifth de-
cision that must be made in implementing the general
statistical framework:

o Decision #5. Determine appropriate values for &
and v for any Q statistics based on categorical mea-
sures. A value of k = 0 corresponds to the “binary
categorical” form for ). Valuesof k=1landv =1
correspond to the “linear categorical” form for ).
Values of k = 1 and v values between 0 and 1 cor-
respond Lo intermediate forms for Q.

Specification of the Likelihood of Occur-
rence Values f,

The formula for Q) requires the specification of the pscu-
doprobability values f,,. We are currently considering
four methods for calculating f,: (1) probability of oc-
currence during a fixed chronological time period, (2)
relative frequency of occurrence, (3) absolute exponen-
tially weighted interarrival times, and (4) relative ex-
ponentially weighted interarrival times. These methods
are explained below.

The Fixed Chronological
Method

Time Period

In the probability of occurrence method for a fixed
chronological time period, fi is an estimate of the prob-
ability that the mth category of the measure being ex-
amined will occur in a randomly selected time period
of a fixed length. The formula for calculating fy, is as
follows:



Zka 2-—bk

. _ k21
fm = By

k>1
where

¢ k is an index of time units. For example, if the
time unit is a day, then &k indexes days. Let k=1
denote the most recent time period.

o Wi, is an indicator function that attains the value
of 1 if the mth category of the measure was used
in the kth time period, and is 0 olherwise.

¢ b is the half-life of the data being used to compute
fm. For example, if the fixed time period is 1 day,
then a half-life of 60 days would correspond to a
“b” value of 0.0116. We recommend that b be set
so that the half-life of f,,, is the same as the half-life
of the frequency distribution of the @ statistic.

We do not currently recommend the use of this method,
because it imposes a fixed time constraint (e.g., 1 day)
where there is no natural time constraint. We note that
the values for f,,, are absolute in the sense that they
do not depend on how frequently or infrequently other
categories of the measure occur. That is, all fi, values
could be equal to 1.0, or equal to 0.0.

The Relative Frequency of Occurrence
Method

In the relative frequency of occurrence method, f, is
an estimate of the relative number of times that the
mth category of the measure occurs. The formula for
calculating P, is as follows:

Zka 9—btx

_ k21

=

E>1
where

e k is an index of audit records that indicate the use
of some category of the measure, with k = 1 denot-
ing the most recent such audit record.

e W, is an indicator function that attains the value
of 1 if the mth category of the measure was used
on the kth audit record, and is 0 otherwise.

e ; is the time that has elapsed between the kth and
most recent audit record indicating the use of some
category of the measure. Time may be measured ei-
ther chronologically, or by a counting variable that
is incremented by L at the arrival of a new audit
record indicating the use of some category of the
mecasure being examined.
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o b is the decay rate of the data being used to com-
pute fn. For example, if { were measured in days, a
h;tlf—life of 60 days would correspond to a “b” value
of 0.0116.

We are currently using the relative frequency of occur-
rence method when @ is specified to be in its linear
categorical form.

To reduce the computational burden on the IDES sys-
tem, we simplify the procedure [or calculating f,,, using
the relative frequency of occurrence method as follows:

o A set of weighted counts is maintained of the num-
ber of audit records that have been processed in the
past that indicated that category m of the measure
occurred. Let Ry, be the weighted number of times
that the mth category of the measure has been ob-
served on previous days.

o A set of unweighted counts is maintained of the
number of audit records in the current day that in-
dicate the usage of category m of the measure. Let
Uy, be the number of audit records on the current
day indicating the usage of category m.

o At the end of the day (or other appropriate update
time), the values of Ry, are updated as follows:

NewRp = U + 27" x (OldR,,)

where b is the decay rate of the R, counts (usually
on the order of 30 to 60 days) and ¢ is the lime
that has elapsed since the last updaltc (e.g., usually
1 day).

o The values for f,, are calculated at update time as

_ NewlRp,
fm= =

where N is the sum of the R, over all categories.
This value of f,, is used until the next update time.

This updating procedure is essentially identical to that
used to maintain the frequency distribution for Q.

The Absolute Exponentially Weighted In-
terarrival Time Method

In the absolute variant of the exponentially weighted
interarrival time method, f, is given by the following
formula:

— 9—cA
fm hanel 2 "
where

o A, is the exponentially weighted interarrival time
for audit records indicating the use of the mth cale-
gory of the measure being examined. For example,
if time is measured in hours, then an A,, value of
3.4 would denote that an audit record indicating
the use of the mth category of the measute being
examined arrives on average once every 3.4 hours.



e ¢ is a scaling factor allowing the IDES analyst to
vary the relationship between interarrival time and
the magnitude of f,,. For example, if t is mea-
sured in days and ¢ = 1 then an interarrival time
of 1.0 days would correspond to an f,; value of 0.5,
whereas if ¢ = 0.1 then an interarrival time of 10
days would correspond to an f,,, value of 0.5. By
setting ¢ properly, the value of f,, can be made
to approximate the values obtained from the daily
probability of occurrence method. For example,
consider six categories of the measure being exam-
ined that arrive on average 0.1, 1, 2, 3, 4, and 10
days apart. Under the daily probability of occur-
rence method their f,, values would be approxi-
mately 1.0, 1.0, 0.5, 0.33, 0.25, and 0.10. If we set
¢ = 0.5, then the corresponding f,, values under
the first variant of the weighted interarrival time
method would be 0.97, 0.71, 0.50, 0.35, 0.25, and
0.03. By selecting different values for ¢, we can
also approximate hourly or weekly probabilities of
occurrence.

The average interarrival time A, is calculated as fol-
lows:

Z (tm,k+1 - tm,k) 2—-bt,,.,,‘

Zz—btm_k

E>1

where

e k is an index denoting all audit records that indi-
cate usage of the mth category of the measure be-
ing examined. The most recent such audit record
is denoted k = 1.

o ity 1 is the time that elapsed between the kth audit
record and the most recent audit record in the sum-
mation. Time may be measured chronologically or
as counts of appropriate audit records.

o b is the decay rate of the data used in computing
Ap. We recommend a half-life equal for A, equal
to the half-life used in computing the frequency dis-
tribution of Q.

We note that if audit records indicating the use of the
mth category of the measure arrive infrequently, then
Ap, will be large and f,, will be small. Furthermore f;,
is always between 0 and 1, so it is scaled the same as a
probability, even though it is not a probability.

The Relative Exponentially Weighted In-
terarrival Time Method

In the relative exponentially weighted interarrival time
method, f,, is given by the following formula:
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ming(Ax)

Im=
m

where the minimum function extends over all categories
of the measure being examined. If m is the category
that arrives the most frequently, then f, = 1.0. If the
interarrival time for the mth category is five times as
long as the interarrival time for the category that ar-
rives most frequently, then f,, = 0.2. Note that this
variant of the exponentially weighted interarrival time
method yields results that are comparable to the rela-
tive frequency of occurrence method.

As discussed above, in calculating the values for f,, the
IDES analyst must make the following decision:

e Decision #6. Determine whether the values for
fm shall be calculated using the probability of oc-
currence method for fixed time periods, the rela-
tive frequency method, the absolute exponentially
weighted interarrival time method, or the relative
exponentially weighted interarrival time method. If
the first method is chosen, determine the appro-
priate time period. If the third method is chosen
determine the appropriate value for the scaling pa-
rameter used to relate interarrival times Lo valucs
for fo.

Specification of the Function g()

As seen earlier, the formula for calculating a ) statistic
based on a categorical measure involves the function
¢(), which is applied to the likelihood value f,,. This
function allows the IDES/STAT system to transform
small values of f,, (which indicate the occurrence of an
infrequently seen category) into large values of g(fm),
and consequently into large values for Q.

The general functional form for g() that we are exam-
ining is as follows:

9(z) = [~ logy(=))’

where log,(z) is the log-based 2 of z. The parameter y is
a number greater than 1.0. We are currently examining
the effect of choosing ¥y = 1 or y = 2. The next section
describes the rationale for chosing between these two
values of y. We record the necessary decision:

e Decision #7. Complete the functional specification
of g() by selecting a value for the exponent y.

Decision Options Affecting the @ Statis-
tic

The seven decisions listed above determine the specific
form for the @ statistic. Tn this section we discuss some
of the factors that should be considered in making those
decisions.



How Probabilities of Different Magnitudes
Affect the @) Statistic

In making decision #7 (concerning the exponent y in
the functional form for the g() function) we need to
consider how probabilities of different magniludes for
various categories aflect the @ statistic.

Consider a categorical measure for which we have cal-
culated 11 f,, valucs using the relative frequency of oc-
currence method. Let the f, values for the first nine
categories be denoted f; through fy, and suppose that
each of these values 1s equal to 0.10. Further suppose
that fio = 0.01 and that f;; = 0.001.

If the exponent of the g() function is 1.0, then g(f) =
—log,(f). In this case g(f;) = 3.3 for 1 < ¢ < 9,
g(fmg = 6.6, and g(f11) = 9.9. Thus every time that
category 1 through 9 occurs, @ is incremented by 3.3,
whereas if category 10 or 11 occurs, @ is incremented by
6.6 and 9.9 respectively. If categories 1 and 2 each occur
once, () is incremented by 6.6, the same as if category
10 occurs by itself. That is, accessing two diflerent files
that each occur one-tenth of the time counts equally
to accessing one file that occurs one-hundredth of the
time. I{ categories 1, 2, and 3 each occur once, @ is
incremented by 9.9, the same as if category 11 occurs
once by itself. That is, accessing three different files
that each occur one-tenth of the time counts equally
to accessing one file thal occurs one-thousandth of the
time.

If the exponent of the g() function is 2.0, then g(f) =

[~ logz(f)]z. In this case g(f;) = 11.0for 1 <i <9,
9(J10) = 44.1, and g(f11) = 99.3. Thus every time that
category | through 9 occurs, @ is incremented by 11.0,
whereas if calegory 10 or 11 occurs, @ is incremented
by 44.1 and 99.3 respectively. If categories 1, 2, 3, and 4
each occur once, @ isincremented by 44.1, the same as if
category 10 occurs by itself. That is, accessing four dif-
ferent files that each occur one-tenth of the time counts
equally to accessing one file that occurs one-hundredth
of the time. If each of categories 1 through 9 is ac-
cessed otice, @ will be incremented by 99.3, the same as
if category 11 occurs by itself.

In the near future we will be conducting experiments to
determine the appropriate magnitude for the exponent
of the g() function. We currently recommend that this
exponent be larger than 1.0. It is our subjective judge-
ment that the level of concern that should be raised by
using a file that is only accessed one time per 1000 file
accesses should be considerably higher than the level of
concern that should be raised by accessing three files,
cach of which is accessed one time in 10 file accesscs.
We believe thal the former occurrence is more indica-
tive of an intrusion attempt than the latter occurrence.
On this basis, we currently recommend an exponent of
2 or even 3.

How Multiple Occurrences Affect the ()
Statistic
In making decision #5 (concerning the exponents & and

v in the () statistic for categorical measures) we need to
consider how multiple occurrences of a category affect
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the @ statistic.

Continuing with the example from the previous section,
consider a categorical measure for which we have cal-
culated 11 f,, values using the relative frequency of oc-
cwrrence method. Let the f,, values for the first nine
categories be denoted fy through fo, and suppose that
each of these values is equal to 0.10, Further suppose
that fio = 0.01 and that f;; = 0.001.

If the exponent k for the @ statistic has been sel equal
to 0.0, then ¢} counts only the most recent occurrence
of each category. That is, @ is incremenied by approx-
imately the same amount whether the category occurs
once or multiple times. For example, @ would be in-
cremented by ¢(.01) if the last nine audit records were
all occurrences of category 1, but would be incremented
by 9 x g(.01) if the last nine audit records were single
occurrences of categories 1 through 9.

If the exponent k for the @ statistic has been set equal
to 1.0, and v has been set equal to 1.0, then @ counts
number of occurrences of each category. That is, @ is
incremented by the same amount whether the category
1 occurs nine times in the last nine audit records, or
categories 1 through 9 occur once each in those same
audit records.

If the exponent k for the @) statistic has been set equal
to 1.0, and v has been set equal to 0.5, then @ counts
the square root of the number of occurrences of each
category. For example, if it has been a while since
any of categories 1 through 9 have been used, then
Q@ is incremented by approximately the same amount
whether category 1 oceurs nine times in the last nine
audit records, or calegories 1, 2, and 3 occur once each
in the last three audil records.

In the near future we will be conducting experiments
to determine the appropriate values for & and v. We
currently believe that if a single category occurs n times,
it should count more than a single occurrence of that
category, bul should not count as much as n occurrences
of equally likely, but diflerent categories. This suggests
that k should equal 1.0 and v should be an intermediate
value such as 0.5.

Whether Time Should Be Chronological or
Count Related

In making decision #2 (whether time should be mea-
sured chronologically or should be incremented by 1
each time an appropriate audit record is processed) we
need to consider both the stability (e.g., coefficient of
variation) of the ) statistic and how rapidly it can re-
spond to intrusions. For the purposes ol this seclion,
let us assume that @ either is based on an ordinal mea-
sure, or is based on a categorical measure with k& = 1
and v = 1.

If time is measurcd chronologically, the principal
strength of @ is that @ tends to coucentrate on ac-
tivity in the past few hours (assuming a half-life in the
range of 1 to 4 hours). That is, behavior more than
a half-day in the past will have very little effect on Q.
A related strength is that @ will tend to be sensitive
to large amounts of audit record activity that occur in



a period of time that is short relative to the half-life.
For example, if a user typically generates only 100 or
so audit records an hour, and the half-life is 4 hours,
then it might be possible to detect increases to 200 au-
dit records an hour for an hour or two, or to larger
increases for shorter periods of time.

If time is measured chronologically, a principal weak-
ness of @ is instability because () depends on a variable
number of audit records. The value for Q will tend to be
low at the beginning of the work day, because its value
has been decaying overnight. The value for @ will tend
to be high at the end of the workday (or during very
busy times during the middle of the workday) because
@ will then be based on many audit records whose ef-
fect has not had an opportunity to decay. That is, the
effective number of audit records on which Q is based
will tend to be low in the morning and high in the after-
noon. This variability in the effective number of audit
records spreads out the frequency distribution of @, and
results in a wider range of @ values being classified as
normal. It also concentrates () values early in the morn-
ing in the lower part of the distribution, so that even a
reasonable amount of intrusive behavior may not raise
() to a sufficiently high level to be declared abnormal.
Thus, it will be relatively easy to conduct an undetected
intrusion if it is scheduled for, say, 5 a.m. (or any time
during the day when the user is on vacation or on busi-
ness travel). A related shortcoming is that Q will tend
to be insensitive to intrusions that do not generate sub-
stantial numbers of audit records. When an intrusion is
detected it may take many hours for the Q statistic to
return to normal through the usual decay process.

If time is measured in terms of appropriate audit record
counts, a principal strength of @ is stability. @ becomes
based on what is essentially a fixed number of audit
records. This stabilizes the distribution of Q and min-
imizes its coeflicient of variation, which should make
it easier to detect intrusions. Also, time is effectively
suspended overnight (or in any periods of low audit ac-
tivity) and is resumed when audit activity resumes, so
that the @ statistic will not be smaller than usual in
the morning. Another strength is that Q will tend to
be more sensitive to short intrusions. For example, con-
sider a short intrusion that generates only, say, 50 audit
records, and suppose that the half-life of Q were 100
appropriate audit records. Fifty audit records is a re-
spectable percentage (approximately 34%) of the total
effective number of audit records (e.g., 145) in the Q
statistic. This might be enough to force Q toward large
s-values. A related advantage is that the Q statistic
based on appropriate record counts may recover more
rapidly from an intrusion attempt than one based on
chronological time. For example, after 150 or so normal
audit records are generaled, the intrusion-generated au-
dit records will have been sufficiently decayed so that
the IDES/STAT system ceases to issue inlrusion warn-
ings.

If time is measured in terms of appropriate audit record
counts, a principal weakness of Q is the potentially ex-
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tended or compressed time frame of past activity that
affects the value for Q. For example, if @) is based on a
half-life of 100 audit records of network activity, and the
user generates only a few network access audit records
each week, then the @ statistic may be summarizing be-
havior over the past few months. On the other hand, if
the user is rapidly generating audit records, then the @
statistic may be summarizing activity over only the past
few minutes. Furthermore, different @ statistics, based
on different measures, may have dramatically different
half-lives as measured in clock time, with some summa-
rizing behavior over many weeks and others over a few
minutes. This problem might be ameliorated by having
measures of specific decay factors based on the number
of audit records generated per day by a user, so that
the half-life is the number of audit records generated in
1 or 2 hours of user activity in the middle of the day.
A second disadvantage of measuring time in terms of
appropriate audit records is that ¢ will not be sensitive
to intrusions that increase the number of audit records
generated but where the individual audit records ap-
pear to be normal. For example, suppose that a user
normally generates an average of 100 I/O audit records
per day with an average of 12 read/writes per I/O au-
dit record. The user’s account is broken into, and the
perpetrator generates 1000 I/O audit records in one-
half hour, with an average of 12 read/writes per audit
record. In this case the @) statistic (with time measured
in audit record counts) will not vary from its historical
mean value and the intrusion would not be detected.
For this reason, whencver time is measured in audit
record counts, there should be at least one additional
measure, i.e., the number of audit records, measured in
chronological time.

We will be conducling experiments to determine
whether time should be measured chronologically or in
terins of appropriate audit record counts. Currently we
believe that measurement in terins of appropriate audit
record counts is preferable, but to a large extent this is
still an open issue.
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