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ABSTRACT
We describe SRI’s large vocabulary conversational speech recog-
nition system as used in the March 2000 NIST Hub-5E evalua-
tion. The system performs four recognition passes: (1) bigram
recognition with phone-loop-adapted, within-word triphone acous-
tic models, (2) lattice generation with transcription-mode-adapted
models, (3) trigram lattice recognition with adapted cross-word tri-
phone models, and (4) N-best rescoring and reranking with various
additional knowledge sources. The system incorporates two new
kinds of acoustic model: triphone models conditioned on speaking
rate, and an explicit joint model of within-word phone durations. We
also obtained an unusually large improvement from modeling cross-
word pronunciation variants in “multiword” vocabulary items. The
language model (LM) was enhanced with an “anti-LM” representing
acoustically confusable word sequences. Finally, we applied a gen-
eralized ROVER algorithm to combine the N-best hypotheses from
several systems based on different acoustic models.

1. Introduction
The goals in developing SRI’s DECIPHER March 2000 Hub-5 eval-
uation system were twofold: first, we wanted to integrate several
novel research efforts into an overall recognition system. We also
wanted to significantly enhance the baseline performance of our
system. The second goal was important since we felt that a com-
petitive baseline was needed to demonstrate the benefits of new ap-
proaches, and because our previous, 1998 Hub-5 system’s word er-
ror rate (WER) had lagged behind the best systems by about 10%
absolute.
Hence, we decided to improve our system in as many aspects as pos-
sible, combining three strategies: (1) inclusion of known techniques
not previously part of SRI’s system, (2) improved implementation
and tuning of previously used techniques, and (3) novel techniques
not previously used in large vocabulary continuous speech recogni-
tion (LVCSR) systems. In this paper we summarize our efforts and
results on all three fronts. We focus on novel methods that gave ap-
preciable improvements in recognition accuracy, but also touch on
some approaches that seemed promising but did not end up yield-
ing improved results. We also hope that the results involving known
techniques will be useful for other system developers.
Tables 1 and 2 outline the processing steps and error rates of the
old and the new evaluation systems, respectively. As shown, the
new system achieves a 12.5% absolute (24% relative) reduction in
WER, and involves a larger number of processing steps, which will
be detailed below. The system runtime on the Hub-5 2000 test set
was 320 times real time on a 400 MHz Intel Pentium system. Un-
less stated otherwise, reported results pertain to a subset of the 1998
Hub-5 evaluation test set, consisting of 20 conversation sides (1143
utterances) that were balanced for difficulty and roughly for gender

Table 1: 1998 Hub-5 system structure and performance

Processing step WER
1. Gender detection -
2. Cepstral mean removal -
3. Bigram recognition with SI models, -

lattice generation 59.7
4. Vocal-tract length normalization -
5. Phone-loop adaptation; lattice generation 55.9
6. Transcription-mode adaptation 55.2
7. N-best recognition, trigram rescoring 53.0
8. Acoustic rescoring 52.6
9. Confidence estimation -

Table 2: 2000 Hub-5 system structure and performance

Processing step WER
1. Gender detection -
2. Cepstral normalization; VTL normalization -
3. Phone-loop adaptation, bigram recognition 47.3
4. N-best generation and trigram rescoring 45.6
5. Transcription-mode adaptation (bigram rec) 45.5
6. Bigram lattice generation; trigram expansion -
7. Adapt cross-word models; lattice recognition 43.2
8. N-best generation -
9. Rescoring with class and anti-LM 41.5
10. Rescoring with duration model 40.9
11. N-best ROVER w/alternate acoustic models 40.1
12. Confidence estimation -

(11 females, 9 males). Throughout the paper, WER changes are
reported as absolute percentage point differences.

2. Acoustic Modeling
2.1. Front-end processing
As in the past, our system starts with gender detection using a two-
state hidden Markov model (HMM) with 256 Gaussian mixtures,
having one state each for male and female speech. The feature for
this classification is an 8-dimensional cepstral vector. The gender

For convenience, we also used a simplified scoring procedure based on
the raw reference transcripts, which was less forgiving of spelling differences
and optional nonlexical words than the standard NIST scoring protocol. We
found that generally NIST scoring reduced the WER by about 2.5% on this
development set. Only the results in Table 6 use the full NIST scoring pro-
cedure to enable comparison with ROVER.



with the higher likelihood over the entire conversation side is cho-
sen.
After performing gender selection, we recompute the features by
using a front end that was newly optimized for recognition. As did
other researchers in the Hub-5 domain, we observed an improvement
by widening the analysis bandwidth beyond that of the nominal tele-
phone channel, to cover frequencies from 100 to 3760 Hz. We also
increased the number of cepstral features from 9 to 13 (including C0,
plus the corresponding first and second derivatives). We found that
this reconfiguration of the front end alone reduced WER by about
4.4% absolute.
All features are then normalized to zero mean and unit variance for
each conversation side. Variance normalization had not been part
of previous systems, and was found to give a WER reduction of
0.6%. We also computed gender-dependent estimates of the speaker
vocal-tract length (VTL), based on the algorithm reported in [24].
To compute the VTL, we use a 128-Gaussian mixture model trained
on a subset of the training data using mean and variance normalized
features. The VTL for each test conversation side is then estimated
by maximizing the likelihood of the test data, searching over seven
discrete VTL values in the interval [0.94, 1.06]. Once the VTL is
estimated, we use it to recompute the features, which are now nor-
malized for VTL, mean, and variance.

2.2. Cepstral modeling and adaptation
Our primary acoustic models consisted of genonic (bottom-up state-
clustered), continuous density HMMs [5]. All models were gender
dependent and trained from a combination of corpora: Switchboard
(3094 conversation sides, 160 hours), English CallHome (100 con-
versations, 16 hours), and Macrophone (read telephone speech, 18
hours). About 10 hours of Switchboard material had been hand
checked for transcription and segmentation errors at SRI; the re-
maining Switchboard transcripts were old segmentations prepared
by BBN. After initial model training, all Switchboard and CallHome
transcripts were subjected to a flexible realignment (similar to [7])
that allowed initial or final substrings to be skipped or replaced by
a “reject” model, thus accommodating errors in segmentation. This
procedure, plus an additional EM training iteration with the cleaned-
up transcripts resulted in a WER improvement of 0.3%.
We observed no improvements from adding the 1996 and 1997 Call-
Home test sets to the training corpus. Also, we observed a small
degradation in recognition accuracy when we replaced our tradi-
tional Switchboard training corpus with the retranscribed and re-
segmented transcripts from Mississippi State-ISIP [4], although this
step also nearly doubled the amount of training material. This sur-
prising result needs more investigation; one plausible reason is that
the training set becomes excessively biased toward the characteris-
tics of Switchboard-1 (as opposed to Switchboard-2 and CallHome).
This hypothesis is consistent with the fact that others have observed
improved results with an explicit stronger weighting of CallHome
training data [11].
Initial N-best and lattice generation used within-word triphone mod-
els. Unlike in previous years, we also trained (and adapted) a set
of cross-word triphone models, for the subsequent lattice decoding
stage. The introduction of cross-word triphones reduced the WER
by 1.3%.
Acoustic training resulted in 2,063 male genones and 2,348 female
genones of 64 Gaussians each for the within-word triphone models.
The rate-independent cross-words models used 3,064 male genones

and 2,721 female genones. The rate-dependent cross-word models
(see Section 2.3) comprised 3,323 male genones and 2,983 female
genones. Adjusting the state clustering to produce larger models
gave no improvements (although there is a possibility that this would
change if we combined larger models with the added training data
mentioned earlier).
Speaker-dependent acoustic models were created by a two-step
adaptation process. First, we adapted the gender-dependent Gaus-
sian means only, by maximizing the likelihood of a phone-loop
model. This step does not require a prior recognition pass, yet it
yields over 50% of the improvement of a transcription-mode adap-
tation. We combined the phone-loop adapted models with trigram
N-best rescoring to obtain high-quality hypotheses for use in the
subsequent transcription-mode adaptation. In this second step, we
adapted the gender-dependent models again, this time using both a
block-diagonal means transform [16] and variance scaling [19].
Relative to our previous system, the adaptation procedure was im-
proved in several ways. The addition of variance scaling, which
had previously been omitted, reduced WER by 0.2%. We then in-
creased the number of phone classes (i.e., transforms) in the second
adaptation pass from 3 to 7, yielding a 0.7% lower WER. Finally,
we made the adaptation to transcriptions more robust to recognition
errors by replacing low-confidence word hypotheses with a phone
loop, similar to the one used in the first adaptation pass. For this
purpose the word posterior estimates derived as a by-product of the
trigram N-best rescoring were thresholded at 0.8. This combination
of transcription and phone-loop adaptation reduced WER further by
0.2%.

2.3. Duration and rate-of-speech modeling
Two new kinds of model were included in this year’s system
to specifically address duration-related aspects of conversational
speech. The first of these models characterizes phone durations
within a word, conditioned on both the word identity and the co-
occurring phones within the word. This is achieved by modeling the
joint phone duration distributions as word-dependent, multivariate
Gaussians, backing off to triphone- and phone-conditioned distribu-
tions for cases of sparse training data. The phone duration model
is applied as an additional knowledge source when rescoring the fi-
nal N-best hypotheses, and achieved a 0.8% WER reduction at that
stage. Details of the approach are described in a separate paper [17].
Duration, or local speaking rate variation, also affects the spectral
properties of speech. This is accounted for in our system by hav-
ing separate acoustic models for fast and slow realizations of each
phone. The model is constrained to switch between fast and slow
models only at word boundaries. This approach effectively com-
bines speaking rate detection and rate-specific scoring as part of
the decoding process. As described in [28], rate-dependent models
lower the WER by 0.7% in our baseline system.

3. Pronunciation Modeling
3.1. Dictionary optimization
The dictionary in SRI’s LVCSR system is based on version 0.4 of the
CMU pronunciation dictionary. In previous systems we had simply
stripped the lexical stress diacritics in the CMU phone set, based
on experiments showing that stress-marked phones did not improve
recognition accuracy. This year we systematically explored several

Because of time constraints this last feature was not included in the eval-
uation system.



Table 3: Dictionary excerpt showing different kinds of multiword
pronunciations: (1) reduced form, (2) concatenated canonical pro-
nunciations, and (3) canonical pronunciations with pauses

(1) a lot of ax l aa dx ax
(2) a lot of ax l ao t ah v
(3) a lot of ax - l ao t - ah v

changes to the phone set, and settled on a variant in which unstressed
[ah0] and [ih0] were coded as a separate schwa phone [ax]. We
also replaced [t] and [d] in the appropriate contexts by a new flap
phone [dx]. The dictionary thus modified yielded about 1% WER
improvement.

3.2. Multiword modeling
Next, our goal was to model the substantial pronunciation changes,
especially phone (or even syllable) reductions found in spontaneous
speech [10]. Since these changes often involve phones at word
boundaries and are predictable by word combinations, we decided to
follow the “multiword” approach also used by other system develop-
ers (e.g., [7, 13]). Multiwords are straightforward to implement in a
standard LVCSR system, since it only involves defining vocabulary
items comprising multiple words (e.g., “going to”) and giving them
idiosyncratic pronunciations where appropriate (e.g., “gonna”).
We considered all bigrams and trigrams that occurred more than 200
times in the training data. A phonetician (Colleen Richey) examined
the combined pronunciation entries and added possible idiosyncratic
alternate forms. Only multiwords that had pronunciations differing
from the canonical forms were retained. This yielded 1,389 multi-
words types with a total of 1,802 idiosyncratic pronunciations. To
these, we added all canonical multiword pronunciations, taking care
to include forms with pauses at word boundaries. This resulted in
a total of 11,072 multiword pronunciations. Table 3 shows an ex-
ample of the different kinds of dictionary entries created as a re-
sult. Overall, multiwords covered about 40% of all word tokens
in the Switchboard and CallHome training transcripts. Finally, we
retrained acoustic models with the new dictionary and estimated
context-independent probabilities for all pronunciations, including
those of multiwords.
We found that we could prune word pronunciations with probabili-
ties smaller than 0.3 times those of the most probable variant with-
out affecting recognition accuracy much. The pruned dictionary
retained 3,652 multiword pronunciations and resulted in consider-
able speedup and memory savings during the initial bigram decod-
ing phase, and actually yielded a small accuracy improvement in the
lattice decoding runs, so we decided to use it in both recognition
passes.
To incorporate multiwords into the language model (LM), we sim-
ply replaced the appropriate bigrams and trigrams in the training
transcripts with corresponding multiwords and otherwise used the
standard LM training procedure. However, we obtained best re-
sults when these replacements excluded cases where noise mark-
ers or punctuation had occurred at word boundaries. We found

This crucial step was informed by both linguistic knowledge and expe-
rience gained in the ICSI Switchboard Transcription Project [10].

Post-evaluation we found a bug that had caused pronunciation probabil-
ities to be ignored, although pruning had not been affected. While we did not
rerun the entire recognition system we observed that lattice decoding results
improved by 0.3% after we fixed the problem.

Table 4: Multiword experiments (male development test set)

Model WER
No multiwords 49.0
Multiwords in LM only 48.3
Multiwords in dictionary (unpruned) 45.7
Multiwords in dictionary (probabilities) 44.5
Multiwords in dictionary (pruned) 44.8

that the multiword bigram LM performed better than the regular
bigram, presumably because the multiwords effectively capture fre-
quent higher-order N-grams. This is in agreement with [13], but runs
counter to the results of [7], which could be due to the increased mul-
tiword coverage in our system, or the special transcript processing
described above.
Results Table 4 shows comparative results with various stages of
multiword modeling on the male subset of the development set,
using a bigram recognizer. We found that multiwords in the LM
alone gave a 0.7% improvement, which increased to 3.3% when
idiosyncratic multiword pronunciations were added without prob-
ability weighting. Adding pronunciation probabilities gave an addi-
tional 1.2% improvement, which was only slightly reduced by dic-
tionary pruning. On the full development test set, the combined
WER reduction with pruning was 4.4%. However, we found that
later in the recognition system, the incremental win from decoding
trigram lattices was reduced by 0.4%, consistent with the notion that
the multiword-bigram LM already benefits from partial modeling of
higher-order N-grams.

4. Language Modeling
4.1. Word- and class-N-grams
Initial decoding used a multiword bigram backoff LM containing
about 1.3M bigrams. The LM was trained from all Switchboard-1
transcripts (3M words), 100 CallHome conversations (210K words),
and the Broadcast News (Hub-4) LM training corpus (130M words).
The recognition vocabulary contained 34,000 word types, including
all those found in the spontaneous speech materials and the 10,000
most common words from the Broadcast News corpus. Consider-
able effort was spent in trying to make the Broadcast News tran-
scripts conform to the Switchboard vocabulary (including the re-
placement of multiwords). Separate LMs were trained from each
corpus and then statically interpolated into a single backoff model
using the SRILM tools [21]. The interpolation weights had been op-
timized for perplexity on prior evaluation data. To save memory and
time during initial decoding, we also pruned the LM of bigrams that
caused less than relative change in perplexity [20]. Lattice
expansion used an unpruned, trigram backoff LM (4.8M bigrams,
11.5M trigrams) constructed in the same fashion. The compact tri-
gram expansion technique described in [26] was employed for in-
corporating trigram LM scores into the lattices prior to the second
decoding pass. Our 1998 evaluation system did not use trigrams in
recognition from lattices, leaving them for rescoring of the final N-
best lists. We estimate that the lattice-based trigram search reduced
final WER by about 0.7%.
A further improvement was obtained by rescoring N-best lists with a
class-based 4-gram, for which word classes had been automatically
induced from the Switchboard and CallHome texts using a mutual-
information criterion [3]. The class-LM probabilities were interpo-



Table 5: Anti-LM performance compared to a baseline LM

Model Test set Weight
Tuning Held-out Std. LM Anti-LM

Baseline 41.9 43.5 9.1 n/a
Anti-LM 41.5 43.1 13.6 -2.4

lated with the standard trigram at the word level, for a win of 0.6%.
Two additional potential LM improvements we investigated were an
explicit optimization of the vocabulary size, and tuning of the reject
model probability (the reject model corresponds to unintelligible and
out-of-vocabulary words and fragments in the training transcripts,
but is otherwise treated as a regular word). However, neither of these
experiments gave improved results.

4.2. Anti-language model
In previous years we had experimented with various discriminative
LM training approaches, with the goal of making the LM sensitive to
the acoustic model and to optimize for overall recognition error [23].
These experiments, based on maximum mutual information estima-
tion and gradient descent in the LM parameter space, were largely
unsuccessful because of data sparseness and overfitting problems.
This year we pursued a similar goal with a more heuristic, but, as
we hoped, more robust approach.
Our approach is to construct a separate “anti-LM” of those hypothe-
ses that are acoustically confusable with correct transcriptions. The
resulting N-gram LM gives a score that can be used to penalize likely
misrecognitions. The idea is different from, yet similar in spirit to,
other corrective modeling approaches that adjust model parameters
away from recognition errors [12, 1] or that learn post-recognition
error correction [18]. The anti-LM itself can be trained on the acous-
tic training corpus, and only a single penalty weight parameter needs
to be estimated on held-out data, making the estimation very robust.
We implemented the anti-LM as follows: 500-best recognition hy-
potheses for a 1.6M word subset of the Switchboard and CallHome
training corpora were generated. The hypothesized N-grams were
weighted by the posterior probabilities (normalized N-best scores)
of the hypotheses in which they occurred. N-grams with a total ex-
pected count of at least 1 were used in estimating a backoff trigram
anti-LM. The Witten-Bell discounting scheme [27] was employed
since it naturally generalizes to fractional counts. We then generated
anti-LM scores for the 2000-best hypotheses from our development
test set, and optimized the log-linear score combination weights rel-
ative to the standard acoustic and language models.
Results Table 5 shows the N-best rescoring performance on both
the development set used for tuning and the held-out data. On both
data sets the anti-LM reduces the WER by 0.4% compared to the
baseline without anti-LM. Also shown are the optimized weights for
the two LMs. The optimization of the anti-LM weight was allowed
to use both positive and negative values, yet it settled on a negative
value as intended.
We also experimented with variants of the training procedure. One
variant was to remove the correct N-grams from the posterior N-
best distribution, to emphasize incorrect outputs; another experiment
used only acoustic scores to compute posterior expected counts, to
let the anti-LM focus on acoustic confusability. However, both of
these modifications degraded the results slightly.

Incidentally, N-best generation for training the anti-LM made use
of a recognizer that was much poorer than our current system (it
used the 1997 Hub-5 acoustic models, bigram LM, and no speaker-
adaptive features). The effectiveness of the anti-LM under these
conditions speaks for the robustness of the training approach; on the
other hand, we can expect further improvements from a complete
retraining with the current recognition system.

5. Model Combination
5.1. Progressive search organization
Our system follows the principle of progressive search [15],
whereby successively more detailed (and computationally expen-
sive) knowledge sources are brought to bear on the recognition
search as the hypothesis space is narrowed down. Accordingly, we
use within-word triphone acoustic models and a bigram LM for ini-
tial, unconstrained recognition; followed by trigram LMs and cross-
word trigrams for decoding from lattices; followed by N-best rescor-
ing with class-based 4-gram, anti-LM, and duration models. A re-
vised lattice-generation and expansion algorithm [26] allowed us to
apply cross-word models and the trigram LM earlier in the search
than in previous systems.
Rate-dependent models were integrated into the evaluation system
by generating a separate set of N-best lists and applying the system
combination technique described in the next section. This approach
proved superior to acoustic rescoring of N-best lists with the rate-
dependent models.

5.2. N-best ROVER
The widely used ROVER approach to system combination [8] com-
bines the 1-best output from several recognition systems by vot-
ing among the various hypotheses at the word level. In a related
approach, it was been shown that WER can be reduced by letting
the word hypotheses from a single recognizer vote with their poste-
rior probabilities, since this reduces the expected word (rather than
sentence-level) error [22, 14]. This leads to a natural generalization
of both approaches, in which the N-best lists from multiple systems
are combined. Word hypotheses can then compete on the basis of
posterior probability estimates that are interpolated from multiple
system outputs, and are therefore more accurate. This way, for ex-
ample, two second-ranked hypotheses could override a 1-best hy-
pothesis if the combined posterior is high enough.
Algorithm The “N-best ROVER” algorithm starts by word-
aligning N-best hypotheses from multiple systems . Each sys-
tem computes its own word posterior estimates by log-linear score
weighting, followed by normalization over all hypotheses:

(1)

where is a word hypothesis and is the th log score for
hypothesis in system . The combined posterior is computed as
a linear combination

(2)

The idea of combining multiple hypotheses spaces was independently
developed by [6] for lattices, and again for N-best lists by [9]. Our imple-
mentation of N-best ROVER is available in [21].



Table 6: System combination results with N-best ROVER

System WER
Rate-indep. cross-word + duration + anti-LM 37.6
Rate-dependent cross-word 39.2
Rate-independent non-cross-word 41.2
N-best ROVER 37.1
Standard ROVER 37.4

where are system weights, empirically chosen and summing to 1.
As usual in N-best or lattice-based voting, the word hypotheses with
the highest posterior at each position in the alignment are concate-
nated.
Results Table 6 shows comparative results with three individ-
ual systems, N-best ROVER combination, and the standard 1-best
ROVER. The parameters of both ROVER methods had been opti-
mized for the test set. The WER with N-best ROVER was about
0.3% below that of the standard ROVER, consistent with results by
[6]. We also found that it was best to combine systems with mini-
mal overlap in their knowledge sources. Accordingly, only the first
system incorporated duration and anti-LM rescoring.
The N-best ROVER result (37.1%) was the final WER of our eval-
uation system on the development set, using the full NIST scoring
protocol. The corresponding number on the March 2000 test set was
30.2%.
Weight optimization for word-level scoring The score combina-
tion weights in Equation (1) need to be optimized discrimina-
tively. In the past we achieved this approximately by carrying out the
usual optimization for sentence-level hypothesis ranking, and then
rescaling so that the LM receives weight 1. We recently developed
a new approach that directly optimizes the weighting for word-level
hypothesis selection, inspired by the discriminative model combina-
tion (DMC) algorithm [2]. However, because of the form of (1), the
closed-form solution of DMC does not apply; instead, we optimize
by gradient descent on a smoothed word-error function in the style
of GPD [12].

6. Confidence Estimation
As in previous years, we used a neural network to estimate word cor-
rectness probabilities (confidences) from word-level features [25].
However, because of time constraints, we limited the number of in-
put features severely. Only the combined word log posteriors from
the N-best ROVER system were used, since this measure already
constitutes a confidencemeasure that includes all knowledge sources
used by the recognizer. The network simply adjusts the posterior
estimates to compensate for the bias resulting from the limited hy-
pothesis space represented in the N-best list, as shown in Figure 1.
We added two minor, readily available features that could help the
network gauge the magnitude of the posterior overestimates. Us-
ing the overall number of words in the hypothesis and the relative
position of the word within the utterance, we achieved a small (1%
relative) reduction in cross-entropy. The normalized cross-entropy
(NCE) achieved on the 1998 development subset was 0.207 (0.233
on the March 2000 test set). Since these values are considerably
higher than in previous systems we conclude that the N-best ROVER
approach significantly improves the preliminary posterior estimates
compared to those of a simple N-best approach.

Figure 1: Word-posterior to confidence mapping by neural network
Confidence
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7. Summary

Overall, the combination of techniques described here reduced word
error rate by about 12% absolute in our Hub-5 system. Table 7 gives
an approximate breakdown of this improvement estimated from var-
ious contrastive experiments; the sum of individual WER reductions
is smaller than the actual total reduction, partly because the base-
line WERs for the various contrasts were higher than in the final
system, and partly because some of the approaches overlap in what
they model (e.g., cross-word acoustic modeling and multiword pro-
nunciations).
We note that by far the largest improvements were achieved by a
reconfigured, broader-band front end, and by extensive cross-word
pronunciation modeling via multiwords. Three novel knowledge
sources, a duration model, rate-dependent acoustic models, and the
anti-LM each contributed small, but significant improvements. Fi-
nally, an N-best generalization of the ROVER technique gave an
additional win when combining multiple system outputs, as well as
yielding improved word posterior estimates for confidence estima-
tion.

Table 7: Factors that improved recognition accuracy
What WER
Wider front end/more cepstral coeffs. -4.4
Multiword dictionary -4.0
Cross-word triphones -1.3
Schwas and flaps in dictionary -1.0
Duration model -0.8
Rate-dependent model -0.7
More detailed adaptation transform -0.7
Trigram lattices -0.7
Cepstral variance normalization -0.6
Class LM -0.6
N-best ROVER -0.5
Anti-LM -0.4
Training transcript cleanup -0.3
Variance scaling transforms -0.2
Total -16.2
Actual -12.5
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