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The St. Petersburg Paradox and the

Crash of High-Tech Stocks in 2000

Gábor J. SZÉKELY and Donald St. P. RICHARDS

During the late 1990s high technology growth stock prices were
raised to unprecedented levels by avid stock purchasers around
the world. In early 2000, share prices subsequently underwent
prolonged declines, leaving many purchasers with devastating
losses. This article reviews some aspects of the history of the
St. Petersburg paradox and some related games. We recount a
remarkable article by Durand in which the valuation of growth
stocks is related to the St. Petersburg paradox. Our conclusion
is that the run-up in stock prices in the late 1990s and the subse-
quent declines in 2000 could have been avoided by an analysis
and application of the St. Petersburg paradox.

KEY WORDS: Alan Greenspan; Cleveland Indians base-
ball team; Fair game of chance; Geometric distribution; High
technology stocks; Irrational exuberance; Mark Twain; Mutual
funds; Utility function; Valuation of growth stocks.

1. INTRODUCTION

In the early 1700s Nikolaus Bernoulli formulated a problem
in the theory of games of chance, now known as the St. Pe-
tersburg paradox. At that time, Bernoulli was a relatively new
doctor of jurisprudence, having written in 1709 a dissertation
at the University of Basel, Switzerland, on the application of
the calculus of probability to questions arising in the practice
of law. In 1731 he was appointed professor in law and he later
served four times as Rector of the University of Basel. (As is
well known, the Bernoullis were a renowned family of Swiss
mathematicians, several members of which studied probability
theory; particularly notable for his work in that field was James
Bernoulli, the father of the first law of large numbers.)

On September 9, 1713, Bernoulli communicated his problem
by letter to Pierre Reymond de Montmort, and this was fol-
lowed by a series of letters between them. Montmort himself
was perplexed by the problem, and he later published his cor-
respondence with Bernoulli in the second edition of his book
on games of chance (Montmort 1713). There, the world could
read about Bernoulli’s paradox for the first time, and since then
the problem has fascinated some of the world’s great intellects,
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for it was clear that standard mathematical approaches to this
problem were not in harmony with commonsense reasoning.

In a letter to Bernoulli written on May 21, 1728, and mailed
from London to Basel, Gabriel Cramer, originator of Cramer’s
rule for solving systems of linear equations, rephrased the prob-
lem “for simplicity” from one involving dice to coins. Then in
1738 Nikolaus’ cousin, Daniel Bernoulli, presented to the Im-
perial Academy of Sciences in St. Petersburg an article that an-
nounced the paradox to the world. In his historically memorable
article Daniel Bernoulli also proposed a solution to the paradox
and, although the paradox was first announced to the world by
Montmort (1713), the problem has come to be known as the St.
Petersburg paradox.

This article reviews some of the history of attempts to re-
solve the St. Petersburg paradox and we recount some related
problems, including modifications to the original paradox. We
discuss in detail the fascinating article of Durand (1957) in which
the St. Petersburg paradox is applied to the problem of estimating
fair valuations for the shares of growth companies. Our conclu-
sion is that recent extreme declines in stock prices was foretold
by Durand’s application of the St. Petersburg paradox.

2. THE PARADOX

Let X denote a player’s net profit in a game of chance taking
place in a casino. Then the game is called fair if E(X), the
expected value of X , is zero. Intuitively, a game is fair if, after a
large number of independent repetitions, neither the player nor
the casino has an advantage over each other.

As Feller (1945) observed in an extensive discussion, this def-
inition of a fair game usually applies only if the variance of X
is finite. Otherwise, there will exist examples of fair games in
which, with probability tending to one as the number of inde-
pendent repetitions tends to infinity, the player will sustain a
steadily increasing loss having order of magnitude smaller than
the number of repetitions. Nevertheless, at least for the moment,
we shall proceed according to this definition even if the variance
of X is not finite.

The St. Petersburg Paradox: Peter tosses a fair coin repeatedly until it shows
heads. He agrees to pay Paul two ducats if it shows heads on the first toss, four
ducats if the first head appears on the second toss, eight ducats if the first head
appears on the third toss, sixteen if on the fourth toss, etc. How much should
Peter charge Paul as an entrance fee to this game so that the game will be fair?

In this game, the potential payoff doubles after each toss; we
refer to games of this type as St. Petersburg games. In Daniel
Bernoulli’s later statement of the paradox, the payoff for k tosses
is 2k−1 ducats, but we have chosen to work throughout with a
payoff of 2k ducats in order to simplify calculation of expecta-
tions.

To determine the amount Peter should charge Paul as an en-
trance fee so that the St. Petersburg game will be fair, we cal-
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culate Paul’s expected payoff. Surprisingly, the game cannot be
made fair, no matter how large the entrance fee.

To show this, we calculate Paul’s expected payoff as follows.
Let k be any positive integer; then the probability that the game
ends at the kth toss is 2−k, at which time Peter will pay Paul 2k

ducats. Let Y denote Peter’s payout; then Y is a random variable
with possible values 2, 4, 8, 16, . . ., and P (Y = 2k) = 2−k, k =
1, 2, 3, 4, . . .. Equivalently, log2 Y has a geometric distribution
with probability of success 1/2. Therefore the expected value
of Y is

E(Y ) =
1

2
· 2 +

1

4
· 4 +

1

8
· 8 + · · · = 1 + 1 + 1 + · · · , (1)

proving that Y has infinite expectation. This shows that no finite
amount of money can be a fair entrance fee.

In short, Paul should be willing to pay an infinite price to enter
this game. However, this is a requirement to which almost no
rational person would agree or be able to satisfy. Although the
calculation of Paul’s expectation is mathematically correct, the
paradoxical conclusion was regarded by many early probabilists
as unacceptable.

Indeed, Nikolaus Bernoulli’s motivation for formulating this
problem stemmed from his study of games of chance. In its
early days, the theory of games of chance concentrated heavily
on notions of fairness, equity, and examples of fair games, and
so Bernoulli was surprised and concerned by his example of
a game in which the price of entrance appeared to be grossly
unfair. As evidence of this unfairness, Paul is certain to win a
finite amount, so it seems unfair to impose an infinite entrance
fee. Moreover, it is highly probable that Paul will receive only
a small payment, so that even a large, finite entrance fee seems
unfair. For instance, the probability that Paul receives at most 32
ducats is 31/32, or 96.875%, and so an entrance fee of 10,000
ducats, say, seems unreasonable.

3. SOME ATTEMPTS TO RESOLVE THE PARADOX

Several probabilists suggested modifications to the St. Peters-
burg paradox in efforts to obtain acceptable solutions. For the
most part, these modifications employed the concept of “utility”
which may be defined for our purposes as follows (see DeGroot
1970, p. 90).

Consider a game in which a player can receive a reward from
R, a set of possible rewards. We assume a basis of preferences
among rewards, so that a player can specify a complete ordering
of R. For simplicity, we suppose that R is a countable subset
of the real line such that the player’s ordering of rewards is the
natural ordering on the real line. Regarding R as a probabil-
ity space, the player’s preference among rewards in R leads to
preferences among the probability distributions on R. If P and
Q are probability densities on R, then we write P ≺ Q if the
player prefers Q to P and P � Q if the player does not prefer
P to Q.

For any probability density function P on R and any real-
valued function g on R, we use the notation

EP (g) :=
∑

r∈R

P (r)g(r).

A real-valued function U on R is called a utility function if,
for any probability distributions P and Q on R such that both
EP (U) and EQ(U) exist, P � Q if and only if EP (U) ≤
EQ(U).

Nikolaus Bernoulli, in his letters to Montmort, proposed sev-
eral solutions to the paradox. Bernoulli proposed the assignment
of zero probability to large values of k in (1), thereby truncat-
ing the series. In this context, Bernoulli is arguing in favor of
a utility function U for which U(k) = 0 for sufficiently large
k. Bernoulli’s argument was that very large values of k were
“morally certain” not to occur so that, from a practical stand-
point, one loses nothing by truncating (1). Still, Bernoulli did not
find his own argument convincing, hence he sought the views of
others.

Gabriel Cramer, the Comte de Buffon (well known for “Buf-
fon’s needle”), and others viewed the calculation of expectation
in (1) as unacceptable in that it simply added the actual pay-
offs weighted by the corresponding probabilities. Cramer’s ba-
sic idea was that the larger the size of a person’s fortune, the
smaller the “moral value” of a given increment in that fortune.
Cramer proposed alternatives under which the value of a sum
of money is measured through various utility functions, such as
the square root, or the inverse of the amount, or by placing a
limit on payouts, all of these devices being chosen so as to lead
to a finite expectation. In adopting these methods, these authors
also were proposing as a basic principle that additional sums of
money have decreasing marginal utility.

For example let us suppose, like Buffon and Cramer, that the
utility of money ceases to increase beyond a certain amount,
say, one million ducats. Or equivalently, let us make the natural
assumption that Peter has limited resources, in which case he
necessarily must place a limit on the size of his payouts. Bearing
in mind that 219 < 106 < 220, it follows that Y , Peter’s payout
in ducats, is

Y =

{

2k, if 1 ≤ k ≤ 19,
106, if k ≥ 20.

Further, the corresponding probabilities are given by

P (Y = y) =

{

1/y, y = 2, 4, 8, . . . , 219,
2−20 + 2−21 + · · · , y = 106.

The expected value of Peter’s payouts is then seen to be

1

2
· 2 +

1

4
· 4 + · · · +

1

219
· 219

+

(

1

220
+

1

221
+ · · ·

)

106 = 20.9073 . . . ≈ 21.

This proves that the game becomes slightly favorable to Peter if
Paul is required to pay an entrance fee of 21 ducats.

Nikolaus Bernoulli was not satisfied with Cramer’s solu-
tion, so he communicated the problem to his younger cousin
Daniel Bernoulli who, at the time, was a member of the Impe-
rial Academy of Sciences in St. Petersburg. Daniel responded in
1731 with a draft of his famous paper, published later in 1738.

In that paper, Daniel Bernoulli concluded that the natural
choice of utility function should be the logarithm function.
Daniel argued that “in order to perceive the problem more cor-
rectly we shall assume that there is an imperceptibly small
growth in the individual’s wealth which proceeds continuously
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Table 1. Buffon’s Simulation of the St. Petersburg Game

Tosses (k ) Frequency Payoff ( 2k )

1 1061 2

2 494 4

3 232 8

4 137 16

5 56 32

6 29 64

7 25 128

8 8 256

9 6 512

by infinitesimal increments. Now it is highly probable that any

increase in wealth, no matter how insignificant, will always re-

sult in an increase in utility which is inversely proportionate to

the quantity of goods already possessed.”
Thus, Daniel Bernoulli argued that if there is an infinitesimal

increase, ∆x, in wealth then ∆U , the corresponding infinites-
imal increase in utility should be inversely proportional to the
size of the fortune already amassed. Then, for some constant a,

∆U = (a/x)∆x. (2)

By perspicacious geometrical arguments, Bernoulli deduced that
U(x) = a log x + b, where b is a constant. By contrast, mod-
ern methods would obtain from (2) the differential equation
dU/dx = a/x, which may be integrated in a straightforward
manner to return the solution given above.

For example, if the utility of an amount of money is measured
by its logarithm then the expected utility arising from playing
the St. Petersburg game is

EP (log Y ) =

∞
∑

k=1

1

2k
log(2k) =

∞
∑

k=1

k

2k
log 2 = 2 log 2,

where P corresponds to the geometric distribution. This expec-
tation corresponds to a monetary amount of exactly four ducats.
From this point of view a rational gambler like Paul—that is, a
person who measures marginal utility using logarithms—would
pay any sum less than four ducats to enter the game.

Buffon had a child play the St. Petersburg game 2,048 times.
The results of this simulation, reported by Jorland (1987, p. 168),
are reproduced in Table 1.

Based on these empirical frequencies Buffon concluded that,
despite the theoretical expected infinite expectation, the St. Pe-
tersburg game in practice becomes fair with an entrance fee of
approximately ten ducats.

Whitworth (1901) proposed another resolution of the para-
dox which is independent of devices for measuring the utility of
money. His solution considered the possibility of gambler’s ruin,
a natural concern for all gamblers with finite resources. Whit-
worth assumed that prudent gamblers would place at risk a fixed
percentage, rather than a fixed amount, of their funds, and he
developed a procedure for analyzing ventures that involve risk
of ruin. It follows from Whitworth’s study that Paul’s entrance
fee should depend on the size of his funds.

Feller (1945) proposed a different method to determine en-
trance fees which would make the St. Petersburg game fair. Sup-
pose Paul chooses to play the game repeatedly. After n games

have been played, let Rn denote the total entrance fees and let Sn

denote Paul’s accumulated receipts. Let us call the game asymp-

totically fair if the ratio Sn/Rn converges to 1 in probability as
n tends to infinity, that is, if for every ǫ > 0

lim
n→∞

P

(∣

∣

∣

∣

Sn

Rn

− 1

∣

∣

∣

∣

< ǫ

)

→ 1.

Feller proved that the St. Petersburg game becomes asymptot-
ically fair if Rn = n log2 n. From the calculation of Paul’s
expected payoff, we see also that the game cannot be asymp-
totically fair if there is a fixed and finite entrance fee per game,
that is, if Rn = cn where c is a finite constant. However, if
the entrance fee per game may depend on the number of games
already played then, according to Feller’s theorem, the St. Pe-
tersburg paradox is resolved; see Feller (1969, pp. 235–237).

Others have noted that the St. Petersburg game seems unre-
alistic, given that natural limits exist on the time and financial
resources of Peter and Paul. From the point of view of those crit-
ics, the St. Petersburg problem is not even a paradox. As Durand
(1957, p. 352) eloquently put it, “Peter and Paul are mortal; so,
after a misspent youth, a dissipated middle age, and a dissolute
dotage, one of them will die, and the game will cease—heads
or no heads. Or again, Peter’s solvency is open to question, for
the stakes advance at an alarming rate . . . Even if Peter and Paul
agree to cease after 100 tosses, the stakes, though finite, stagger
the imagination.”

In an extensive assessment of the St. Petersburg game,
Samuelson (1977) commented: “Of course Buffon’s calculated
ratio is nonsensical as a proposed estimate of the mathematical
expectation of Paul per infinite Petersburg game. In 2, 048 tosses,
Paul may win anything from 0 to 22,048. Why take the result of
1 arbitrary sample? And how did Buffon score uncompleted
games? If Buffon correctly applies ‘the method of fair division’
between Peter and Paul for games interrupted before their finish,
he will find that half the time on the 2, 048th toss the sequence
shows a T and an incomplete game . . . therefore, Paul’s expected
money gain will indeed be infinite . . . Consequently, Buffon’s
Monte Carlo experiments are childish ways to avoid the true
infinity in the Petersburg expectations: adultishly understood,
they confirm the need to replace Paul’s linear” utility function
by a sufficiently concave function. “At bottom,” Samuelson con-
cluded, “the ‘paradox’ is no paradox.”

Following on the idea of varying entrance fees as initiated by
Feller (1945), a deterministic sequence of entrance fees for the
St. Petersburg game,

2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 32 2 4 2 . . . ,

was given by Steinhaus (1949). To construct this sequence, place
twos in alternating empty places, then fill every second empty
place by a four, next fill every second remaining empty space
by an eight, and so on. Denote by a1, a2, . . . the members of
this sequence, and let an be the entrance fee at the nth repeti-
tion of a St. Petersburg game. Steinhaus proved that the sample
distribution function of a1, . . . , an converges to the distribution
function of Y as n → ∞.

More recently, Csörgő and Simons (1993) provided an ex-
tensive discussion of Steinhaus’ sequence of entrance fees, and
there now exists an extensive literature on asymptotic theory for

The American Statistician, August 2004, Vol. 58, No. 3 227



St. Petersburg games. We refer to Adler (1990), Berkes, Csáki,
and Csörgő (1999), Csörgő and Simons (1996), and Csörgő
(2003) for recent developments in this area and for further refer-
ences. Especially intriguing is the remarkable article by Csörgő
and Simons (2002) which reveals new paradoxes within the
structure of the classical St. Petersburg paradox; in particular,
their results show that, paradoxically, there may be a very dif-
ferent outcome if n distinct Pauls play one St. Petersburg game
each than if one Paul plays n games.

4. RELATED PARADOXES AND GAMES

Daniel Bernoulli’s response to the paradox has not been uni-
versally regarded as satisfactory (see Weirich 1984), this being
due to a controversy regarding the relationship between addi-
tional amounts of ducats and the measurement of utility. More-
over, even if it is assumed that additional sums of money have
decreasing marginal utilities and also that it is appropriate to
calculate utilities by taking logarithms, the problem is not en-
tirely resolved. Indeed, Samuelson (1977) discussed at length
the “Super-Petersburg” paradoxes constructed by K. Menger;
here, for a given unbounded utility function, the payoffs grow
sufficiently fast that the resulting expected utility is infinite. For
instance, in a St. Petersburg game with logarithmic utility in
which Paul receives 22k

ducats if the first head is obtained at the
kth toss, Paul’s expected payoff again is infinite, and the paradox
returns. If a new, unbounded utility function were to be devised
for this game so as to return a finite expectation, then a new set
of more rapidly increasing payoffs can be designed so that the
resulting expectation again is infinite. By repeatedly adjusting
the payoff strategy, it is seen that the measurement of utility by
logarithms can always be made to result in an infinite expec-
tation, and it becomes clear that the paradox can be avoided if
and only if the utility function is bounded, an observation due
to Menger.

Despite objections to the calculation of utilities by the use
of logarithms, there are instances in which this approach is en-
tirely natural and has significant advantages over other measures
of utility. For one such example within the context of optimal
gambling systems, we refer the reader to Thorp (1969, p. 289).

There are numerous paradoxes analogous to the St. Petersburg
problem. One of them is the following paradox, communicated
to Székely by Guttman in 1983: Peter entraps Paul into tossing
a fair coin repeatedly. When k tosses are needed to observe the
first head, Paul receives (−2)k ducats from Peter. In other words,
if k is even then Paul receives 2k ducats from Peter, but if k is
odd then Paul pays 2k ducats to Peter. Should Paul be happy or
unhappy about having been entrapped into playing this game?
The answer is that Paul should both be happy and unhappy.

To explain this paradoxical conclusion, we partition the set of
positive integers into subsets {1, 2, 4}, {3, 6, 8}, {5, 10, 12}, and
so on, so that the rth subset in this partition is {2r−1, 4r−2, 4r}.
Then the game can be viewed as consisting of a collection of sub-
games, each corresponding to one of the subsets in our partition.
With probability 2−(2r−1) +2−(4r−2) +2−4r, Paul has received
the subgame which awards (−2)k ducats with probability

2−k

2−(2r−1) + 2−(4r−2) + 2−4r
, k = 2r − 1, 4r − 2, 4r.

It is straightforward to calculate that each of these subgames is
favorable to Paul, that is, Paul has positive expected payoff from
each subgame. Therefore, Paul should be happy.

On the other hand, we can also partition the set of positive
integers into subsets {1, 2, 3}, {4, 5, 7}, {5, 10, 12}, and so on,
in which the rth subset in this partition is {2r, 4r − 3, 4r − 1}.
With probability 2−2r +2−(4r−3) +2−(4r−1), Paul receives the
subgame which awards (−2)k ducats with probability

2−k

2−2r + 2−(4r−3) + 2−(4r−1)
, k = 2r, 4r − 3, 4r − 1.

Each of these subgames is unfavorable to Paul, so he also should
be unhappy.

Let us restate Guttman’s problem in terms of conditional ex-
pectations. If X and Y are jointly distributed random variables,
we denote by P (dx|Y ) the conditional probability distribution
of X given Y . Then the conditional expectation of X given Y
is

∫

xP (dx|Y ).

Surprisingly, there exist random variables X , Y , and Z such that
E(X|Y ) > 0 > E(X|Z) with probability one. For example,
let X denote the overall reward to Paul in Guttman’s game.
Let Y = r if Paul receives the rth favorable game in which
X ∈ {2r − 1, 4r − 2, 4r}. Also, let Z = r if Paul receives
the rth unfavorable game in which X ∈ {2r, 4r − 3, 4r − 1}.
Then it is simple to verify that E(X|Y ) > 0 > E(X|Z) with
probability one.

Stories of St. Petersburg games date to antiquity. There is the
classic, perhaps apocryphal, story of the king who decided to
reward an old and faithful peasant with a generous sum of gold.
Instead, the peasant gently requested his king to give him one
grain of corn on the first day of the month, two grains of corn
on the second day, four grains on the third day, etc. The king
was so pleased by his servant’s deep modesty that he happily
granted the request, and his kingdom was bankrupt before the
month ended.

An interesting example of a St. Petersburg offer involved Ken
Harrelson, a Major League baseball player with the Cleveland
Indians from 1969–1971. As reported by Smith (1988, p. 157),
Harrelson proposed to Gabe Paul, general manager of the Cleve-
land Indians, a St. Petersburg deal in which Harrelson would
play the entire baseball season without salary “except for 50
cents doubled for every home run he hit.” Harrelson’s salary
would then be 50 cents if he hit only one home run, one dollar
if he hit two home runs, two dollars for three home runs, and
so on. Gabe Paul was wise enough to decline Harrelson’s offer,
especially since Harrelson went on to hit 30 home runs during
that season!

Currently, a popular television game show, Who Wants to be a

Millionaire?, offers players the chance to win up to one million
dollars. Players are offered a sequence of questions, each with
four possible answers. If players answer a question correctly
then they can walk away with their prize, or they can choose
to answer a new question, thereby taking the risk of losing all
if they answer incorrectly or doubling their prize by answering
correctly.
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Many examples of St. Petersburg games and their generaliza-
tions are studied in the statistics, economics, and mathematics
literature. A search of databases covering the literature in those
fields will recover dozens of articles studying proposed solutions
and applications.

5. THE VALUATION OF GROWTH STOCKS

A remarkable application of the St. Petersburg paradox, due
to Durand (1957), relates to the valuation of the common stocks
of “growth” companies. Here, a “growth” company is one whose
revenues are growing significantly faster than the overall econ-
omy; and the stocks or shares of these companies, or even the
companies themselves, are commonly referred to as “growth
stocks.” We shall review this application in detail because of
its applicability to financial events in the late 1990s and early
2000s.

As background, we recall that by early 2000, unprecedented
increases had occurred over the previous three years in the prices
of growth stocks. These increases in stock prices sparked a
lively debate over whether investors were wise to purchase these
shares, or foolish not to purchase greater amounts of shares be-
fore prices increased even further.

On the one hand were skeptics, including Alan Greenspan,
chairman of the board of governors of the United States Federal
Reserve System, who raised concerns about inflationary pres-
sures resulting from increased stock prices. In a now-famous
speech on December 5, 1996, Greenspan’s question, “But how
do we know when irrational exuberance has unduly escalated
asset values, which then become subject to unexpected and pro-
longed contractions as they have in Japan over the past decade?,”
was followed by dramatic fluctuations on world financial mar-
kets.

On the other hand were believers, including many mutual
funds which had purchased substantial numbers of shares of
high-tech companies. Indeed, the Wall Street Journal reported on
November 19, 1999, that 59 mutual funds had amassed increases
of more than 100% during the period January 1–November
17, 1999. One fund, the Nicholas-Applegate Global Technol-

ogy Fund, which specialized in high-tech stocks, had increased
in price during the same period by the astounding amount of
325%, or about 1% per day, an amount which the Journal com-
mented, tongue-in-cheek, as possibly insufficient for “patient
investors.”

Following Durand (1957), we consider a modified St. Peters-
burg game in which “Peter” is a growth company and “Paul” is a
prospective purchaser of Peter’s stock. We assume that the prob-
ability of tossing heads is i/(1 + i), i > 0; then the probability
of tails is 1/(1 + i).

Next, suppose that the corresponding payoffs are a series of
increasing payments in which Peter pays Paul D ducats if the
first toss results in a tail, D(1 + g) ducats if the second toss is
a tail, D(1 + g)2 ducats if the third toss is a tail, and so on, and
this continues until the toss results in heads, at which point the
game ends. If k tosses are needed for the game to end then the
total payment to Paul is

k−2
∑

j=0

D(1 + g)j =
D[(1 + g)k−1 − 1]

g
. (3)

Because heads and tails appear with probabilities i/(1 + i) and
1/(1 + i), respectively, then the payment (3) occurs with prob-
ability i/(1 + i)k. As Durand (1957) observed, Paul’s expected
payoff is given by the double summation

∞
∑

k=1

i

(1 + i)k

k−2
∑

j=0

D(1 + g)j .

This double sum is evaluated by substituting for the inner sum
the closed form expression (3). Alternatively, by reversing the
order of summation and evaluating the resulting inner sum, we
find that Paul’s expected payoff is

∞
∑

k=1

D(1 + g)k−1

(1 + i)k
=

{

D/(i − g), if g < i,
∞, if g ≥ i.

(4)

In summary, if g < i, then Paul’s expected payoff is D/(i − g).
On the other hand, if g ≥ i, then the infinite series diverges and
Paul’s expected payoff is infinite, in which case a realistic Paul
may wisely decline to pay the corresponding entrance fee.

In the context of appraising the values of financial securities,
the parameter i represents a compound interest rate (or an ef-
fective rate of interest); equivalently, the present value of a loan
of one dollar to be repaid one year in the future is 1/(1 + i). In
the appraisal of fair value for a company’s shares, g represents
the growth rate of the company as measured by the compound
increase in revenue per share.

A widely accepted approach to estimating a fair value for
Peter’s stock is to discount all future dividends in perpetuity.
Here, a fair value for Peter’s stock is estimated by the present
value of all future dividends. Denote by En Peter’s earnings (i.e.,
profits) per share in year n. Also, let Bn denote Peter’s book
value, or net asset value, per share in the same year. Further,
denote by Dn the total of Peter’s paid-out dividends per share
in year n. A moment’s reflection makes it clear that changes in
book value from year-to-year are equal to the difference between
earnings and dividends paid, that is, for all n ≥ 1

Bn+1 − Bn = En − Dn.

In estimating fair value for Peter’s stock, it is common practice
for Paul to assume that the ratios r = En/Bn and p = Dn/En

are independent of n. This assumption implies that Bn+1 −Bn,
the change in book value from year n to year n+1, is a constant
multiple of En:

Bn+1 − Bn = En − Dn = (1 − p)En = (1 − p)r Bn.

Therefore Peter’s dividends, book value, and earnings all are
growing at a constant rate, g = (1−p)r. In this context the sum
(4) represents a perpetual series of dividend payments, starting
at D ducats, growing at a constant rate g, and discounted at
rate i in perpetuity. If i > g, then the sum (4) converges to
D1/(i−g) = p E1/(i−g), which represents an estimate of fair
value for one share of Peter’s stock.

If i ≤ g, then the series (4) diverges, and we now have a form
of the St. Petersburg paradox in which the practice of discount-
ing future dividends at a uniform rate in perpetuity leads to a
paradoxical result.
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6. CONCLUDING REMARKS

The St. Petersburg paradox explains some of the unprece-
dented increases in the prices of high-tech growth stocks in the
late 1990s. During that period, the Federal Reserve System’s
discount rate was near a historical low; in the context of Du-
rand’s article, i was very small. Moreover, purchasers of growth
stocks assumed that g, the growth rate of a typical high-tech
company, would remain high in perpetuity. The outcome was
that i < g; indeed, even more extreme was that for many high-
tech companies, i/g ≃ 0. By discounting earnings and dividends
in perpetuity, any use of the valuation formula (4) led to esti-
mated valuations of tech-stock share prices at levels as high as
the appraiser cared to make them.

Having applied the valuation formula (4) to obtain exorbitant
estimated valuations for many high-tech growth stocks, stock
purchasers bought avidly, thereby forcing prices to extreme lev-
els. By late 2000, stock prices underwent the “prolonged con-
tractions” predicted by Greenspan, with subsequent unprece-
dented losses to corporate and individual stock buyers. Three
years later, many formerly avidly sought-after high-tech com-
panies and mutual funds were defunct.

Purchasers of high-tech growth stocks in the late 1990s over-
looked completely the cautionary analyses of Durand (1957) and
Malkiel (1963) regarding the perpetual discounting of earnings
or dividends; even more regrettable was the propensity to ignore
the sage advice of Graham (1985). It is striking that Durand’s ar-
ticle was completely overlooked in the 1990s despite the fact that
it was written during a similar period in the 1950s when stock
purchasers had been eagerly purchasing the high-tech stocks of
the time, and despite the clear observation by Durand and ear-
lier authors that the divergence of the series (4) when i < g
would lead to infinite estimated fair prices for common stocks.
As a clear warning, Durand (1957, p. 349), quoting Clendenin
and Van Cleave (1954), commented that he had “not yet seen
any growth stocks marketed at the price of infinity dollars per
share, but [would] hereafter be watching.” Unfortunately, these
comments were overlooked or were unpersuasive to high-tech
stock buyers of the 1950s and they eventually came to grief, as
did similar buyers in the 1990s.

We close with two comments from Mark Twain who noted,
for the benefit of stock market speculators, that

There are two times in a man’s life when he should not speculate: when he can’t
afford it, and when he can.

Also, from Twain’s Pudd’nhead Wilson’s Calendar comes the
quotation,

October. This is one of the peculiarly dangerous months to speculate in stocks in.
The others are July, January, September, April, November, May, March, June,
December, August and February.

[Received October 2003. Revised March 2004.]
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