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The Stability in- L, and W of the L,-Projection
onto Finite Element Function Spaces

By M. Crouzeix and V. Thomée

Abstract. The stability of the L,-projection onto some standard finite element spaces V,,
considered as a map in L, and W’}, 1 < p < oo, is shown under weaker regularity require-
ments than quasi-uniformity of the triangulations underlying the definitions of the V.

0. Introduction. The purpose of this paper is to show the stability in L, and W},
for 1 < p < oo, of the L,-projection onto some standard finite element subspaces.
Special emphasis is placed on requiring less than quasi-uniformity of the triangula-
tions entering in the definitions of the subspaces.

In the one-dimensional case, which is discussed in Section 1 below, we first give a
new proof of a result of T. Dupont (cf. de Boor [2]) showing L stability without
any restriction on the defining partitions, thus extending an earlier result by
Douglas, Dupont and Wahlbin [6] for the quasi-uniform case. We then use the
technique developed to show the stability in Wpl, in the case p > 1, under a quite
weak assumption on the partition, depending on p. We also show that some
restriction on the partition is needed for stability if p > 1. We remark that the
known L, stability result has been extended to higher degrees of regularity of the
subspaces; see de Boor [3] and references therein. ‘

In the case of a two-dimensional polygonal domain, discussed in Section 2, we
demonstrate L, and Wp1 stability results for the L,-projection onto standard
piecewise polynomial spaces of Lagrangian type. The requirements on the triangula-
tions involved are more severe than in the one-dimensional case, but allow neverthe-
less a considerable degree of nonuniformity. The proofs are based on a technique
used by Descloux [5] to show L_ stability in the quasi-uniform case (cf. also
Douglas, Dupont and Wahlbin [7]).

Results such as the above are of interest, for instance, in the analysis of Galerkin
finite element methods for parabolic problems. Thus Bernardi and Raugel [1] use the
W, stability of the L,-projection to prove quasi-optimality of the Galerkin solution
with respect to the energy norm, and Schatz, Thomée and Wahlbin [8] apply the L
stability in a similar way (in the quasi-uniform case).

1. The One-Dimensional Case. In this section we shall study the orthogonal
projection w = , with respect to L,(0, 1) onto the subspace

V,={x€c(0,1);xl, P j=0,...,N; x(0) = x(1) = 0},
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522 M. CROUZEIX AND V. THOMEE

where 0 = x, < x; < --- <xy,; =1 is a partition of [0,1] and [; = (x;, x, ).
We shall first demonstrate the following result, in which || - ||, denotes the norm in
L (0,1).

P

THEOREM 1. There is a constant C depending only on k such that

lrul, < Cllull, YueL,(0,1),1<p< co.

We shall then turn to estimates in
W0,1) = {ve L,(0,1); v' = dv/dx € L,(0,1); v(0) = v(1) = 0}
and show, with &, = x, . ; — x,,

1

THEOREM 2. Let 1 < p < oo and assume, for p > 1, that the partition is such that
hi/h; < Coa' ™!, where1 < a < (k + 1)?/?=D. Then
(zu)'|, < Cllw’l, Vue WHo,1),
where C depends on k, and for p > 1 also on C,, a, and p.
For the proofs of these results we introduce the spaces
Vi={x€V,;x(x)=0i=1,...,N}

and V}}, the orthogonal complement of V> in V, with respect to the usual inner
product in L,(0,1). For k = 1 we have ¥} = {0} and V}! = V,. We also introduce
the orthogonal projections moonto Vy, j=1,2, and obtain at once

(1.1) m=m+m (m=mfork=1).
We note that , is determined locally on each I; by the equations
(1.2) (mv,q);, = (v,q);, forge PXI)={q€ P q(x;) = q(x;,,) = 0},

where (-, *) I is the standard inner product in L,(/;), and that a function in Vi is
completely determined by its values at the interior nodes, so that dim¥V;! = N.

For v € C[0,1] with v(0) = v(1) = 0 we shall also use the piecewise linear
interpolant r,v € V, and note that, for 1 < p < oo,

(1.3) ICro) [, <l s,
and, denoting the normin L, (1) by |- |, ;,

(1.4) lo = rwllp.s, < 3hllV[lp.

LEMMA 1. There is a constant C depending only on k such that, for1 < p < oo,

(1.5) lmull, < Cllull,, — ue€ L,(0,1),
and
(1.6) ”(772(“ - ’hu))/"p < Cllu'lp, ue Wpl(o,l)~

Proof. We consider first (1.5) for p = 1 and set &, = mu. It follows, by taking
q = i1, in (1.2), that

~ 12 -
Ny ll2,r, < llully.ll@, ”oo,l,-
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THE L,-PROJECTION ONTO FINITE ELEMENT FUNCTION SPACES 523

Hence ||itll; ;, < Cyllull,,,,, where
gl 719l .1,
C = max ——>=.
qerly  llqll3,

Using the change of variables’y = (x — x;)/h,, it is easily seen that C, is indepen-
dent of the interval /; and thus depends only on k. Analogously, we obtain

(1.7) lmyully.s, < Cillullp.s,,

for p = o0, and then for general p by the Riesz-Thorin theorem [9]. The desired
result now follows by taking pth powers and summing.
To prove (1.6), we note that

, G, q'll,
||vr u-—ru ” < —=\lm(u—ru where C, = max
( 2( h )) p,[‘ = hi ” 2( h )"p.l,’ 2 qep’?(o'l) ”q”p )

and, by (1.7) and (1.4),
” my(u — ryu) ”p.l, < Cflu- "h“”p,l, < %Clhi"u,"p,l,-’
from which (1.6) follows with C = $C,C,.

In order to study the projection m,, we shall construct a basis for V}.. For this
purpose let us define Y € P, by

¥(0) =0, y(1)=1, (¢,q)=fol¢qu=0 Vg e Pp.

For each nodal point x; we associate the function y; defined by
X = X;_
i(x) = ‘P(h—l) onl/_,,
i-1
= (x';;l:_ﬁ) on I'_’
= on€¢(I,_,Ul).

It is then easily seen that {,}Y C ¥V} and that these functions thus form a basis.
For u given, and w = mu = LY, w,y;, we then have

N
Zwi(‘l/i»‘l’j):(u"l’j):ujy j=1,...,N,
i=1

or in matrix form, with G = (,,¥,)), W = (w,...,wy) and U = (u,..., uy)",
(1.8) GW = U.

We note that the Gram matrix G is tridiagonal. We shall need to compute its
nonzero elements.

LEMMA 2. We have
2 1
W= ———(h. ., + h.

and

-,
k(k+1)(k+2) "

(‘Pia ‘Pi+1) =
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524 M. CROUZEIX AND V. THOMEE

Proof. By transformation of variables it suffices to show that

1 2 1
fo ¥(x) dx = k(k + 2)
and
(-

/0 V()31 —x)dx = k(k+1)(k+2)

The definition of ¢ implies easily

(=t 1 e
¢(x)- k! x(l —X) dx*1

Further, since ¢(x) — x and (1 — x) — (1 — x) € P2, we find

f()l¢<x)(¢(x)_x)dx= folww(l ~x) —(1 - x))dx = 0.

Hence, integrating by parts k — 1 times, we have

I e e =l ORI U P

[x"“(l - x)k].

dxk—-l

_Lfl k(] = x)* d*! 1,

_k!ox * dxk_ll_xx

_ 1 1

Y ARy

and
fl (x)¥(1 - x)d _(_1—)kulf‘ k1] - )kdk_lld
0¢x¢ x)dx = ] Ox xdx"—lxx
(-0 ‘ (="
K fox( x)" dx k(k+ 1) (k+2)

which completes the proof.
Let us introduce the diagonal matrix D with the same diagonal elements as G, i.e.,

2 1
d =yl = m(hi“ +h,).

We may then write G in the form G = D(I + K), where K is a tridiagonal matrix
with diagonal elements zero and bidiagonal entries

_ Wodi) _ (=D R,

ki'i_l ”‘P”2 k+1 hi—l+hi’
(1.9) -
(=" A
k. ..,.= L
ML k41 h o+ Ry

The equation (1.8) now takes the form

(1.10) (I+K)W=DU.
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THE L,-PROJECTION ONTO FINITE ELEMENT FUNCTION SPACES 525

We are now ready to prove Theorem 1. By Lemma 1 it remains only to prove
(1.11) Imull, < Cllulp,  ue€L,(0,1),

and we begin by showing this for p = co. This will be done by showing (here and
below we denote by | - |, the standard /,-norms for N-vectors)

(1.12) Imull, < CIW oo,
then

(1.13) |W | < C|D7W |,
and finally

|D7 U o < Cllulleo-

To see that (1.12) holds, we note that, since for no x in (0, 1) more than two ¥,(x)
are nonzero, we have

g i ()| < 209 [loo| W oo

In view of (1.10), in order to show (1.13), we only need to show that (I + K) ! is
bounded in /. But this follows at once from the fact that, by (1.9),

” 7Tlu ”oo = max
X

1
|K | = max Z|k,j[ 1 <L
and hence
o 1 k41
1+ &) < 1-1/(k+1) &
Finally,
u, Y,
00k = max 8
7wl
where
€, = max (2% _ vl
T 7% o 7

where the latter equation follows by transformation of the subintervals onto [0, 1].
This completes the proof of (1.11) for p = 0. For p = 1 the result follows at once
by duality and for 1 < p < co by the Riesz-Thorin theorem. The proof of Theorem
1 is now complete.
We now turn to the proof of Theorem 2. We may write

qu=m(u—ru)+m(u—ru)+ru

In view of Lemma 1 and (1.3) the last two terms are bounded, as desired, and it
remains to consider w = me where ¢ = u — r,u. Letting W = (wy,...,wy)T where
w;, = w(x,), and & = (¢;,..., ey)" where ¢, = (¢, v,), we find that W solves (1.8)
with U replaced by . We shall show, with D the diagonal matrix introduced above
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526 M. CROUZEIX AND V. THOMEE

and p’=p/(p - 1),
[wll, < CID~YVP'W |,

then

(1.14) |[D~YVPW|, < C|D~ 1" V7Pe|,,
and finally

(1.15) | D™ Pe|, < Cllu’|lp,

which together complete the proof.
We have first

N
P P
I/l = X [ widl i idfa|
i=0"1i

N
<277 X |wl (ke + e )y
i=1

N
<c T a7 wl" = clp-VPWl,,
i=1
where we have used
AP < Clhyy + b)) < Clhpptt 4 nre) T
The proof of (1.15) is also straightforward. We have, by Holder’s inequality,
el =1Ces ) | <lelly s illprr, +Nell, il
< C(ANelp.r,, + R lell, 1),
and hence by (1.4),
le;] < C(RZY P w llpuaoy + 17w [p.1,)
< Cdtl N 1/PI” u’ ”pJ,; 1V 7
whence (1.15) follows immediately.
It remains to show (1.14). Recalling that W satisfies (1.8), and hence (1.10), with U
replaced by &, we have
(D~VP(I+ K)DVP)D~VPW = D1~/

and it thus suffices to show that I + D™'/?KD'? has a bounded inverse in /,
under the assumptions of the theorem. For this purpose we estimate the powers of
the second term. Since K’ is (2] + 1)-diagonal and has nonnegative elements, we
have

|D-VPKIDVY |, < Iig}gzl(d,/dj)l/p’le .
Here,
dy/d; = (h_, + hi)/(hj_1 + hj) < Cga*™*t for |i —j| < 21.
Further, again since K/ is (2/ + 1)-diagonal, we have
21+ 1

IK'h < 1+ DK | < 2+ DK [0 < ———,
(k+1)
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and, using once more the Riesz-Thorin theorem,

K|, < (20 + 1)/ — forl <p < .
P

(k+1)

Altogether we find, under the assumptions made,

[o¢]
|(1+ D~VPKDVP) Y, <1+ ¥ |D-VPK'DVY,
=1

, ® 2/p" \!
<1+(C)"" Y 21+ 1)‘”’(%——) < oo,
=1 +1
which completes the proof.

We conclude by remarking that in Theorem 1 and in the case p = 1 of Theorem 2
no restriction is made concerning the partitions used, and that quite strong mesh
refinements are permitted for p > 1 in Theorem 2. The following example shows,
however, that some restriction is needed in the latter case: Consider the partition
with only one interior point x; = 1 — ¢, so that hy/h; = (1 — ¢)/e. Let k =1 and
u(x) = x(1 — x). Then mu = By,, where B is determined by the equation B||¢||>
= (u,y,), or, after an easy calculation, 8 = }(1 + &1 — ¢)). In this case,

()], = 'B{fol_e e(1—¢) "dx + f11_e ee‘l’dx}l/p > ;11-5‘1/”',

which tends to co with 1/¢if p > 1.

2. The Two-Dimensional Case. In this section we shall consider the orthogonal
projection onto a finite element subspace of L,(2) where Q is a bounded domain in
R?. For simplicity we assume that @ is polygonal and consider a family of
triangulations .7, of & into closed triangles K with disjoint interiors such that no
vertex of any triangle lies on the interior of an edge of another triangle. We shall use
the approximating spaces

V,={ve C(Q); v|x € Py, v]aq =0}.

In order to express our assumptions concerning the partition of £, we shall
introduce some notation. For a given K, we let R (K,) be the set of triangles which
are “j triangles away from K,”, defined by setting R,(K,) = K, and then,
recursively, for j > 1, R (K,) the union of the closed triangles in .7, which are not
in Ui<j R,(K,), but which have at least one vertex in R;_(K,). Thus R;(K) is the
union of the triangles which may be reached by a connected path Q,,...,Q; with Q,
a vertex of K,, O, a vertex of K and Q,0,,, an edge of the triangulation for
1 < i <, and not by any shorter such path. Setting /( K, K) = j for K € R (K) it
follows, in particular, that /(K,, K) is symmetric in K and K,. We also define
n;(K,) to be the number of triangles in R;(K).

Letting a denote the area of K, we shall assume below that, with some positive
constants C;, C,, a, B, r witha > 1, B > 1, we have uniformly for small 4,

(2.1) ag/ag, < Cid®X0) VK K,eT,,
and
(2.2) n(K)<GjB VKe€T,, j=1
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528 M. CROUZEIX AND V. THOMEE

When all triangles have angles bounded below, independently of 4, then ay is
bounded above and below by ch%, where h is the diameter of K. The case when
the triangulations are quasi-uniform then corresponds to a = 1. Note that by (2.1)
we have

area(Rj(KO)) > en (Kg)aga™,

and, if the angles are bounded below,

area(Rj(KO)) < area( URi(KO)) < C( Xj: hko"i/z) s

i)
whence
n(K,) < G* ifa=1,
< Ca¥ ifa>1.

In particular, if the angles are bounded below, (2.1) with a > 1 implies (2.2) with
r =0, B = a* However, in practice this is a very crude estimate. In fact, for any
triangulation which is a deformation of a quasi-uniform one, (2.2) holds with 8 = 1,
r=2.

The results of this section are based on the following variant of a lemma by
Descloux [5] concerning the orthogonal projection « in L,(2) onto V.

LEMMA 3. Let 1 < p < . There are positive constants y < 1 and C such that, if
supp v, C K,

(2.3) ool < CY"* KO)‘IIK/OZ_VPH wl, VK, Ko€7,,
where y depends only on k and C only on k and p.

Proof. Letting D, = U, ; R,(K,) denote the union of triangles which may only be
reached by paths of length at least j, we shall want to show that for some « > 0,

2 2 )
(2.4) lmvgll2.0, < kll7vgll2.r, for j > 1.
Assuming this for a moment, we denote the left side by ¢ - and thus find
qjgx(qj—l_qj) for j > 1,

whence

K K )/ 2 2
g, < 1+qu-1<(1+~) 0 < Y¥|l705 3,

where y = (x/(1 + «))"/2. Here, since suppu, C K,, we find, with (-, ), the
standard inner product in L,(R) with R omitted for R = , and p’ the conjugate
exponent p’ = p/(p — 1),

0
ool = max {2028 ¢ gy 0
xS, |Ixllz 9€hlqllz k,

gl
<|lvoll, .k, max —==
P70 gen qldk,

and hence by the standard transformation to a reference triangle, with § depending
on p and k,

lmvg 1y < 8ai? =2 vo lp.x, -
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Altogether, we have, if j = I(K, K)),

oo llo x < 7o ll2.r, < gj73 < 8y/ai? ™ Pllvgl, -

which is the desired result with C = § /.
It remains to show (2.4). Since supp v, C K, we have

(2.5) (mv5.x) =0 forx € V,,suppx € D;_, = D;UR,if j>1.

Let w = 7v, and define for any w € S, a new function &, in S, by setting &, = w
on D;and & =0o0n 2, ; =Ugcs xn p,-o0 K, the union of triangles, all vertices
of which may be reached from K, by paths of length at most j — 1. To define &
on the remaining triangles K, which are then included in R;(K,) but notin 2,_,,
we introduce for such a K the Lagrangian nodes (having barycentric coordinates
(iy/k,iy/k,i3/k) with i}, i, and i; nonnegative integers) and set & = w at all such
nodes which do not belong to 2,_, or to an edge joining two vertices in 2,_,, and
@; = 0 at the other nodes. With x = &, (2.5) takes the form

- 2 -
(“’s“’j) = ”w"z,D/ +(w’wj)RJ =0,

whence

2 -
(2.6) lellzp, < = (@, ) g -

In order to estimate the latter quantity, we consider again a triangle K C R with K
not included in 2, _, and note that K has either one or two vertices in 2,_, and the
remaining vertices in D,. For g € P, we let gy be the polynomial in P, which
vanishes at the nodal points that are in 2,_, or on an edge joining two vertices in
2,_, and agrees with g at the other Lagrangian nodes. We thus have

~ 2 —(q’ ql()
—(w, &) <[ wl2.k max ——== K.
a<h iqll3 k
By transformation to a reference triangle we find that the latter maximum is

independent of K in the two possible cases for the location of its vertices, so that,
after summation,

- . 2
_(“”“’j)R/ = - Z (“’a“’j)K < "“‘*’HZ,R/-
KcR,
Together with (2.6), this completes the proof of (2.4) and hence of the lemma.
The constant k may thus be expressed in terms of the reference triangle K with
vertices Q;, Q, and Q; as

_(q’qk‘j)f(
K = max max ~—‘—‘7‘—
=12 q¢P  |lqll5.

where Gz, = 0 at Q,, Gz, = g at the other nodes and g , = 0 at the vertices of
0,0, and = q at the other vertices.

We are now ready for our stability estimate for 7 in L,(£2). Here and below, a,
and v are the parameters in (2.1), (2.2) and (2.3).
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THEOREM 3. Let 1 < p < 0o and assume that the numbers «, B and vy are such that
(2.7) ¥Balt/2~ /Pl < 1,
Then
Irull < Clulp Vu e L,(@),
where C depends only on C,, C,, o, B, r, k and p.
Proof. We have in the usual way, for each K € 7,
(2.8) lmulle.x < Cag'/?*VP|l7uls.k.

Here, writing u = L. 5. u| g, and using Lemma 3, we find

lrullox < X 7(ule) o< € X v EFai2 VP ullp.x,
K'eg, K'ed,

so that, using also (2.8) and (2.1),

lrulbk < C X ¥ *Kag/ag)"*ulpx

K'eZ,
PN <
<C ¥ (ya22) Oyl ke

K'eZ,
Introducing the vectors X = {xg = ||l7ul|, x; K€ J,} and Y = { yx = |lull, «;
K € 7,) and the symmetric matrix M = (my x) with my . = §'%X), where
8 = yal'/271/7|, we conclude for the corresponding /,-vector and associate matrix
norms | - |,

lrully =1 X1y <MY |p = Mp]ull,.
It remains to bound the matrix norm |M|,. We have by the Riesz-Thorin theorem
and the symmetry of M,

(Ml <|MB7 M I = M| = max B850,
%z
Using now also the hypothesis (2.2) we find
® .
M1, < max Z n(K)8/ < CY j(Bs),
Jj=0 j=0

where the latter sum is finite under assumption (2.7). This completes the proof.
We now show a stability estimate for the gradient of the L,-projection.

THEOREM 4. Let 1 < p < oo and assume that the angles of J, are bounded below,
uniformly in h, and that a, B, and vy are such that

(2.9) yBal VP < 1.
Then
Ivruly < Clvul, forue WX(Q).

Proof. There exists a linear operator r,,: W;(Q) — V, such that for u € VVPI(Q),
(2.10) Ivrull, < Cllvul,
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and .
(211) lu = ryull, x < ChillVulp.k < Ca?|vulp.k.
Forp>2 ue W () implies u € C(Q), and r,u may be chosen as an interpolant
of uand K as K, whereas for p > 2 a preliminary local regularization as in Clément
[4] is needed and K may be chosen as K U R((K).
We may write
Vru = Vme+ Vru, wheree=u— ryu,
and, in view of (2.10), it suffices to estimate V7u. We have the inverse estimate
Ivmelp.x < Cag'* V7| 7ella k.

and, as in the proof of Theorem 3,

l7elox < € X v F0ai2= 1 lellp .
K'eg,

Hence, using also (2.1) and (2.11),

1-1
Ivrelsx< € X v (ag/ag) ™ ag ellp.x
K'eg,

<C X (") vl
K'eg,
The proof is now completed as in Theorem 3.

It is clear that the assumptions (2.7) and (2.9) are satisfied in the quasi-uniform
case. In order to see that they permit severely nonuniform triangulations, it is
necessary to know that the constant y is not too close to 1. For this purpose we
recall that y = (x/(1 + ))*/? with k = k, = max(k,,, k,,), Where with the nota-
tion of the proof of Lemma 3,

(2.12) K = max ——M, j=1,2,k>1.

9<P |lqllzk
Introducing the Lagrangian basis functions {y; }7* corresponding to the Lagrangian
nodes {Q;}* in K, so that ¢,(Q,) = §,, we have

ijs

2 k
lqll2.z = (4, ¢), q= Zgi‘l’iePka
i=1
where 4 is the matrix with elements a,; = (y,, ;). Correspondingly, the quadratic
form in the numerator in (2.12) may be obtained as

(¢.4x,) = (B4, £), j=12
where B, is a symmetric matrix obtained from A as follows: Let S be the set of
indices i such that §y ; is forced to vanish at Q;, i € S, and let
S’ ={1,2,..., N, J\S.
Then Gz ; = L, c 5 €;¥, and hence (¢, §z) = (B¢, §), with B = (b)), where
b;=0 ifi,jes,

=za, ifi€S, jeSorjeSs, iy,
=a,; ifi,jes"
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Fori=1, S = {1}, and for i = 2, S consists of the indices for which Q, are on Q,0,.
With this notation, «, is the largest eigenvalue of the eigenvalue problem
(2.13) — B§ = NA¢.
For k = 1 we have N, = 3 and
(48,8) = (& + £ + £ + 615, + £ + £18y) ag/6,
(Bi&,§) = (8 + &+ 6,5+ 384, + 6.85) a6,

(Byt £) = (& + 36,6 + 1626 an/6.
By completing squares we find easily that for both j =1and 2, A = (V6 — 2)/4 is
the smallest number such that
A(A¢,¢) +(BE,E) >0 VEe R
Hence,
ky=ky=k,=(6 —2)/4=112, y,=y3 -2 = 318.

For k = 2 and k = 3 we have N, = 6 and N, = 10 nodal points, respectively. By
numerical computation we have determined the largest eigenvalues of (2.13) in these
cases and found

048, K, =165, K, =165, y,= 376,

K12
and
K3 =032, K,y =.142, ky=.142, 1y, = .353.
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