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The Stability in- L  and W^ of the L2-Projection

onto Finite Element Function Spaces

By M. Crouzeix and V. Thomée

Abstract. The stability of the Z.2-projection onto some standard finite element spaces Vh,

considered as a map in Lp and W^, 1 ^ p < oo, is shown under weaker regularity require-

ments than quasi-uniformity of the triangulations underlying the definitions of the Vh.

0. Introduction. The purpose of this paper is to show the stability in Lp and Wp,

for 1 < p < oo, of the L2-projection onto some standard finite element subspaces.

Special emphasis is placed on requiring less than quasi-uniformity of the triangula-

tions entering in the definitions of the subspaces.

In the one-dimensional case, which is discussed in Section 1 below, we first give a

new proof of a result of T. Dupont (cf. de Boor [2]) showing Lœ stability without

any restriction on the defining partitions, thus extending an earlier result by

Douglas, Dupont and Wahlbin [6] for the quasi-uniform case. We then use the

technique developed to show the stability in Wp, in the case p > 1, under a quite

weak assumption on the partition, depending on p. We also show that some

restriction on the partition is needed for stability if p > 1. We remark that the

known Lp stability result has been extended to higher degrees of regularity of the

subspaces; see de Boor [3] and references therein.

In the case of a two-dimensional polygonal domain, discussed in Section 2, we

demonstrate Lp and Wp stability results for the L2-projection onto standard

piecewise polynomial spaces of Lagrangian type. The requirements on the triangula-

tions involved are more severe than in the one-dimensional case, but allow neverthe-

less a considerable degree of nonuniformity. The proofs are based on a technique

used by Descloux [5] to show Lx stability in the quasi-uniform case (cf. also

Douglas, Dupont and Wahlbin [7]).

Results such as the above are of interest, for instance, in the analysis of Galerkin

finite element methods for parabolic problems. Thus Bernardi and Raugel [1] use the

IV2 stability of the L2-projection to prove quasi-optimality of the Galerkin solution

with respect to the energy norm, and Schatz, Thomée and Wahlbin [8] apply the Lx

stability in a similar way (in the quasi-uniform case).

1. The One-Dimensional Case. In this section we shall study the orthogonal

projection m = mh with respect to L2(0,1) onto the subspace

Vh = (x e C(0,1); xl,, e Pk, j = 0,...,N; x(0) = X(l) = 0},
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522 M. CROUZEIX AND V. THOMEE

where 0 = x0 < xx < ■ ■ ■ < xN+x = 1 is a partition of [0,1] and I, = (x¡, x,+1).

We shall first demonstrate the following result, in which || • ||   denotes the norm in

M0,i).
Theorem 1. There is a constant C depending only on k such that

hu\\P^ C\\u\\p   VueL,(0,l),l </>< oo.

We shall then turn to estimates in

Wpl(0,l) ={ve L,(0,1); v' = dv/dx e Lp(0,l); v(0) = v(l) = OJ

and show, with h¡ = xi+x - x¡,

Theorem 2. Let 1 < p < oo and assume, for p > 1, that the partition is such that

h,/hj < C0a^-J\ where! < a < (k + l)^"1'. Then

¡Wl^CWu'Wp   VueWpl(0,l),

where C depends on k, and for p > 1 also on C0, a, and p.

For the proofs of these results we introduce the spaces

Vt={x^Vh;X(x,) = 0,i = l,...,N}

and Vk, the orthogonal complement of Vh2 in Vh with respect to the usual inner

product in L2(0,1). For k = 1 we have Vh2 = {0} and Vk = Vh. We also introduce

the orthogonal projections itj onto Vfc, j = 1,2, and obtain at once

(1.1) ir = irx + tt2       (tr = wx for k = 1).

We note that m2 is determined locally on each L by the equations

(1.2) (v2v,q)fj -(v,q)rj    for q e P»(/y) = [q e PK; q(Xj) = q(xJ+1) = 0),

where (•,•)/ lS the standard inner product in L2(Ij), and that a function in Vl is

completely determined by its values at the interior nodes, so that dim Vk = N.

For  v e C[0,1] with v(0) = v(l) = 0 we shall also use the piecewise linear

interpolant rhv e Vh and note that, for 1 < p < oo,

(1.3) |(^)'|,<ikiu
and, denoting the norm in Lp(I¡) by || • \\p ,.,

(!-4) Ik- rhv\\pJ.K jh^v'Wp.

Lemma 1. There is a constant C depending only on k such that, for 1 < p < oo,

(1.5) K"M C\\u\[p,       ueLp(Q,l),

and

(1.6) |(«2(u - rhu))'\\p < C||«'|U,       u e Wp\Q,\).

Proof. We consider first (1.5) for p = 1 and set wA = m2u. It follows, by taking

q = üh in (1.2), that
n

II «A Ik/,- <ll"lll./JI"Jloo,/,-
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Hence ||fiA||1(/j < Cill"Hi,/,, where

IMIi./JMI,./,
Cx =   max-.

^p°M)    kill/,

Using the change of variables y = (x - xt)/h¡, it is easily seen that Cx is indepen-

dent of the interval /, and thus depends only on k. Analogously, we obtain

(!-7) 11*2«IL/, < CiNL'o

for p = oo, and then for general p by the Riesz-Thorin theorem [9]. The desired

result now follows by taking pih powers and summing.

To prove (1.6), we note that

11/        / NN'II C2 ,, , s   m . II?   Wp
\(n2(u-rhu))\     ^-r-\\m2(u-rhu)\\pJi,   where C2 =    max     ——,

y' '        "i qeP¡¡(0,l)   \\H\\p

and, by (1.7) and (1.4),

||ît2(« - rhu)\\pJi < Cx\\u - rhu\\pJi < KAll "%,/,>

from which (1.6) follows with C = \CXC2.

In order to study the projection -nx, we shall construct a basis for V¿. For this

purpose let us define i| e Pk by

*(0) = 0,    *(1)-1,    (t,q)=  (1tqdx = 0   VqeP?.

For each nodal point x¡ we associate the function i//(. defined by

*,(*)-*(* h*'~l)    on',-,,

-♦(5^1        on/,,

= 0 onV(ll_lUli).

It is then easily seen that {\p,} x c Vk and that these functions thus form a basis.

For u given, and w = itxu = E^jW,*^,-, we then have

N

L Wi{4>„ 4>j) =  (". 4>j) = "y> j=l,...,N,
1 = 1

or in matrix form, with G = ((i//,, if>j)), IT = (vf,,..., wN)T and (/=(«,,..., uA,)7',

(1.8) GW=U.

We note that the Gram matrix G is tridiagonal. We shall need to compute its

nonzero elements.

Lemma 2. We have

and

■*'f-*<*W*'-i + *'>

(*"*'+l)= *(* + !)(*+ 2)*'-
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524 M. CROUZEIX AND V. THOMEE

Proof. By transformation of variables it suffices to show that

£*(*)2*"*(*72)

and

r*i*w-*)«- klk{;§k+2y

The definition of \p implies easily

Further, since $(x) - x and \p(l - x) - (I - x) e P£, we find

f1 *(x)(t(x)-x)dx =  P *(*)(*(! - x)-(l - x))dx = 0.

Hence, integrating by parts A: - 1 times, we have

£♦<*>'*-^R't^i*'*''1-*>']*
1    ri    k+lH ^k dk~l       1        ,

= 77/   xk + 1(l - x)  ——-dx
k'Jo dxk-1 1 - x

ldx
KJ0

and

= yf1xk+1dx= —^—-
kJ0 k(k + 2)

(-1)*'1 /i    >+u,        na rf*"1   1
y1 ̂ (x)^(i - *)&-Ht!   Z1 ̂+id - *)

o dx1''1 x
dx

(-l)k-1

Í-Ü-/"^(l-*)*<& =
/c(/c+ l)(/c+ 2)'

which completes the proof.

Let us introduce the diagonal matrix D with the same diagonal elements as G, i.e.,

d' = ̂ 2=WTY){h^ + h^

We may then write G in the form G = D(I + K), where K is a tridiagonal matrix

with diagonal elements zero and bidiagonal entries

k _   (*„*,+l) (-I)""1        *,-!

|U.||2 ^ + 1      **-! + *,'
(1.9) IIVMI

_ (-I)*"       *,■
'•' + 1 Jfc + 1      /!,_! + /?,'

The equation (1.8) now takes the form

(1.10) (/ + K)W= DlU.
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THE /.¡.-PROJECTION ONTO FINITE ELEMENT FUNCTION SPACES 525

We are now ready to prove Theorem 1. By Lemma 1 it remains only to prove

(1.11) lki«ll,<CNL       «GL/0,1),

and we begin by showing this for p = oo. This will be done by showing (here and

below we denote by | • |   the standard /^-norms for N-vectors)

(1.12) lki«IL < ci^ioo,

then

(1.13) \WU^C\D~lUU,

and finally

10-tyI» < CH«,.
To see that (1.12) holds, we note that, since for no x in (0,1) more than two ^¡(x)

are nonzero, we have

Fi« IL = max X, wrfiix) <2U\\ao\W\eo.

In view of (1.10), in order to show (1.13), we only need to show that (I + K)  x is

bounded in lx. But this follows at once from the fact that, by (1.9),

\k\x = max H\kij\ =
i

k + l

and hence

Finally,

le + K)-1!

\D~lU\

s£

<1,

k + 1

1 - l/(k + 1)

max
j

where

Cx = max

IM;) I   ;r„,„o        ̂   *-—- X 11 " II00'

\*A
\*j\ I/II2'

where the latter equation follows by transformation of the subintervals onto [0,1].

This completes the proof of (1.11) for p = oo. For p = 1 the result follows at once

by duality and for 1 < p < oo by the Riesz-Thorin theorem. The proof of Theorem

1 is now complete.

We now turn to the proof of Theorem 2. We may write

•nu = 7Tx(u - rhu) + 7T2(u - rhu) + rhu.

In view of Lemma 1 and (1.3) the last two terms are bounded, as desired, and it

remains to consider w = w,e where e = u — rhu. Letting W = (wx,...,wN)T where

w¡ = w(x¡), and £ = (ex,...,en)t where e, = (e,ip¡), we find that W solves (1.8)

with U replaced by e. We shall show, with D the diagonal matrix introduced above
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526 M. CROUZEIX AND V. THOMEE

and p' = p/(p - Y),

||w'||„< C\D-1/p'W\p,

then

(1.14) \D-l/P'W\P < C\D~1-1/p'e\p,

and finally

(1.15) \D-1^/p'e\p ^ C\\u'\\P,

which together complete the proof.

We have first

'fp=  E /  \*>M + »V+i*î+i 1 dx
i=oJr,

<2>"Jt\wif(h7Il+1 + h7P+l)U'(p
i-i

N

< CE^,r/,+V,r = C\D'1/p'W\p,I I     i I

(=1

where we have used

df~l < c(ht_x + a,)'-1 < c(h;ix+l + h;p+l)~\

The proof of (1.15) is also straightforward. We have, by Holder's inequality,

kl =l(«»'r'.)l <ll£IL/,_JI'/'iIL,/,-1 + ML/MIL,/,
<c(hyj;\\E\\pJi_i + hyqE\\pJi),

and hence by (1.4),

kl< cihWWu'Wpj,^ + h)^»Mu'\\P,,,)

< Cdj+V'Wu'Wr.i^or,,

whence (1.15) follows immediately.

It remains to show (1.14). Recalling that W satisfies (1.8), and hence (1.10), with U

replaced by e, we have

(D-1/P'(I + K)D1/p')D-1/p'W = D-l-We,

and it thus suffices to show that / + D1/pKD1/p has a bounded inverse in lp

under the assumptions of the theorem. For this purpose we estimate the powers of

the second term. Since K' is (21 + l)-diagonal and has nonnegative elements, we

have

\l/p'\ Yl

ü-yi<2/v      J'

Here,

D-1/P'K'D1/P'\p*k    max  (di/d>¡l/I''\K'\P.
\i~j\<2l

d,/dj = (h,_x + Ä,)/(Vi + hj) < C2a2l+1    for \i -j\ < 21.

Further, again since Kl is (21 + l)-diagonal, we have

l/í'|1<(2/ + i)|rL^(2/ + i)|ií|/00<
(*+!)''
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and, using once more the Riesz-Thorin theorem,

|A"'L< (21+ \)l/p-    forl</><oo.
(k + 1)'

Altogether we firfd, under the assumptions made,

oo

\(I + D-x/p'KDx/p'Y\ < 1 +  £ \D-l/P'K'Dl/P'\P

i=i

00 /       2/P'   \ I

<l+(C2a)1/P' 1(2/ +n1/P[fTj)   <oo,

which completes the proof.

We conclude by remarking that in Theorem 1 and in the case p = 1 of Theorem 2

no restriction is made concerning the partitions used, and that quite strong mesh

refinements are permitted for p > 1 in Theorem 2. The following example shows,

however, that some restriction is needed in the latter case: Consider the partition

with only one interior point xt = 1 — t, so that h0/hx = (1 - e)/e. Let k = \ and

u(x) = x(l - x). Then mu = ß\px, where ß is determined by the equation /5||*/'1||2

= (u, ¡px), or, after an easy calculation, ß = ^(1 + e(l — e)). In this case,

|(™)'||, = /?{/o1-E 6(1 - e)-pdx + ¡'    EE-Pdx}l/" > \e-Vp',

which tends to oo with 1/e if p > 1.

2. The Two-Dimensional Case. In this section we shall consider the orthogonal

projection onto a finite element subspace of L2(Q) where ñ is a bounded domain in

R2. For simplicity we assume that ß is polygonal and consider a family of

triangulations STh of S2 into closed triangles K with disjoint interiors such that no

vertex of any triangle lies on the interior of an edge of another triangle. We shall use

the approximating spaces

Vh= {veC(U);v\KePk,v\dQ = 0}.

In order to express our assumptions concerning the partition of fi, we shall

introduce some notation. For a given K0 we let Rj(K0) be the set of triangles which

are "j triangles away from K0", defined by setting R0(K0) = K0 and then,

recursively, for j ^ 1, Rj(K0) the union of the closed triangles in STh which are not

in \3i<] R¡(K0), but which have at least one vertex in RJ_1(K0). Thus Rj(K0) is the

union of the triangles which may be reached by a connected path Qx, ...,Qj with Qx

a vertex of K0, Qj a vertex of K and Q,Qi+x an edge of the triangulation for

1 < i <j, and not by any shorter such path. Setting l(K0, K) =j for K e Rj(K0) it

follows, in particular, that l(K0, K) is symmetric in K and K0. We also define

nj(K0) to be the number of triangles in Rj(K0).

Letting aK denote the area of K, we shall assume below that, with some positive

constants Cx, C2, a, ß, r with a ^ 1, ß ^ 1, we have uniformly for small h,

(2.1) aK/aKo < do«**»)       VK, K0e^h,

and

(2.2) Hj(K) < C2jp      VK<=rh,j>l.
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When all triangles have angles bounded below, independently of h, then aK is

bounded above and below by ch\, where hK is the diameter of K. The case when

the triangulations are quasi-uniform then corresponds to a = 1. Note that by (2.1)

we have

area(Rj(K0))> cn}(K0)aKa~J,

and, if the angles are bounded below,

area(*,(*„)) < areaf IJ *,(*<>)) < C   E hKa'A ,
W«y ' \i = Q j

whence

nj(K0) < Cj2       if o = 1,

< Ca2j    ifo>l.

In particular, if the angles are bounded below, (2.1) with a > 1 implies (2.2) with

r = 0, ß = a1. However, in practice this is a very crude estimate. In fact, for any

triangulation which is a deformation of a quasi-uniform one, (2.2) holds with ß = 1,

r = 2.

The results of this section are based on the following variant of a lemma by

Descloux [5] concerning the orthogonal projection tt in L2(Ü) onto Vh.

Lemma 3. Let 1 < p < oo. There are positive constants y < 1 and C such that, if

supp v0 c KQ,

(2.3) hv0\\2tK^Cy'^^aY02-l/p\\v0\\p   VK, KüeSTh,

where y depends only on k and C only on k and p.

Proof. Letting Dj = \Jj7>jR¡(K0) denote the union of triangles which may only be

reached by paths of length at least j, we shall want to show that for some k > 0,

2 2

(2-4) Iki/olko, < icÜT/Dolk^    for; ^ 1.

Assuming this for a moment, we denote the left side by qj and thus find

9/ « K(?y-i - aj)    forj>l,

whence

aj < TT7^-i < (iTl)^0 k y^II^oIIi.

where y = (k/(1 + k))1/2. Here, since suppt;0 cf0, we find, with (•, -)R the

standard inner product in L2(R) with R omitted for R = ß, and // the conjugate

exponent p' = ///(^ - 1),

,, h (vp,x)    „ K.g)jC    ,n      m llgllj.'.JC0
7j-f;0 U = max -— < max- < \\v0 L Kn max-—,

X«*     IIXÜ2 1*p"    Ml,*» '^   ll?IIÍ.*0

and hence by the standard transformation to a reference triangle, with 5 depending

on p and k,

hv0\\2<SaY0p'-1/2\\v0l,Ko.
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Altogether, we have, if j = l(K, K0),

llwolkx <lk"oll2.R, < ¿¡YA < M^2_1/i1klLiC,

which is the desired result with C = 8/y.

It remains to show (2.4). Since supp u0 c K0 we have

(2.5)        (too,X) = 0   forXeF/l,suppXc.D,-1=2>yUÄ,,if./>l.

Let co = <nv0 and define for any co e Sh a new function to, in Sh by setting w¡ = co

on Dj and w, = 0 on 27„, = UK£Srh,khd =o ^> tne union of triangles, all vertices

of which may be reached from K0 by paths of length at most j' — 1. To define to,

on the remaining triangles K, which are then included in Rj(K0) but not in 2y_1,

we introduce for such a iT the Lagrangian nodes (having barycentric coordinates

(ix/k, i2/k, i3/k) with ix, i2 and i3 nonnegative integers) and set S¡¡ = co at all such

nodes which do not belong to 27_j or to an edge joining two vertices in 2y_l4 and

¿j = 0 at the other nodes. With x = û,-, (2.5) takes the form

2

(u,üj) = lklkz>, +(u,ûj)Rj = 0,

whence

2

(2-6) Nk/>,< -(».»;)*/

In order to estimate the latter quantity, we consider again a triangle A^ c Rj with A

not included in 2,_x and note that K has either one or two vertices in 2y_! and the

remaining vertices in D'. For q e Pk we let qK be the polynomial in Pk which

vanishes at the nodal points that are in 2_j or on an edge joining two vertices in

2 _j and agrees with q at the other Lagrangian nodes. We thus have

-(«,«•)    <  to 2.AT max-.

I*?»     \\q\\l,K

By transformation to a reference triangle we find that the latter maximum is

independent of K in the two possible cases for the location of its vertices, so that,

after summation,

2

■(co,wy)R = -   £   (u,üj)KK K||w|k-v
KczRj

Together with (2.6), this completes the proof of (2.4) and hence of the lemma.

The constant k may thus be expressed in terms of the reference triangle K with

vertices Qx, Q2 and Q3 as

-(í»í*,í)jc
k =  max  max-,

y-i,2 ^h       \\q\\lk

where qkx = 0 at Qx, q^ x = q at the other nodes and q^ 2 = 0 at the vertices of

QXQ2 and = q at the other vertices.

We are now ready for our stability estimate for 77 in Lp(Q). Here and below, a, ß

and y are the parameters in (2.1), (2.2) and (2.3).
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Theorem 3. Let 1 < p < oo and assume that the numbers a, ß and y are such that

(2.7) 7)8a|i/2-i//>l < L

Then

||wt/|| < C\\u\\P   VueLp(ti),

where C depends only on Cx, C2, a, ß, r, k and p.

Proof. We have in the usual way, for each KeSTh,

(2.8) \\iru\\p,K^ G^1/2+1/l7r«|k*.

Here, writing u = T.K,e$- u\K,, and using Lemma 3, we find

Ik«ll2.*<   E lk("L-)IU<c E y'^K'W-1/ph\\p,K',
K'<E$-h K'eSj,

so that, using also (2.8) and (2.1),

UuWp.k^C   E   Tl<JC'Jr)(ûjrAjf)1/2"1/l«IU.«'

^CE   (yo^-i/pi)«*-*')!!«^^.

Introducing the vectors X = {xK = \\ttu\\p K; Ke$~h) and Y = [yK = \\u\\p K;

KeíTh} and the symmetric matrix M = (mK K,) with mKK, = 8I(-K-K'\ where

5 = ya}1/2~1/P\ we conclude for the corresponding /^-vector and associate matrix

norms | - ¡^

\\tru\\p = \X\P ^\M\P\Y\P = \M\p\\u\\p.

It remains to bound the matrix norm \M\p. We have by the Riesz-Thorin theorem

and the symmetry of M,

\M\P^\M\\/p\M\l~l/p =\M\X = max £««*•*'>.
K      K,

Using now also the hypothesis (2.2) we find

00 00

\M\pG max  Znj(K)SJ ^CZjr(ßS)\

where the latter sum is finite under assumption (2.7). This completes the proof.

We now show a stability estimate for the gradient of the L2-projection.

Theorem 4. Let 1 < p < oo and assume that the angles of !Th are bounded below,

uniformly in h, and that a, ß, and y are such that

(2.9) yßal-l/P < 1.

Then

\\Vrru\\P < C\\Vu\\P   forue Wp\ti).

Proof. There exists a linear operator rh: Wp(ti) -* Vh such that for u e Wp(Q),

(2.10) \Wrhu\\p< C||vt/||/>
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and

(2.11) ||M - rhu\\PiK < Ch Jvk|L* < Co^HvmIL*-

For p > 2, u e Wp($l) imphes u e C(Q), and rhu may be chosen as an interpolant

of u and K as K, whereas for p > 2 a preliminary local regularization as in Clément

[4] is needed and K may be chosen as K U RX(K).

We may write

Vïïu = V*T£ + Vt"am,   where e = « — rhu,

and, in view of (2.10), it suffices to estimate Vïïu. We have the inverse estimate

||Vire|L/f< Ca^1 + 1/;,||7re|k,v,

and, as in the proof of Theorem 3,

\\ve\\-,v<c y v«*-*v/2_i/''iipii„v|| *' c \\2,K ^5   ^      /_,      7 "X"' ||C||p,A.

K'e¿Th

Hence, using also (2.1) and (2.11),

|V«|»jr<C  E  y'(K'K\aK,/aK)l-l/i'a-K^ï\\t\\P,K
K-^srh

<C ¿  (yo    7^)        ||vu\\P,K'.

The proof is now completed as in Theorem 3.

It is clear that the assumptions (2.7) and (2.9) are satisfied in the quasi-uniform

case. In order to see that they permit severely nonuniform triangulations, it is

necessary to know that the constant y is not too close to 1. For this purpose we

recall that y = (k/(1 + k))1/2 with * = «:£ = max(icu, K2k), where with the nota-

tion of the proof of Lemma 3,

(2.12) «y*-max ~(J',yj)*,       7 = 1,2,A>1.

Introducing the Lagrangian basis functions {^j}xk corresponding to the Lagrangian

nodes {ßy }f* in K> so mat "Môy) = fyy, we nave

2 J Nk

\\q\\2.K={AZ,i),        q=   EÉW.-eP*,
7 = 1

where A is the matrix with elements atj = (\j/¡,\¡/j). Correspondingly, the quadratic

form in the numerator in (2.12) may be obtained as

{q,qk,j) = {Bji,0,       7 = 1,2,

where 5 is a symmetric matrix obtained from A as follows: Let 5 be the set of

indices i such that §£ ¡ is forced to vanish at Q¡, i e S, and let

S'= [l,2,...,Nk)\S.

Then qkj = ZJeS^j and hence (q, qk) = (B£, ¿), with B = (bu), where

bu = 0        if i, j e S,

— i,
•j if i e S, j e S' or j e S, i e S',

= au      if i, j e 5'.
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For i = 1, S = (1), and for i = 2, S consists of the indices for which Q¡ are on QXQ2.

With this notation, njk is the largest eigenvalue of the eigenvalue problem

(2.13) - Bjí = \At

For k = 1 we have Nx = 3 and

(At,t) = {g + a2 + 8 + «2 + ¿2¿3 + ê^KA

(Ä^.i) = (If + g + ¿2¿3 +   &Í2 +   Í«lí3)flx/6,

(A2í,{)-(«3 + e€l€3+K2Í3)fljt/6-

By completing squares we find easily that for both _/ = 1 and 2, a = (t/6 — 2)/4 is

the smallest number such that

M¿€,É)+(5yí,í)>0     V^G/<3.

Hence,

«j = kh = k12 = (>/6 - 2)/4 = .112,       yx = )/3 - {Ï = .318.

For k = 2 and /V = 3 we have 7V2 = 6 and A/3 = 10 nodal points, respectively. By

numerical computation we have determined the largest eigenvalues of (2.13) in these

cases and found

Ki2 = -048,    k22 = .165,    k2

and

k13 = .032,    k23 = .142,    /c3
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