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Most models of multilevel production and distribution systems assume unlimited production capacity at each site. When 
capacity limits are introduced, an ineffective policy may lead to increasingly large order backlogs: The stability of the 
system becomes an issue. In this paper, we examine the stability of a multi-echelon system in which each node has limited 
production capacity and operates under a base-stock policy. We show that if the mean demand per period is smaller than 
the capacity at every node, then inventories and backlogs are stable, having a unique stationary distribution to which they 
converge from all initial states. Under i.i.d. demands we show that the system is a Harris ergodic Markov chain and is 
thus wide-sense regenerative. Under a slightly stronger condition, inventories return to their target levels infinitely often, 
with probability one. We discuss cost implications of these results, and give extensions to systems with random lead 
times and periodic demands. 

M ost models of multi-echelon production and 
distribution systems assume unlimited produc- 

tion capacity and unlimited order size at each site. 
Under this assumption, various conditions on costs 
and model structure have been shown to imply the 
optimality of certain policies. Rather less is known 
about what happens when capacity limits are taken 
into account. For capacitated systems, a more fun- 
damental question than optimality of a policy is sta- 
bility: Does a given policy allow the system to meet 
demands, or does the system become increasingly 
backlogged? 

In this paper, we analyze the stability of a multi- 
echelon system in which each node follows a base- 
stock policy, modified because of capacity con- 
straints. Under a standard base-stock policy, the 
operation of each node is determined by a target level 
of safety stock. As demands deplete inventories, each 
node produces goods to restore inventories to their 
target levels. When production capacity is limited, it 
may take several periods of production to offset de- 
mand in a single period. Speaking loosely, the system 
is stable if, on average, it can produce finished goods 
at a greater rate than they are demanded. 

We show that our system is indeed stable under the 
natural capacity condition, namely, that the mean 
demand per period be smaller than the per-period 
production capacity at every node. This condition is 
not itself surprising; the interest lies in determining 
just what it implies. We show that for general station- 
ary demands, this condition suffices to ensure that the 
system has a unique stationary distribution to which 
it converges from all initial states. Under independent 
and identically distributed demands, we show that the 
state of the system constitutes a Harims ergodic 
Markov chain, and thus inherits the wide-sense re- 
generative structure of that class of processes. Under 
a slightly stronger condition, the system is regenera- 
tive in the classical sense and we identify explicit 
regeneration times. These properties have useful con- 
sequences for simulation, and it was the simulation- 
based optimization method of Glasserman and Tayur 
(1992a) that motivated this investigation. We also ex- 
amine stability in the presence of lead times and de- 
mands influenced by a randomly fluctuating 
environment, including the case of periodic demands. 

Our model is similar to those of Clark and Scarf 
(1960), Federgruen and Zipkin (1984), and Rosling 
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(1989) in most respects, except for the capacity limits. 
A related continuous-time model is that of Svoronos 
and Zipkin (1991); other variants can be found in 
Graves, Rinnooy Kan and Zipkin (1992). The litera- 
ture on capacitated systems is much more limited. 
For a single-stage capacitated system, Federgruen 
and Zipkin (1986a, b) show that a base-stock policy is 
optimal under rather general cost assumptions. Tayur 
(1992) provides a method for computing the optimal 
base-stock level. 

Given the difficulty of finding optimal policies for 
general capacitated systems, it makes sense to restrict 
attention to a specific class of operating rules. Base- 
stock policies are attractive because they are simple 
and are known to be optimal in certain settings. The 
stability results given here are part of the justification 
for the gradient estimation method of Glasserman and 
Tayur (1992a), which can be used to find optimal 
basestock levels. 

We know of no previous work on the stability of 
multi-echelon systems; but the stability of single- 
stage systems has been studied extensively, often in 
the setting of storage processes and dams. Prabhu 
(1965) includes some results of this type. General 
single-stage models are studied in Brockwell, Resnick 
and Tweedie (1982) in continuous time, and in Glynn 
(1989) in discrete time. Many additional references 
can be found in those papers. 

Once our model is appropriately set up, existing 
general tools can be used to prove stability results. In 
this regard, a key step in our analysis is representing 
the state of the system through echelon shortfalls. 
These are differences between (cumulative) base- 
stock levels and (cumulative) inventoriqs. The short- 
falls satisfy a recursive equation that facilitates their 
analysis. In particular, through this recursion we are 
able to apply the method of Loynes (1962) to find a 
stationary distribution, as Baccelli, Massey and Tow- 
sley (1989) and Baccelli and Liu (1992) do for certain 
queueing systems. The recursion is also useful in 
establishing Harris ergodicity through a coupling ar- 
gument, as in Thorisson (1983), Asmussen (1987), and 
Sigman (1988). While these techniques are reasonably 
familiar in queueing theory, they seem to be less well 
established in the stochastic production-inventory lit- 
erature. One purpose of this paper is to show how 
they can be used in this setting as well. 

The details of our model are presented in Section 1. 
Section 2 shows the existence of a stationary regime 
for the echelon shortfalls and convergence to station- 
arity from all initial conditions. In Section 3, after a 
brief review of Harris chains, we show that our sys- 
tem is Harris ergodic, then give conditions for explicit 

regeneration times. Section 4 discusses cost implica- 
tions of our stability results. Section 5 covers systems 
with fixed lead times and two models of variable lead 
times, giving stability conditions in each case. In 
Section 6 we generalize the demand process, allowing 
demands to be influenced by a (possibly periodic) 
random environment. 

1. THE MODEL 

Our basic model is a serial system in which each stage 
has limited capacity and follows a base-stock policy 
for echelon inventory, i.e., for cumulative inventory 
downstream from that stage. Where applicable, we 
note extensions to an assembly system. In all cases, 
inventories are reviewed periodically (i.e., the system 
evolves in discrete time) and unfilled orders are back- 
logged. Demands are nonnegative but otherwise ini- 
tially arbitrary; we introduce restrictions as they are 
needed. A discussion of lead times is postponed to 
Section 5. 

1.1. The Base-Stock Policy 

There are m stages, indexed by i = 1, ... , m. Stage 
1 supplies external demands, stage i + 1 supplies 
stage i for i = 1, . . ., m - 1, and stage m draws raw 
material from an unlimited source-an outside sup- 
plier. Within each period, events occur in the follow- 
ing order: First, production at stage i + 1 from the 
previous period advances to stage i, i = 1, . . ., m - 
1. Second, demands arrive at stage 1 and are filled or 
backlogged according to the available inventory. 
Lastly, the production level for the current period is 
set. This is the sequence of events in Clark and Scarf. 
Much of the subsequent literature assumes produc- 
tion levels are set before demands are revealed. The 
Clark-Scarf sequence simplifies our analysis. 

To describe the operation of the system we use the 
following notation: 

Dn = the demand in period n; 

Si = the base-stock level for echelon i; 

c= = the production capacity at stage i. 

At stage 1, 

nP = the inventory-backlog in period n, 

and for i = 2, ..., 

n = the installation inventory at stage i in period n. 

Thus, In ? 0, i = 2, ... , m is the inventory available 
for production at stage i - 1, and In is stock for 
external demands when it is positive and the size of 
the backlog when it is negative. 



GLASSERMAN AND TAYUR / 915 

Under a (modified) basestock policy, stage i sets its 
production level in each period to try to restore the 
echelon inventory position 

(A /)-Dn 

to level s'. Without capacity constraints, this would 
be achieved by setting production equal to the smaller 
of Dn and the available inventory. Since, however, 
production cannot exceed c', it may take multi- 
ple periods of production to offset demand in a single 
period, even if ample inventory is available for 
production. 

To make this more explicit, we let 

Rn the production at stage i in period n. 

Then the base-stock policy sets 

Rn min{s' + D, -n(I + n+ Ii) In+1 c'} 

i=1,...,m-1 (1) 

and 

RI = min{sm + Dn - 
(In+ 

+ + i1m), cm}. (2) 

The first term inside the minimum in (1) is the differ- 
ence between the target cumulative inventory s' for 
stages 1 through i and the actual inventoryI, + * * + 
In - D,n; stage i attempts to drive this difference to 
zero. The next two terms inside the minimum reflect 
the supply and capacity constraints, respectively. 
Since stage m draws raw material from an infinite 
source, the supply constraint is absent in (2). The 
evolution of the system is completely specified by (1), 
(2) and the following rules for the inventories: 

In+1 = I' + Rn _ Dn;. 

I'+, = I' + RIn- Rnl i = 2, . M..m 

These reflect the downstream flow of material. 

1.2. Echelon Shortfalls 

Physical inventory levels are arguably the most nat- 
ural descriptors of the state of the system. But, as is 
often the case in these types of systems, it turns out 
to be mathematically more convenient to work with 
echelon quantities. For i = 1, ... , m define the 
period-n shortfall for echelon i by 

Y'n = S'_2 In - (3) 
j=1 

The shortfalls determine the inventories, because 

Il= - (4y; 

So, we may analyze the stability of Yn - (Yn , 
Ynn) and then interpret the results for inventories. 

In general, the shortfall at stage i satisfies 

Yn'l = Yn + Dn - Rn- 

A base-stock policy attempts to reduce the shortfall to 
zero, while never driving it below zero. However, as 
in (1), production at stage i is constrained by the 
capacity c' and, for i < m, by the available inventory. 
Since stage m draws raw material from an infinite 
source, we have 

Yn+= Yn' + Dn - min{Yn + Dn, cm} 

-max{O, Yn + Dn - cm}. (6) 

For i = 1, ... , m - 1, the available inventory is 
limited to Ii % so we have 

Yi +l = Ye + Dn - min{Y, + Dn, cI }. 

Using (5) and simplifying, we get 

yi {0 fo i i yi+1D 
Y'1= max{, Yn + Dn C , Y+ln + Dn 

-(S-+1 )}. (7) 

Equations 6 and 7 are the key to our analysis. The first 
of these is a Lindley equation, and this will be impor- 
tant in what follows. Compared with Ii and Rn, the 
shortfalls lend themselves more easily to an analysis 
of stability. Summarizing developments thus far, we 
have: 

Lemma 1. The echelon shortfalls satisfy Yn+j = 

4(Yn, Dn) where 0: R? x R +-> R+ is defined by 
(6)-(7). In particular, 4 is increasing and continuous. 

Similar recursions hold in an assembly system, as 
we now explain. In an assembly system, each node i 
has a set r(i) of predecessor nodes with indices 
greater than i. If i is a root, then 7r(i) is empty and 
node i draws raw material from an infinite source. 
Otherwise, node i combines material from all nodes in 
V-(i) in equal quantities. Thus, period-n production at 
node i is limited by min{IfF j E v-(i)}. Proceeding as 
before, we obtain 

Y, +1 = max{O, Yn + Dn - i, 

max{Yn + D, - (s' - si)}} (8) 
jEiw(i) 

where the maximum over an empty set is taken to be 
zero. 

Remark. There is some similarity between the evo- 
lution of our serial system and that of queues in 



916 / GLASSERMAN AND TAYUR 

tandem. In both cases, material passes through a 
sequence of stages in series. However, the connec- 
tion does not go beyond that. Notice, in particular, 
that in (ordinary) tandem queues the service mecha- 
nism at each stage does not depend on the status of 
other stages, whereas in our system the target pro- 
duction at each stage depends on the inventory at all 
downstream stages. Hence, there is no direct connec- 
tion between (6)-(7) and recursions for quantities as- 
sociated with tandem queues. At the same time, 
techniques used to analyze queueing systems serve, 
with modification, as the basis of our analysis. 

2. THE STATIONARY REGIME 

Suppose, now, that the demands form a stationary 
process. In this setting, through the method of 
Loynes, the conclusion of Lemma 1 is sufficiently 
strong to imply the existence of a stationary version of 
the echelon shortfalls. (In fact, it would suffice for 4 
to be increasing and continuous in its first argument 
for all values of its second argument.) Moreover, the 
natural stability condition 

E[Do] < min{c1 : i = 1, ... , m}, (9) 

ensures that there is just one finite stationary distri- 
bution. Here and throughout, > denotes convergence 
in distribution. 

Theorem 1. Suppose that the demands {Dn, n > O} 
are stationary. 

i. There exists a (possibly infinite) stationary pro- 
cess {Ynv n ? O} satisfying Yn,1 = k(Y, DJ) 
for all n, such that if YO = 0 almost surely (a.s.) 
then Yn => Y'P 

ii. Suppose the demands are ergodic as well as sta- 
tionary. If (9) holds, then YO is almost surely 
finite; if, for some i, E[DO] > c', then YO = oo 
a.s., for allj = 1, ..., i. 

iii. For stationary, ergodic demands satisfying (9), 
Y => Yo for all YO. 

Outline of Proof. A detailed proof of each of the 
assertions in the theorem is given in Glasserman and 
Tayur (1992b). Here, we outline how a proof may be 
constructed by appealing to related results in the 
literature. 

Part i follows from Loynes via Lemma 1. In part ii, 
the assertion for ym follows from Loynes' analysis 
of the single-server queue. For Yi, i < m, proceed by 
induction on i from m down to 1 to show, using (7), 
that (9) implies that the stationary distribution is fi- 
nite; this step is similar to the analysis in Baccelli, 

Massey and Towsley of acyclic fork-join queues. For 
the converse, use the fact that Y+1 > Y' + D, - cl 
to conclude that if E[DO] > ci, then YO must be 
infinite. 

Part iii follows from part ii through a coupling ar- 
gument. The process {Yn, n > O} is said to admit 
coupling if for all pairs of initial states it is possible to 
construct two copies of the process started in those 
states in such a way that the two copies coincide after 
a finite (random) time. A process that admits coupling 
can have, at most, one stationary distribution. To 
show that Y admits coupling, note that Ym does (again 
from Loynes) and argue from (7) that Yi couples a 
finite, random time after (Yi+',... Ym) has 
coupled. 

Remarks 

i. The same argument works for the assembly sys- 
tem, proceeding by induction down the branches of 
the precedence tree. 

ii. Theorem 1 could alternatively be proved by ap- 
pealing to general results for (max, +) recursions 
in Baccelli and Liu (1992) or Glasserman and Yao 
(1992). The method of Baccelli and Liu associates 
a randomly weighted graph with recursions (like 
(6) and (7)) involving only max and +. Glasserman 
and Yao use a matrix formulation encompassing 
(max, +) and other types of recursions. In both 
approaches, the stability condition takes the form 
y < 0, where the constant y depends on the par- 
ticular recursion and cannot be computed easily in 
general. It can be shown that for our model y = 
E[DO] - minic', so Theorem 1 is consistent with 
the general results. 

3. REGENERATION 

The previous section established conditions for the 
stability of the echelon shortfall process when de- 
mands are stationary and ergodic. We now examine 
the regenerative structure of {Yn, n > 0} when 
{Dn, n > O} is an i.i.d. sequence. (In Section 6 we 
relax the i.i.d. assumption.) Regenerative properties 
are valuable in establishing convergence of costs 
and also simulation estimators. Indeed, it was the 
simulation-based application in Glasserman and 
Tayur (1992a) that initially motivated this 
investigation. 

We show that the stability condition of Section 2 
suffices to ensure that {Yn, n > O} possesses the 
regenerative structure of a Harris ergodic Markov 
chain. Under a stronger condition, we show that the 
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vector of shortfalls returns to the origin infinitely 
often, with probability one. 

3.1. Harris Recurrence 

Many of the attractive properties of classical regen- 
erative processes have been shown to hold for the 
somewhat weaker regenerative structure of Harris 
recurrent Markov chains. We briefly review key def- 
initions and results of this framework to apply them to 
our model. More extensive coverage can be found in 
Nummelin (1984) and Asmussen (1987); the treatment 
in Sigman is particularly relevant to our application. 

The general setting for Harris recurrence is a 
Markov chain X = {X, n > O} on a state-space S 
with Borel sets 9a. Let P, denote the law of X when 
XO = x. Then X is Harris recurrent if there exists a 
o-finite measure qfron (S, I), not identically zero, such 
that, for all A E , 

+i(A ) > O Px( I 1 {Xn CzA} = X 
n=O 

=1 forallxES. (10) 

Thus, every set of positive q+-measure is visited infi- 
nitely often from all initial states. Every Harris recur- 
rent Markov chain has an invariant measure 7- that is 
unique up to multiplication by a constant. The sets of 
positive n-measure are precisely those that are visited 
infinitely often from all initial states. If ir is finite 
(hence a probability, without loss of generality), then 
X is calledpositive Harris recurrent. If, in addition, X 
is aperiodic, then it is Harris ergodic. 

The connection with regeneration enters as fol- 
lows. If X is Harris recurrent, then there exists a 
(discrete-time) renewal process {Tk, k > 1} and an 
integer r > 1 such that 

{(XTk +n, ion 0), (Tn+k+l - Tn+k, n fl O)} 

has the same distribution for all k ? 1 and is inde- 
pendent of 

{Tl, ... lo TRk (Xn, 0 : n < k -r)}- 

When r > 1, there may be dependence between 
consecutive cycles {X, Tk- 1 < n < Tk}, in contrast 
to the classical case of independent cycles (and this is 
indeed the case in our model). However, if X is pos- 
itive Harris recurrent and iff: S -* R is 7r-integrable, 
then the regenerative ratio formula 

Tk-1 

E [ f(Xn) 

E,[f(Xo)] = n= ETk - I (11) 

remains valid, as does the associated central limit 
theorem (under second-moment assumptions). More- 
over, if X is Harris ergodic, then for all initial 
conditions the distribution of X,, converges to 7- in 
total vatiation; that is, 

sug lPx (Xn E: A) - (A)) -0 
ACE 

as n -> oo for all x E S. Indeed, this total variation 
convergence to a probability measure completely 
characterizes Harris ergodicity. 

A powerful tool in the analysis of Harris ergodic 
Markov chains is a connection with coupling; see, for 
example, Thorisson (1983), Asmussen and Thorisson 
(1987), and Sigman (1988) for background. The main 
result is this: A Markov chain with an invariant prob- 
ability measure admits coupling if and only if it is 
Harris ergodic. Since we already used a coupling 
argument for Y in Section 2, it is now easy to prove 
this: 

Theorem 2. Let demands {Dn, n > O} be i. i. d. with 
E[Do] < minic'. Then {Yn, n > O} is a Harris ergodic 
Markov chain. 

Proof. Since Yn1 = O(Yn, D), n > 0, Y is a 
Markov chain when D is i.i.d. We know from 
Theorem 1 that Y has an invariant (i.e., stationary) 
distribution and that Y admits coupling. Thus, Y is 
Harris ergodic. 

As a result of Theorem 2, Y inherits the regenera- 
tive structure of Harris ergodic Markov chains and 
the attendant ratio formula and convergence results. 
The same holds for the inventory levels: 

Corollary 1. Under the conditions of Theorem 2, the 
inventory process {(I, .'.., Im), n > 0} is a Harris 
ergodic Markov chain. 

Proof. Equations (3)-(5) put Y, and I,, = (In, ... 
Inm) in one-to-one correspondence for all n. Conse- 
quently, I = {I, n ? 0} is Markov if Y is, and I is 
Harris ergodic if Y is. 

3.2. Explicit Regeneration Times 

While Harris recurrence ensures the existence of 
(wide-sense) regeneration times {rk, k ? 1}, it does 
not provide a means of identifying these times. Ex- 
plicit regeneration times are not needed for conver- 
gence results, but they are useful in, for example, 
computing confidence intervals for simulation estima- 
tors. We now give a sufficient condition for {Y,, n ? 
0} to have readily identifiable regeneration times. 
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Theorem 3. Let demands be i.i.d. with E[Do] < 
minic . Define so 0 and suppose that 

P(Do < s'- s'-1) > O i = 1, . . ., m. (12) 

Then Y returns to the origin infinitely often, with 
probability one. 

Proof. If E[DO] < ci, then P(DO < c1) > 0. Conse- 
quently, under the conditions of the theorem there 
exists an E with E < minic1 and E < mini(s' - s 
such that 8 _ P(Do < e) > 0. Since Y has a finite 
stationary distribution, there exists a constant b > 0 
such that the set Bb C Rm defined by 

Bb 
_ 

f(Yl 
.. ,YM) 0 1<Y i < b, i = 1, ...,I ml 

is visited infinitely often by Y. We will show that there 
exists an integer r > 0 and a real p such that 

Px (Yr = 0) > p > 0 for all x E Bb, (13) 

from which it follows that Y visits 0 infinitely often. 
If Do < E, then either Ym = 0 or Ym 7 Ym - 

(cm - E). Thus, every time a demand falls in [0, E], 

the echelon-m shortfall is decreased by at least cm - 
E, until it reaches zero. Starting in Bb, it takes at most 
rm = [b/(cm - E)l consecutive such demands to drive 
that shortfall to zero. Thus, withpm = 3rm, we have 

Px(Y7 = 0) ? pm for allx E Bb. 
Suppose now that Y%O1, ..., Yo = 0 for some i 

and that Y. S b. With probability at least 3f, short- 
falls i + 1, ... , m remain at zero for the next n 
transitions. Moreover, for any n, if Y+ = 0 and 
Y' > 0, then the inventory In+ 1 available for use by 
stage i is strictly greater than s+1 - si; see (5). Thus, 
if Dn < c, stage i cannot be constrained by inventory, 
and either Yn + 1 = or Yn + 1 Yn - (ci _ E). If we 
set ri = [b/(c' - E)l then, with probability at least 

Pi = 3ri, Y' is driven to zero in ri steps. We con- 
clude that with probability at least p = Pi ... pm, 

Yr*+...+rm = O for any YO E Bb. 

Corollary 2. Under the conditions of Theorem 3, the 
inventory process {(In', .. ., Inx), n > 0} returns to 
(s 1 s2 _ s1 , Sm - Sm-1) infinitely often, with 
probability one. 

The conclusion of Theorem 3 is not, in general, true 
without (12) or further distributional assumptions on 
demands. This is particularly clear when si+ 1 s s' for 
some i; that is, stage i + 1 keeps no safety stock. In 
this case, the shortfall Y' can never reach zero unless 
Do = 0 with positive probability. 

4. COST IMPLICATIONS 

The condition in Theorem 3 motivates an investiga- 
tion into what ranges of parameters can be optimal 
when we impose costs. The stability results of the 
previous two sections also make it possible to give a 
partial characterization of infinite-horizon costs, and 
this may be useful in optimization. 

To each echelon i we assign an inventory holding 
cost h', i = 1, ... , m. Backorders at stage 1 are 
penalized at ratep. There is no fixed cost for produc- 
tion in a period; if there were, a base-stock policy 
would be unattractive. Costs are incurred at the end 
of each period, so the cost in period n is 

m 
f(Yn ) A p(y, - s 1) + + hi(s'-Y') (14) 

i-l1 

From the stability results of Sections 2 and 3, we 
obtain a partial characterization of the infinite-horizon 
average cost for any choice of parameters. Let YO be 
as in Section 2, and define 

F1(y) = P(Yo Sy), y E R, 

for i = 1, ..., m. As a consequence of Theorem 1, 
we have 

Corollary 3. Under the conditions of Theorem 1 iii, 

n-1 

n 2 f(Yi) -E[f(Yo)] 
i=o 

51 m S 
-P (y -s 1)dF 1(y) + hi (Si -y)dFi(y), 

with probability one for all YO. The case E[ f (Yo)] 
oo is not excluded. 

This result is a direct consequence of the strong law 
of large numbers for ergodic stationary sequences and 
the fact that f is nonnegative. The form of E[f(YO)] 
is precisely what one would expect; our results guar- 
antee that the limit holds, and may, therefore, be 
useful in finding optimal base-stock levels. In partic- 
ular, this result can be used in the computation of 
optimal levels in the two cases where base-stock pol- 
icies are known to be optimal: a multistage uncapac- 
itated system and a single-stage capacitated system. 

Superficially, the expression in Corollary 3 is the 
type required for the optimization algorithm of Van 
Houtum and Zijm (1990) for multistage uncapacitated 
serial systems. In the uncapacitated case, F' can be 
expressed in terms of the demand distribution K and 
sJ, j > i, and these sJ appear only as location param- 
eters. The shortfall distributions are nested because 
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the system decomposes by stages. However, in the 
presence of capacities, each F1 depends on s"', . . .. 
sm, and c', . .. , cm in a more intricate way, and so the 
method of Van Houtum and Zijm is not applicable. 

In the case of a single-stage capacitated system, 
Tayur provides an expression for F1, the shortfall 
distribution. He shows that if the capacity is c, then 
F' solves the equation Fl * K = F1, where K is the 
demand distribution and where F,(x) = F(c + x) for 
any distribution F. Solving for s in the equation F1 * 
K(s) = p/(p + h) yields the optimal base-stock level. 

The two results above imply that a multistage sys- 
tem that is uncapacitated but for stage m can be 
solved. The algorithm of Van Houtum and Zijm re- 
quires only one modification, namely, replacing the 
Fm for the uncapacitated system with the distribution 
found by Tayur. Unfortunately, other capacitated 
cases are not amenable to such straightforward anal- 
ysis. However, some conclusions about optimal base- 
stock levels can still be drawn in special cases of 
multistage capacitated systems. Our next result 
shows that if capacities increase with the stage index, 
then it is never optimal to hold more safety stock 
between each pair of stages than the downstream 
stage can use in a single period: 

Proposition 1. Suppose that c1 C 2 C 
* Cm. If 

si+ -si ci,i=1,.. m -1, then reducing 
each s + s _s to c', leaving s 1 fixed, decreases costs. 

Proof. In light of Corollary 3, we may assume that the 
shortfall process starts at the origin. We claim that if 
s + St s Ci, i 7...Sm 

- 1, then for all n we 
have 

Yn ? Yn ? * Ynm (15) 

and 

Y'n+ 1 =max{ 0, Yn + Dn -ci} i = 1, . ,m. (1 6) 

By hypothesis, (15) holds at n = 0. From (7) we see 
that (15) implies (16) whenever c' > s-+1 - s', and, 
in turn, (16) implies that (15) holds at n + 1 if the ce's 
are increasing. 

Under the assumption that Y0 = 0, (16) shows that 
the evolution of Y is independent of the base-stock 
levels, so long as they satisfy s'+1 - si 

' 
ci. How- 

ever, the echelon inventories s - Y", i = 1, ...,m 
increase with the base-stock levels. Thus, if we re- 
duce Si+ 1 to sl1 + Cl1 + . .. + ci, i = 1, . 1, 
we lower holding costs without increasing back- 
orders, since Y' is unchanged. 

Suppose now that the capacity levels are subject to 
control, possibly within a range of values. For 

example, it might be possible to physically re-allocate 
capacity from one stage to another, or else a stage 
may modify its policy, choosing a maximum produc- 
tion level less than its capacity. This has the same 
effect as changing some ci. The following result gives 
a necessary condition for a set of optimal capacity 
levels. 

Proposition 2. An optimal (cl, . .., ctm) satisfies 
c ci , i = 1, ... , m. More precisely, given any 
set of (c 1, cm) if ci + 1 > c' then replacing c'+ 
with c' does not increase costs. 

Proof. Let Y be the shortfall process under the orig- 
inal capacities and let Y be the shortfall process when 
c i+ 1 is reduced to c'. Initialize the two processes with 
YJ = YJ, j ? i + 1 and 

=1 = max{YO+1, YO + (Si+1 _ Si) - c'}. (17) 

For all n, we claim that YJ = YJ,v j i + 1, and that 
(17) holds with zero replaced by n. Stages i + 2, ... 

m are unaffected by the change in ci , so the claim 
certainly holds for those stages. Assuming the claim is 
valid at some fixed n, we have 

Yn+1 = max{O, Yn + Dn -c', Yn + Dn 
_ 
-i+1 - si)} 

= max{O, Yn + Dn -ci, Yn+1 + Dn 
- 

(Si+1 - si)} 

-Yn+l; 

the first equality uses (7) with c'+1 replaced by c' 
and the second equality substitutes (17) evaluated at 
n into the first equality. It follows that the claim holds 
at n + 1 for Y1, ... , Y'. A similar argument shows 
that (17) is preserved at each transition. 

It follows from the claim just proved that reducing 
ci+1 to c' does not decrease any shortfalls; hence, it 
does not increase any echelon inventory levels. More- 
over, since Y1 is unchanged, backorder penalties are 
not increased; so, total costs are not increased. 

5. LEAD TIMES 

We now examine variants of our basic model in which 
it may take several periods for production at stage i to 
become available inventory at stage i - 1. We show 
that for fixed lead times, our results continue to hold 
essentially without modification. When each order 
draws a random lead time and moves in parallel with 
other orders, it suffices to add that the mean lead time 
be finite. When shipments between stages are FIFO 
(in a sense to be made precise), a stronger condition 
is needed for stability. 
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5.1. Fixed Lead Times 

Suppose that production at stage i in period n be- 
comes available at stage i - 1 in period n + f' + 1, 
i = 2, . . . , m. At stage 1, El is the lead time from final 
production to external availability. Our earlier model 
used E' = 0, i = 1, . . ., m. We now let the lead times 
be any fixed, nonnegative integers. 

Once we introduce lead times, installation invento- 
ries no longer give a complete description of the phys- 
ical state of the system: We must record, as well, 
inventories in transit. As in Section 1, let R' denote 
production at stage i in period n. The physical state is 
now 

(I, R-1 S R-e,)z=l. (18) 

The variables R1 -i +j, j = 1, .. ., (', indicate how 
much new inventory becomes available at stage i - 1 
in the next e1 periods. 

Consider the system illustrated on the left side in 
Figure 1. There is a lead time of f3 = 2 between stages 
i and i - 1, illustrated by the line segment between 
the production facility (the circle) and the storage 
facility (the square) for stage i. Think of this line 
segment as being divided into e1 = 2 positions. A 
quantity R -2 is placed in the first position dur- 
ing period n - 2; this is the stage-i production in that 
period. In period n - 1, the quantity R'n-2 advances 
one position and a quantity R 1 is placed in the first 
position. In period n, the quantity Rn-2 arrives at the 
storage facility and increments It; the quantity R'1 
advances to the second lead time position; and R' is 
placed in the first lead time position. Thus, stage-i 

Figure 1. Replacing a lead time with dummy nodes. 
Stock advances by one dummy node each 
period, thus mimicking the effect of a lead 
time. 

production advances by one lead time position each 
period. The same holds for arbitrary e1. 

We reduce the operation of this system to one with 
additional stages but no lead times. This reduction 
rests on the following lemma, for a system without 
lead times. 

Lemma 2. Suppose that for some i > 1, we have ci = 

ct1 ands' = s- 1. If IP 6 c', then R'- = Itfor all 
n ? 1 and, consequently, R7-' = R1 for all n > 2. 
In other words, in each period stage i - 1 produces 
exactly as much as stage i produced in the previous 
period. 

Proof. Since stages i and i - 1 have the same base- 
stock level, the shortfall for echelon i - 1 equals the 
shortfall for echelon i plus the inventory between the 
two stages; i.e., Y'-' = Y' + In for all n. In partic- 
ular, in period 1 the echelon-(i - 1) shortfall is at least 
I'; so, R 1 = I1, under our hypothesis that IP S 

ci= c-1. Now suppose that R-1 = Ik for all k = 

1, ..., n - 1. Then the only inventory between 
stages i and i - 1 at the start of period n is the 
previous period's production at stage i; that is, It = 

Rn1., which is no greater than c11 = ci. As noted, 
Yi 1 It, so in period n, stage i - 1 produces as 
much as the supply of inventory allows; i.e., R'-7 = 

It. The first assertion is thus proved by induction. 
The second assertion follows: If stage i - 1 depletes 
its inventory in each period, then R7-' =1 - _R for all 
n. 

With this result, we can mimic the operation of a 
system with fixed lead times using additional stages 
and no lead times. Introduce f' dummy stages be- 
tween (genuine) stages i and i - 1, each having 
capacity ci and base-stock level si. This augmented 
system operates as an ordinary serial system without 
lead times. (The right side of Figure 1 illustrates the 
insertion of dummy nodes.) From Lemma 2 we see 
that the effect of these dummy nodes is to advance 
production at stage i by one node each period. So, 
period-n production at stage i becomes available at 
stage i - 1 in period n - e1 + 1. This reproduces the 
effect of the lead time W. The assumption in Lemma 
2 that the initial inventory IP does not exceed ci is not 
a restriction: In the lead time model, the quantity one 
position downstream from stage i is just the previous 
period's production at stage i and so cannot exceed 
c1. 

As before, our analysis simplifies if we work with 
shortfalls rather than inventories. For i = 1, ... , m 
and j = 1, ... , f, denote by yi; the echelon shortfall 
corresponding to thejth dummy node upstream from 
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stage i - 1 and let yi,i +1 = Yi denote the echelon 
shortfall corresponding to stage i. Paralleling (3) we 
have 

i-l ek-1 
Yz i _ ik + E R k-fk-r 

and replacing (5) we have 

. . . . . .~. 

R__+ = Yn~J- YnJ+1 j = 1, ..., t 

In = Y 1 _ YR + (si-r 

with the obvious modifications for i = 1. Since 
the system with dummy nodes has no lead times, the 
augmented set of shortfalls {(Ye,=1,..., i + 1, 
i= 1, ... ., in), n ? O} satisfies a recursion of exactly 

the type studied in previous sections. The next result 
thus follows. 

Theorem 4. If the lead times fo, i = 1, ., m, are 
fixed, nonnegative integers, then Theorems 1 and 2 
hold for the augmented shortfalls. 

As an immediate consequence, we have: 

Corollar 4. If the demands {De, n i O} are i.i.d. 
with E[Do] < minic, then the Markov chain 
{(In, Rn-1, ***, Rn fi)i1,n? O} is Harris ergodic. 

If any of the lead times is strictly positive, then 
there are at least two stages in the augmented system 
with the same base-stock level: If, say, ei > 1, then 
the f' dummy nodes between (genuine) stages i and 
i - 1 all use level si. Consequently, condition (12) in 
Theorem 3 cannot be satisfied unless the demand 
distribution has mass at zero. In this setting, (12) is 
actually necessary for installation inventories to re- 
turn infinitely often to their full-inventory level 
(S', 52 

- .l, sm - Sm-1). For if P(DO = 0) = 
0 and e1 1, then for all n, either Yin > 0 or else there 
is inventory in transit through stage i. 

5.2. Parallel Lead Times 

We now consider a system with random lead times. 
Production in period n at stage i becomes available 
stock at stage i - 1 after Ln periods; the sequence of 
vectors {(L,1 ... , Lm), n > 0} is stationary. We refer 
to this mechanism as parallel lead times because 
different shipments do not interfere with each other. 
Overtaking is possible. 

If the lead times were bounded, then with minor 
modification this model could be fit into the 

framework of subsection 5.1. Without this restriction, 
we need to introduce infinitely many dummy nodes 
between each pair of stages. The dummy capacities 
and base-stock levels are as in subsection 5.1. Also, 
as before, Y'J denotes the echelon shortfall for thejth 
dummy node upstream from stage i - 1, but now j 
has no upper bound. The stage-i shortfall is still Yi. 
The state of the shortfalls in period n is (Yb; Yn, j- 
1, 2, ... ). Mimic the operation of the original 
system as follows. If, in the original system, a quan- 
tity of production R1 at stage i draws lead time Li, 
then this quantity moves (at the end of the period) 
directly to the finished inventory at the (Li + 1)-st 
dummy node upstream from node i - 1. The short- 
falls Y1J, j = L1 + 1, L + 2, .. , all drop byR', and 
the shortfalls Y, j = 1,..., L' remain unchanged. 
Subsequently, the quantity R1 advances by one 
dummy stage in each period, and so becomes avail- 
able for use by genuine stage i - 1 exactly L' periods 
after it is completed at stage i. 

Let us call an array {yi; yi', j = 1, 2,...; i = 

1, . .. , m} of shortfalls finite if all entries are finite 
and if, in addition, all but finitely many increments 
yif _ yivj+1 are zero. The second condition means that 
there are only finitely many dummy stages with in- 
ventory. We now have: 

Theorem 5. Suppose {(Dn, Ln), n > O} is stationary 
and ergodic. Suppose that E[Do] < minic' and 
E[L' ] < oo, i = 1, ..., m. Then the augmented 
shorfallprocess {(Yn; Yn>, j = 1, 2, ..., i = 1, 
m),n > O} has a unique finite stationary distribution 
to which it converges from all finite initial states. 

Proof. If Yn denotes the array of period-n shortfalls, 
then Yn + 1 is completely determined by Yn, Dn, and 
Ln. Moreover, the mapping from (Yn, Dn, Ln) to 
Yn+1 is component-wise increasing and continuous in 
Yn for all values of Dn and Ln It follows as in the 
system without lead times that there is a stationary 
process {Y,n n B O}, satisfying the same recursion, 
such that if YO = 0, then Yn > Yo. We now argue that 
YO is finite, almost surely. 

The evolution of Ym is still governed by the Lindley 
equation, so, under our stability condition, YO is 
finite, almost surely. We claim that for all j = 1, 
2, .. ., Y'J is finite, almost surely. To prove this, we 
construct an auxilliary G/G/oo queue, modeling the 
movement of inventory from stage m to stage m - 1. 
The queue evolves in discrete time. There is an arrival 
at time n precisely if there is production at stage m in 
period n; i.e., if Y' + Dn > 0. The service time of 
the customer arriving at time n is L'. The number 
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of customers in this auxilliary queue is the number of 
shipments in progress from stage m to stage m - 1, 
and multiplying the number in system by cm gives an 
upper bound on the total inventory in transit between 
these stages. We know that ym couples with its sta- 
tionary version in finite time. Hence, the arrival pro- 
cess to our infinite-server queue couples with a 
stationary version in finite time. For a G/G/?o system 
with stationary arrivals and service times and integra- 
ble service times, we know from Theorem 2.3.1 of 
Franken et al. (1982) that the queue has a unique finite 
stationary distribution (and couples with its stationary 
version in finite time). 

Returning to the shortfalls, the event {YOJ = oo} has 
probability zero or one if demands are ergodic. Since 
Y: is finite, the only way to have Yo' infinite is to 
have infinite inventory in dummy stages j + 1, j + 

2, .... However, this inventory is bounded by the 
auxilliary G/G/oo queue and cannot be infinite; so, 
Yo' is finite almost surely, j = 1, 2, 

We Inow argue that only finitely many YO - 

0 ii, j 1, 2, ..., are nonzero. Each such in- 
crement is at least as great as production in stage m in 
some previous period. When the stage-m shortfall is 
stationary, so is the sequence of production levels at 
stage m. But then for the total dummy-node inventory 

co 

E (POM' 
i 

yRm'i+') 
j=1 

to be finite, only finitely many terms can be nonzero. 
This further implies that for any finite YO, (YWi, j - 
1, 2, ... ) couples with its stationary version in finite 
time: These shortfalls couple with those of an initially 
zero system in N periods, where N is the largest j for 
which YON7 < Y7}-1; i.e., N is the largest index 
among the dummy nodes with inventory. This mirrors 
the fact that the G/G/co queue couples with an 
initially-empty system once all customers present at 
time zero have departed. 

Now consider stage m - 1. Its evolution is gov- 
erned by the dummy stage that immediately precedes 
it, with no intervening lead time. Moreover, we have 
shown that YO is finite. Hience, as in Theorem 1 we 
conclude that Y-1 must also be finite, almost surely. 

We can now repeat the argument for stages i = 

m - 1, ... , 1, but with one modification. At stage i, 
there is an arrival to the auxilliary G/G/oo queue in 
period n if the shortfall is strictly positive and 
inventory is available; i.e., Y-r + Dn > 0 and 
}7i+1,1 < Yn. But this arrival process also couples 
with a stationary version (because yi+l 1 and Y' do), 
so the argument still applies. We conclude, by 

induction, that all components of Y0 are finite almost 
surely, and (by coupling) that this is the only finite 
stationary distribution and that Y, converges to it 
from all finite YQ. 

When {(Dn, Ln), n > 0} are i.i.d., {Yn, n fl 0} is 
a Markov chain. Coupling, together with the exis- 
tence of a stationary distribution, proves Harris er- 
godicity. The state space for {Yn, n > O}, R"xo is 
more complicated than those we considered earlier, 
but with the topology of component-wise conver- 
gence Rn" is metrizable as a complete, separable 
metric space (Billingsley 1968, p. 218) and this suffices 
for general results on Harris chains. As in our previ- 
ous models, regeneration of the shortfalls implies re- 
generation of the inventory levels. 

5.3. FIFO Lead Times 

In our final model of lead times, each shipment from 
stage i must wait until all previous shipments from i 
have been transported before initiating its transition. 
This models a system in which a single vehicle moves 
stock between each pair of stages; the vehicle com- 
pletes a roundtrip for each period in which the up- 
stream stage has production. For period-n production 
at stage i, the roundtrip travel time is L'. For this 
system, much stronger and less easily verified condi- 
tions are needed for stability. We use the notation of 
subsection 5.2. 

Theorem 6. Under the conditions of Theorem 5, there 
exists a stationary version {Yn, n > O} of the short- 
falls for which Yn 4' YO if YO 0. If, in addition, 

P(Yb + Do > 0, Yjo+1,1 + 5i+1 - 5i <yb) 

< 1/E[Lo], i- 1, m. - m 1; (19) 

P(Yo + Do > 0) < 1!E[Lm], (20) 

then YO is finite and Yn => YO for all finite initial 
conditions. 

Proof. The argument of Theorem 5 applies with mi- 
nor modification. The existence of {Y,n n > 0} and 
convergence to it from Y0 = 0 is just as before. To 
establish finiteness, we now model the movement of 
stock between stages as a GIG/1 queue. The service 
times are the L's; there is an arrival to the queue 
between stages i and i - 1 at time n if there is 
production at stage i in period n. The probabilities 
appearing in (19) and (20) are precisely the arrival 
rates to the auxilliary queues, so the inequalities there 
are just the familiar conditions for stability of these 
queues. When the auxilliary queues are stable, their 
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stationary versions have finite queue lengths and cou- 
ple in finite time with versions starting in any other 
state. Finiteness of the queue implies finiteness of the 
shortfalls, as in the proof of Theorem 5. 

A shortcoming of Theorem 6 is that the probabili- 
ties in (19)-(20) are generally unknown. Ordinarily, we 
would expect them to be close to 1, and in any case 1 
is a simple upper bound. This suggests that E[L'] must 
typically be less than 1 for stability, implying that the 
lead times are often zero; i.e., less than one period. 

The key step in Theorems 5 and 6 is bounding pipe- 
line inventories through an auxilliary stationary system. 
Other models of lead times can be analyzed similarly. 
For a general discussion of stochastic lead times, see 
Zipkin (1986) and Svoronos and Zipkin (1991). 

6. RANDOM ENVIRONMENTS AND PERIODIC 
DEMANDS 

We now return to the basic model of Section 1 to 
consider systems with more general demand patterns 
and, correspondingly, more general production rules. 
Our new assumption is that demands are influenced 
by an environment that is itself subject to random 
fluctuations. Base-stock levels may be adjusted to 
changes in the environment. 

We model the environment as a Markov chain with 
a general state space. This is no real restriction; 
rather, it means that the state of the environment is 
sufficiently rich to include all relevant information 
about the past. We first require the environment to be 
Harris ergodic, then allow it to be periodic, thus 
capturing, e.g., seasonal demand patterns. 

Models of this type are not new to inventory the- 
ory. Iglehart and Karlin (1962) find optimal policies 
when the demand distribution is governed by a finite- 
state Markov chain. More recently, Song and Zipkin 
(1993) consider a countable-state Markov environ- 
ment and show that an environment-dependent 
basestock policy is optimal for their cost structure. 
Song and Zipkin also discuss modeling applications 
and review related work. 

6.1. Ergodic Environment 

Throughout this section 0 = {0,n, n > 0} is a Harris 
ergodic Markov chain representing the state of the 
world. Demands vary with 0, so we let the base-stock 
levels vary too. Denote by Sn = (S1, ..., S') the 
vector of base-stock levels in period n. Our key 
assumption is that (Dn, Sn) = g(0n) for some func- 
tion g. In the terminology of Sigman, demands and 
base-stock levels are govermed by the environment. 

To define echelon shortfalls, we need to assume 
that the (now random) base-stock levels have upper 
bounds. Suppose, then, that there are constants 
si, i - 1,..., m, for which Sn < s, almost surely, 
for all n and i. Define virtual shortfalls with respect to 
these upper bounds: 

Ylns-- IJn i =1, ...m 
j=1 

Production decisions at stage i are based on the actual 
shortfall Y' - S- + S'; this is the difference between 
the echelon-i inventory and the current base-stock 
level S . Production is set to try to reduce the actual 
shortfall to zero. A drop in the base-stock level from 
one period to the next can make the actual shortfall 
negative, whereas the virtual shortfalls can never be 
less than zero. Arguing just as in (6) and (7), we obtain 

Yn'+ = max{&m - Yn, Yn + Dn - cm} (21) 

Yn+= max{1 - S, Yn + Dn - C IYi+l +Dn 

- (&i+1 - Si)} (22) 

We now give conditions for stability. Let {0,n, 
- oo < n < oo} be a stationary version of 0 and let E 
denote expectation with respect to this stationary 
version. 

Theorem 7. Suppose that the environment {( n0, n ? 

O} is a Haris ergodic Markov chain and that de- 
mands and base-stock levels are governed by 0. Sup- 
pose the base-stock levels are bounded above. If 
E[So] < oo and E[Do] < minic', then {(Yn, 0,), n ? 

O} is a Harris ergodic Markov chain. 

Proof. That {(Yn,, On), n ? O} is Markov follows 
from (21)-(22) and the fact that (Dn, Sn) g(0n), just 
as in Lemma 3.1 of Sigman. The result follows once 
we show that this Markov chain has a stationary 
distribution and admits coupling. 

To construct a stationary distribution, drive the 
system with {fon, n > O}, and thus stationary de- 
mands and base-stock levels. Equations 21 and 22 
show that Yn + 1 is increasing and continuous in Yn for 
all values of the other arguments in these recursions. 
This shows that the distribution of Yn converges to a 
stationary distribution YO if YO = 0; see Theorem 1. 
Moreover, YO can be constructed on the same prob- 
ability space as e to make (YO, 60) stationary for 
{(Yn, On), n > O}. The proof that Y0 is finite proceeds 
much as in Theorem 1. 

To show coupling, observe that because e is Harris 
ergodic there exists a finite random time N at which 
0 couples with its stationary version. Subsequently, 
any two copies of Y driven by the same 0 are driven 



924 / GLASSERMAN AND TAYUR 

by the same stationary version. It suffices to show 
that any such copy of Y couples with one started at 
zero. At some finite Nm > N, the maximum in (21) is 
attained by the first term; otherwise Ym would de- 
crease to -oo. Subsequently, ym agrees with a copy 
started at zero. Now proceed by induction on i from 
m down to 1. Some time after (yi+11 ... , Y7) has 
coupled with a copy started at zero, the maximum in 
(22) must be attained by either the first or the third 
term, and at that time Yi couples. 

Remark. A referee points out that the extension from 
Theorem 2 to Theorem 7 can be argued based on a 
general coupling result of Borovkov and Foss (1992). 

6.2. Periodic Demands 

Perhaps the greatest limitation of the usual assump- 
tion of demand stationarity is that it rules out seasonal 
or, more generally, periodic effects. We now intro- 
duce periodicity in demands through periodicity in the 
environment. 

Theorem 8. Let the conditions of Theorem 7 be in 
effect, except that now 0 is positive Haris recurrent 
with period d > 1. Then {(Yn, 0)n), n > O} is positive 
Haris recurrent. 

Proof. As in subsection VI.3 of Asmussen or subsec- 
tion 2.4 of Nummelin, the state space of e can be 
partitioned into d sets E1, ... , Ed such that ' =_ 

{0nd+i, n > O} has state-space Ei, i = 1, ..., d. By 
Proposition 3.14 of Nummelin, each 0' is Harris re- 
current on Ei, i = 1, ... , d, and is, in fact, positive 
Harris recurrent because 0 is positive Harris recur- 
rent. By construction, each (h is aperiodic and thus 
Harris ergodic. Now, just as in Theorem 7, {(Yn, O)n), 
n > O} has a stationary distribution (YO, 00); the 
proof of this step did not use Harris ergodicity, just 
the existence of a stationary version of (0. Let Zi be 
the process {(Ynd+i, Ond+i), n > O} on R+ x Ei, i = 

1, ... , d. Then the distribution 79 defined by 

7r'( * ) = P((fo, 60o) E *160 E= Ei ) 

is stationary for Zi. Moreover, {(Yn, On), n > O} 
admits coupling from any two initial states in R+n x 
Ei, because 0 admits coupling from any two states 
in Et (by Harris ergodicity of Oi) and Y couples once 
0 couples, as in Theorem 7. It follows that each Z1, 
i = 1, ..., d admits coupling and is thus Harris 
ergodic. Taking if = 7rr + ... + ird satisfies condi- 
tion 10 and shows that {(Yn, O)n), n > O} is Harris 
recurrent. Since each ir- is finite, so is the stationary 
distribution of (Y, 0), which is therefore positive 
Harris recurrent. 
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