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THE STABILITY OF ALMOST HOMOGENEOUS IN TIME
MARKOV SEMIGROUPS OF OPERATORS

UDC 519.21

M. V. KARTASHOV

Abstract. A homogeneous in time semigroup of Markov operators defined by its
infinitesimal operator with a dense domain is considered. The operator is perturbed
by another bounded operator that depends on time, and this results in a nonhomoge-
neous semigroup. Under certain assumptions, we prove that the perturbed semigroup
is a unique solution of a weak integral equation determined by the initial semigroup
and an operator perturbation function; this equation is an integral analog of the
perturbed Kolmogorov equation. We find explicit estimates for the stability of the

perturbed semigroup in the case where the perturbation operator is uniformly small.

The stability of perturbed homogeneous semigroups of operators is studied in the
author monograph [1] for discrete time. The general questions of the perturbation theory
of operators are discussed in the Kato monograph [2]. Problems concerning the stability
of nonhomogeneous semigroups with continuous time become more important in view of
the growing number of models in risk theory, insurance, and finance mathematics. These
models are nonhomogeneous in time (in view of the season phenomena, say) and are not
yet studied in detail.

1. Setting of the problem

1. Let (E, Ξ) be a measurable space. By fΞ and mΞ we denote the classes of mea-
surable functions and finite measures that may attain negative values on (E, Ξ).

Let ℵ ⊂ mΞ be a Banach subspace of mΞ equipped with the norm ‖ · ‖ and such that

(M) Var(µ) ≤ c‖µ‖, ‖µ‖ ≤ ‖µ + ν‖ for all µ, ν ∈ ℵ, ν ≥ 0,

and some constant c.
Consider the dual space � ⊂ fΞ of ℵ that consists of functions equipped with the

norm
‖f‖ = sup(|µf |, ‖µ‖ ≤ 1, µ ∈ ℵ)

where the dual linear form µ is such that

µf =
∫

E

f(x) µ(dx), µ ∈ ℵ, f ∈ �,

and

(1) ‖µ‖ = sup(|µf |, ‖f‖ ≤ 1, f ∈ �).

The space � contains all measurable bounded functions if condition (M) holds. Some
examples of such spaces and their dual counterparts are given in [1, Chapter 1].
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120 M. V. KARTASHOV

Any transition kernel Q = (Q(x, B), x ∈ E, B ∈ Ξ) on (E, Ξ) generates the linear
mappings

µQ(B) =
∫

E

µ(dx)Q(x, B) : mΞ → mΞ,(2)

Qf(x) =
∫

E

Q(x, dy)f(y) : fΞ → fΞ(3)

(see [3]). The linear subclasses of these mappings equipped with the finite norms

(4) ‖Q‖ = sup(‖µQ‖, ‖µ‖ ≤ 1) = sup(‖Qf‖, ‖f‖ ≤ 1) < ∞
form Banach spaces of bounded linear operators and are denoted by L(ℵ) and L(�),
respectively; the product of the corresponding operators is generated by the kernel

(5) PQ(x, B) =
∫

E

P (x, dy)Q(y, B).

2. Let (P (s, x, t, B), x ∈ E, B ∈ Ξ, 0 ≤ s ≤ t ≤ T ) be a Markov transition function
understood in the broad sense [4, Chapter 3]. Corresponding to this transition function
are two linear mappings defined according to (2) and (3), namely

Pst : mΞ → mΞ, Pst : fΞ → fΞ.

These mappings form a semigroup with respect to multiplication if they are bounded
(see [3, 4]). The mappings are bounded if ℵ is the space of all bounded charges equipped
with the total variation norm and � is the space of all measurable functions equipped
with the sup-norm.

The semigroup of operators (Qst, 0 ≤ s ≤ t ≤ T ) is homogeneous in time if

(6) Qst = Qt−s, 0 ≤ s ≤ t ≤ T.

3. For some 0 ≤ T ≤ ∞, let the homogeneous semigroup of bounded operators

(7) (Qt, t ∈ [0, T ]) ⊂ L(�), QsQt = Qs+t, s, t ∈ [0, T ],

be defined on the spaces of measures ℵ and functions �. Moreover we assume that

(Q) there exists h > 0: sup
s≤h

‖Qs‖ ≡ q(h) < ∞.

We also assume that

(A) �0 =
{

f ∈ � : the limit lim
h→0

1
h

(Qhf − f) ≡ Af ∈ � exists
}

is dense in �.

The limit in condition (A) corresponds to strong convergence (that is, to the con-
vergence in the norm of the space �). The linear operator A involved in condition (A)
is densely defined, and, moreover, it is the strong infinitesimal operator of the semi-
group Qs. Note that condition (A) implies, in particular, that the semigroup given by

(8) for all f ∈ �0 : there exists lim
h→0

Qhf = f

is strongly continuous and that the semigroup given by

(9) for all µ ∈ ℵ, f ∈ � : there exists lim
h→0

µQhf = µf

is weakly continuous.
4. We also consider a nonhomogeneous semigroup given by

(10) (Pst, s, t ∈ [0, T ], s ≤ t) ⊂ L(�), PsuPut = Pst, 0 ≤ s ≤ u ≤ t ≤ T.
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ALMOST HOMOGENEOUS SEMIGROUPS 121

Assume that this semigroup is bounded, that is,

(P) sup
0≤s≤t≤T

‖Pst‖ < ∞,

and that its perturbed infinitesimal operator is given by

(D)
the limit lim

u↑s,v↓s

1
v − u

(Puvf − Qv−uf) ≡ Dsf ∈ �

exists for all s ∈ [0, T ] and f ∈ �0.

Moreover we assume that this operator is bounded; that is,

(T) sup
s≤T

‖Ds‖ ≡ ε(T ) < ∞ for all s ∈ [0, T ], Ds ∈ L(�).

Remark. Conditions (A), (D), and (T) imply that the infinitesimal operator of the semi-
group Pst is defined on �0 and is equal to A + Ds; that is,

(AD)
the limit lim

u↑s,v↓s

1
v − u

(Puvf − f) ≡ (A + Ds)f ∈ �

exists for all s ∈ [0, T ] and f ∈ �0.

2. Main results

The above assumptions yield that the perturbation of a nonhomogeneous semigroup
Pst − Qt−s satisfies an integral analog of the Kolmogorov equation.

Theorem 1. Assume that conditions (Q), (A), (P), (D), and (T) hold. Then

(PQ) µPstf = µQt−sf +
∫ t

s

µPsuDuQt−uf du

for all µ ∈ ℵ, f ∈ �, and all 0 ≤ s ≤ t ≤ T where

(11) ϕu = ϕu(µ, f) = µPsuDuQt−uf, u ∈ [s, t],

is a real Borel bounded function and the integral is understood in the Lebesgue sense.

Similarly to the case of the Kolmogorov equations, equation (PQ) for the unknown
operator function Pst uniquely determines the semigroup via Qs and Ds in the case of
bounded perturbations.

Theorem 2. Let a homogeneous semigroup Qs and perturbation Ds satisfy conditions
of the boundedness and existence of the infinitesimal operator, that is, conditions (Q)
and (A), and condition (T) of the boundedness of its perturbation.

Then equation (PQ) has a unique solution (Pst, 0 ≤ s ≤ t ≤ T ) ⊂ L(�) that coincides
with the Neuman series of the method of sequential iterations; that is,

µPstf = µQt−sf

+
∑
n≥1

∫
.

∫
s≤u1≤···≤un≤t

µQu1−s

(
n−1∏
k=1

Duk
Quk+1−uk

)

× Dun
Qt−un

f du1 . . . dun.

(12)

Moreover, this solution is the semigroup defined by (10) and satisfies conditions of the
boundedness (P) and approximation (D).

To state the result on the stability, we assume that the homogeneous semigroup Qs is
uniformly ergodic with respect to the norm of the space � (see [1]); that is,

(13) there exists Π ∈ L(�) such that ‖Qt − Π‖ → 0, t → ∞,

where the operator norm is defined by (4).
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In the case of a uniformly ergodic semigroup, the operator Π ∈ L(�) is a stochastic
projector [1]:

Π2 = Π = ΠQs = QsΠ.

If, for some s, the transition kernel Qs has a unique invariant probability π ∈ ℵ : π =
πQs, then the above projector is generated by the kernel Π(x, A) = π(A) that does
not depend on x [1]. The uniqueness of the invariant probability holds for nonreducible
Markov processes; the necessary and sufficient conditions for this property can be found
in [5].

It is shown in [6, 7] that the integral ergodicity index

(14) σ(T ) =
∫ T

0

‖Qt − Π‖ dt

is finite for jump processes even if T = ∞.
Explicit bounds for σ(T ) are obtained in [7] in terms of the generalized potential of

the corresponding process (this is the inverse operator to the infinitesimal operator A).
Theorem 1 implies the uniform estimate of the stability in the case of small perturba-

tions Ds.

Theorem 3. Assume that condition (Q), (A), (P), (D), and (T) hold. Let the integral
ergodicity index σ(T ) in (14) be finite, and let the stochastic kernel Qs have a unique
invariant probability.

If the norm of the perturbation in condition (T) is such that

(15) ε(T ) ≡ sup
s≤T

‖Ds‖ < 1/σ(T ),

then the following stability inequality holds for the operator norm (4):

(16) sup
0≤s≤t≤T

‖Pst − Qt−s‖ ≤ ε(T )σ(T )
1 − ε(T )σ(T )

q(T )

where q(T ) is defined in condition (Q).

The following estimate of the stability holds for a more general case. Note however
that this estimate is weaker than the preceding one.

Theorem 4. Assume that conditions (Q), (A), (P), (D), and (T) hold. Then

(17) sup
0≤s≤t≤T

‖Pst − Qt−s‖ ≤
(
exp(Tε(T )q(T )) − 1

)
q(T ).

3. Proofs

Note that the multiplicative property (7) and boundedness condition (Q) imply that
q(t) < ∞ for all t < T . In what follows the symbol I ∈ L(�) denotes the unit operator
and 1 ∈ � is the function that equals 1 for all arguments.

The weak continuity of the semigroup (9) follows from the strong continuity of the
semigroup (8) on a dense set �0 in the same way as in the proof of Lemma 2(b) below.

Lemma 1. If (Q) and (A) hold, then

Qsf ∈ �0 for all s ∈ [0, T ] and f ∈ �0,(18)

AQsf = QsAf ∈ � for all s ∈ [0, T ] and f ∈ �0.(19)

Proof. Statements (18) and (19) follow from the definition of the operator A in condi-
tion (A) by taking into account condition (Q):

AQsf ≡ lim
h→0

1
h

(QhQsf − Qsf) = Qs lim
h→0

1
h

(Qhf − f) = QsAf. �
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ALMOST HOMOGENEOUS SEMIGROUPS 123

Lemma 2. If conditions (Q) and (A) hold, then
(a) for all f ∈ �0, the function Qsf : [0, T ] → � is continuous,
(b) for all µ ∈ ℵ and f ∈ �, the function µQsf : [0, T ] → R is continuous.

Proof. Assertion (a) follows from (18) and from condition (Q):
‖Qs+hf − Qsf‖ = ‖Qs(Qhf − f)‖ ≤ q(s)‖Qhf − f‖ → 0, h ↓ 0,

‖Qs−hf − Qsf‖ = ‖Qs−h(Qhf − f)‖ ≤ q(s)‖Qhf − f‖ → 0, h ↓ 0.

Now we prove assertion (b). According to condition (A), for any f ∈ � there exists a
sequence fn such that

fn ∈ �0 : fn → f.

Then
lim
h→0

|µQs+hf − µQsf |

≤ lim
h→0

|µQs+hf − µQs+hfn| + lim
h→0

|µQsf − µQsfn| + lim
h→0

|µQs+hfn − µQsfn|

≤ 2‖µ‖q(t)‖f − fn‖ + lim
h→0

|µQs+hfn − µQsfn| = 2‖µ‖q(t)‖f − fn‖

for s, s+h ∈ [0, t]. The right-hand side of the latter relation tends to zero as n → ∞. �
Lemma 3. Let conditions (A), (D), and (T) hold. Then

(a) the infinitesimal operator of the semigroup Pst is defined on �0 and is equal to

A + Ds;

(b) for all f ∈ �0, the function Puvf is strongly continuous; that is, Puvf → f as
u ↑ s and v ↓ s;

(c) for all µ ∈ ℵ and f ∈ �, the function µPuvf is left continuous with respect to u
and right continuous with respect to v for all 0 ≤ u ≤ v ≤ T .

Proof. Assertion (a), as well as (AD), is a corollary of the obvious equality

(20)
1

v − u
(Puvf − f) =

1
v − u

(Qv−uf − f) +
1

v − u
(Puvf − Qv−uf)

where the strong limits as u ↑ s and v ↓ s exist for f ∈ �0 according to conditions (A)
and (D).

The strong continuity in assertion (b) follows from the existence of the strong limits
in (20).

Let f ∈ �0. Then (AD) implies the right continuity of µPuvf with respect to v, since

µPu,v+hf = (µPuv)Pv,v+hf → (µPuv)f, h ↓ 0.

In the general case, that is, in the case of f ∈ �, the continuity follows from the fact
that �0 ⊂ � is dense; the proof is the same as that of Lemma 2(b).

Now we prove that µPuvf is left continuous with respect to u. Since Pu−h,uf → f as
h ↓ 0, we obtain weak convergence in the same way as in Lemma 2; that is, we prove
that

µPu−h,uf → µf, h ↓ 0,

for all µ ∈ ℵ, f ∈ �, and for f ∈ �0, since �0 is dense.
Finally, the boundedness condition (P) implies for all µ ∈ ℵ and f ∈ � that

µPu−h,vf = µPu−h,u(Pu,vf) → µPu,vf, h ↓ 0. �
Lemma 4. Let conditions (Q), (A), (P), (D), and (T) hold. Then the function

(21) Φu = Φu(µ, f) = µPsuQt−uf, u ∈ [s, t],

is continuous for all µ ∈ ℵ, f ∈ �, and 0 ≤ s ≤ t ≤ T .
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Proof. First we consider the case of f ∈ �0. To check the left continuity, let v be fixed
and u ↑ v. Then

Φv − Φu = µPsvQt−vf − µPsuQt−uf = µPsu(Qt−v − Qt−u)f + µ(Psv − Psu)Qt−vf

= µPsuQt−v(I − Qv−u)f + µPsu(Puv − I)Qt−vf.

It follows from Lemma 1 that Qt−vf ∈ �0. Thus we derive from Lemmas 2 and 3 and
conditions (Q), (T), and (P) that

|Φv − Φu| ≤ sup
u≤t

‖µPsu‖(q(t)‖(I − Qv−u)f‖ + ‖(Puv − I)Qt−vf‖) → 0, u ↑ v.

To check the right continuity, fix u and write

Φv − Φu = µPsvQt−vf − µPsuQt−uf = µPsv(Qt−v − Qt−u)f + µ(Psv − Psu)Qt−uf

= µPsvQt−v(I − Qv−u)f + µPsu(Puv − I)Qt−uf

for v > u. Similarly, it follows from Qt−uf ∈ �0 by applying Lemmas 2 and 3 that

|Φv − Φu| ≤ sup
v≤t

‖µPsv‖(q(t)‖(I − Qv−u)f‖ + ‖(Puv − I)Qt−uf‖) → 0, v ↓ u.

Thus the function Φu(µ, f) is continuous for all f ∈ �0.
Now we consider the general case of f ∈ �. According to condition (A) we pick up a

sequence {fn} such that fn ∈ �0 and fn → f . Then

(22) |Φu(µ, f) − Φu(µ, fn)| ≤ sup
u≤t

‖µPsu‖ q(t) ‖f − fn‖ → 0, n → ∞,

uniformly with respect to u ∈ [s, t]. Since Φu(µ, fn) is continuous, Φu(µ, f) is also
continuous. �

Lemma 5. Let conditions (Q), (A), (P), (D), and (T) hold. Then the function Φu

defined in (21) is differentiable for all µ ∈ ℵ, f ∈ �0, and 0 ≤ s ≤ t ≤ T . Moreover

(23)
d

du
Φu = ϕu ≡ µPsuDuQt−uf

for all u ∈ [s, t].

Proof. We prove that the right and left derivatives exist at every point and that they are
equal to ϕu.

Let v be fixed and u ↑ v. Put h = v − u. Then

Φv − Φu = hµPsuDvQt−vf + µPsu(Puv − Qv−u − hDv)Qt−vf

= hµPsvDvQt−vf + o(h)

= hϕv + o(h), h ↓ 0,

since µPsuDvQt−vf → ϕv by Lemma 3, Qt−vf ∈ �0 by Lemma 1, and

‖(Puv − Qv−u − hDv)Qt−vf‖ = o(h), h ↓ 0,

by condition (D). Therefore
d−

du
Φu = ϕu.

Now let u be fixed and v ↓ u. Put h = v − u. Then

Φv − Φu = µPsu(Puv − Qv−u)Qt−vf

= hµPsuDuQt−uf + µPsu(Puv − Qv−u − hDu)Qt−uf

+ µPsu(Puv − Qv−u)Qt−v(I − Qv−u + hA)f

+ h(µPsuQt−uAf − µPsvQt−vAf).
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Since Qt−uf ∈ �0, we get

|Φv − Φu − hϕu| ≤ sup
u≤t

‖µPsu‖ · ‖(Puv − Qv−u − hDu)Qt−uf‖

+ sup
u≤t

‖µPsu‖(1 + q(t))‖(I − Qv−u + hA)f‖

+ h|µPsuQt−uAf − µPsvQt−vAf |
= o(h), h ↓ 0,

in view of conditions (P), (D), (Q), and (A) and Lemma 4. Thus the derivative

d+

du
Φu = ϕu

exists. �

Note that ϕu is a Borel function as a limit of continuous functions

(Φv − Φu)/(v − u).

The boundedness of ϕu obviously follows from (Q), (T), and (P):

sup
s≤u≤t

|ϕu| ≤ sup
s≤u≤t

‖µPsu‖ε(t)q(t)‖f‖.

Proof of Theorem 1. Let f ∈ �0. According to Lemma 5

(24) Φt(µ, f) − Φs(µ, f) =
∫ t

s

ϕu(µ, f) du

for almost all s and t.
Since the left- and right-hand sides are continuous with respect to s and t, the latter

equality holds for all s and t.
Given an arbitrary f ∈ �, consider fn ∈ �0 : fn → f . According to (22),

Φt = Φt(µ, f) = lim
n→∞

Φt(µ, fn).

The convergence

sup
s≤u≤t

|ϕu(µ, f) − ϕu(µ, fn)| ≤ sup
s≤u≤t

‖µPsu‖ε(t)q(t)‖f − fn‖ → 0, n → ∞,

is uniform with respect to u. Thus equality (24) for f = fn implies (24) for an arbitrary
function f ∈ �. �

Proof of Theorem 2. Note that it is sufficient to prove the theorem for a finite T only, so
that we assume below that T < ∞.

Put T2 = {(s, t) : 0 ≤ s ≤ t ≤ T}. Consider the Banach space of bounded linear
operators

L(�, T2) = {Pst : T2 → L(�)}
equipped with the norm

‖|P· ·|‖ = sup(‖Pst‖, (s, t) ∈ T2).

Consider a linear operator £ : L(�, T2) → L(�, T2) acting for elements µ ∈ ℵ and
f ∈ � at a point (s, t) as follows:

(25) µ(£P· ·)stf =
∫ t

s

µPsuDuQt−uf du.

Since
sup(|µ(£P· ·)stf | , (s, t) ∈ T2) ≤ ‖µ‖ · ‖|P· ·|‖ ε(T )q(T ) ‖f‖T
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in view of conditions (Q) and (T), relation (25) uniquely defines a bounded linear operator
on L(�, T2). Iterating equality (25), we obtain for n ≥ 1 that

(26) µ(£nP· ·)stf =
∫

. . .

∫
s≤u1≤···≤un≤t

µPs,u1

n∏
k=1

Duk
Quk+1−uk

f du1 . . . dun

where un+1 = t by definition. Thus conditions (Q) and (T) imply

|µ(£nP· ·)stf | ≤ ‖µ‖ · ‖|P· ·|‖ εn(T )qn(T )‖f‖Tn

n!
,

since P· · is bounded, whence

(27) ‖|£nP· ·|‖ ≤ (ε(T )q(T )T )n

n!
‖|P· ·|‖ .

The right-hand side of (27) tends to zero as n → ∞. Thus the operator £ is contractive
for some n.

Equality (PQ), rewritten in the form

µPstf = µQt−sf + µ(£P· ·)stf,

has a unique solution in the space L(�, T2); this solution is the sum of the Neuman series

(28) µPstf =
∑
n≥0

µ(£nQ· ·)stf

where Qst = Qt−s by definition. Substituting equality (26) into (28), we complete the
proof of (12). �
Proof of Theorem 3. Equalities for the projector Π follow from the operator conver-
gence (13) and boundedness

Π = lim
t→∞

Qs+t = QsΠ = ΠQs,

whence Π = Π2 by passing to the limit as s → ∞.
If an invariant probability measure π is unique, then we use the homogeneous equation

µΠ = µΠQs

and obtain that µΠ = (µΠ1)π = (µ1)π for an arbitrary nonnegative measure µ. Thus
the kernel Π(x, A) = π(A) does not depend on x. Therefore

QsΠf = (Qs1)πf = πf, PuvΠf = (Puv1)πf = πf

in this case for arbitrary Markov transition functions Qs and Puv and for all f ∈ �.
This together with condition (D) implies that

DsΠf = lim
u↑s,v↓s

1
v − u

(PuvΠf − Qv−uΠf)

= lim
u↑s,v↓s

1
v − u

(πf − πf) = 0. �
(29)

Lemma 6. Let the assumptions of Theorem 3 hold. If

(30) α(T ) ≡ sup
0≤t≤T

∫ t

0

‖Du(Qt−u − Π)‖ du < 1,

then the operator perturbation

∆st = Pst − Qt−s, 0 ≤ s ≤ t ≤ T,

is such that

(31) sup
0≤s≤t≤T

‖∆st‖ ≤ q(T )
α(T )

1 − α(T )
.
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Proof of Lemma 6. It follows from (PQ) and (29) that

(32) µ∆stf =
∫ t

s

µQu−sDu(Qt−u − Π)f du +
∫ t

s

µ∆suDu(Qt−u − Π)f du

for all µ ∈ ℵ, f ∈ �, and 0 ≤ s ≤ t ≤ T .
Now condition (Q) and definition (30) imply that

(33) |µ∆stf | ≤ ‖µ‖q(t)α(T ) + sup
0≤s≤u≤T

‖µ∆su‖α(T )

uniformly on the unit sphere {f ∈ � : ‖f‖ ≤ 1}. Taking the supremum of both sides
of (33) with respect to f and 0 ≤ s ≤ t ≤ T and then with respect to µ : ‖µ‖ ≤ 1, we
obtain

(34) sup
0≤s≤t≤T

‖∆st‖ ≤ q(T )α(T ) + sup
0≤s≤t≤T

‖∆st‖α(T )

in view of (1) and (4).
Inequality (34) and condition (30) imply that the left-hand side of (34) is finite and

satisfies inequality (31). Since

(35) α(T ) ≤ ε(T )
∫ T

0

‖Qu − Π‖ du = ε(T )σ(T ) < 1

under conditions (T), (14), and (15), we derive bound (16) from Lemma 6 and inequality
(31). �

Proof of Theorem 4. We use equality (28) and bound (27) obtained in the proof of The-
orem 2:

µPstf − µQstf =
∑
n≥1

µ(£nQ· ·)stf

where Qst = Qt−s by definition. Thus

‖|P· · − Q· ·|‖ ≤
∑
n≥1

‖|£nQ· ·|‖ ≤
∑
n≥1

(ε(T )q(T )T )n

n!
‖|Q· ·|‖

≤ q(T )(exp(ε(T )q(T )T ) − 1). �
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