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The Stability of an Asymmetric Rotor in

Damped Supports

A. J. SMALLEY
	

J. M. TESSARZIK	R. H. BADGLEY

NOMENCLATURE

A = cross-sectional area of shaft, L 2

B = bearing translational damping

matrix, FTL-1

Ba ,Bxy = direct and cross-coupling trans-

lational damping coefficient,

FTL -1

Da ,Dxy = angular direct and cross-coupling

damping coefficients, FTL

E = Young's modulus, FL -2
f+ ,f - = frequencies (Hz) of the "half-

power points" for a critical

speed

fn = resonant frequency, Hz

(I) n (IU ) n = transverse moments of inertia

about , r) axes, L4
Jtn ,Jpn = transverse and polar moments of

inertia at a station, L4

K = bearing translational stiffness

matrix, FL-1

ti n = distance between station n and

station n+l, L

Tv1n = concentrated mass at station n, T4
Mxn ,Myn = bending moment at lower numbered

side of station, FL

Mxn ,Myn = bending moment at higher number
side of station, FL

N = number of stations

S = complex eigenvalue, T -1

T = transfer matrix

t= time, T

Vxn ,Vyn = shear forces at lower number side

of station, F

Vxn',Vyri = shear forces at higher numbered

side of station, F

xn = displacement in x-direction at

station n, L

yn = displacement in y-direction at

station n, L

a = angle of rotor deflection in

plane; also shape factor for

shear deformation

/3 = angle of rotor deflection in 77

plane

4 = determinant of transfer matrix

Q p = determinant of transfer matrix

with elements of Pth column re-

placed by their derivatives with

respect to S

$ = log decrement

= amplitude of displacement in

direction, L

= rotating coordinate direction, L

11 n = angle of rotor deflection in fixed
frame (x-z plane)

A = real part of eigenvalue, T -1

n = angle of rotor deflection in fixed
frame (y-z plane)

S2= rotational angular velocity, T -1

= imaginary part of eigenvalue ex-

pressed in nonrotating frame, T -1

w 1 = imaginary part of eigenvalue ex-
pressed relative to rotating co-

ordinate frame, T -1

TERMINOLOGY

"Major Diameter" -- This is the diameter of the

circular arc portion of the flattened section

of shaft.

"Unstable Speed Range" -- This is the speed

range over which the real part of the complex

eigenvalue is predicted to be positive.

INTRODUCTION

Elastic asymmetry in a flexible rotor tends

to induce instability when the rotor is run near

to its pair of first bending critical speeds.

Smith ( 1 ) 1 recognized and analyzed the insta-

bility, as more recently have a number of work-

ers, including Foote, Poritsky and Slade ( 2 ),

and Hsu (3, 4). For the case of a rotor mounted

Underlined numbers in parentheses

designate References at end of paper.
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symmetric bearings, an idealized Jeffcott

...odel with damping applied directly to the

central mass was analyzed by Bones and Hannam

( 5 ). Black ( 6 ) presents an elegant treatment

of the case where both shaft and bearings are

asymmetric.

As shown by workers in this field, it is

possible to improve the stability of an asym-

metric rotor by means of external damping at the

supports. However, when the need arises to

analyze a general multimass rotor and to es-

tablish necessary levels of damping, even with

symmetric bearings, the available methods are

either too simplified, or assume knowledge of

mode shapes, natural frequencies, and modal

damping ratios. They are thus often not prac-

tical for general use.

In the present paper, previous work on the

subject is extended to provide a general method

of analyzing a multimass flexible rotor, with

flexural asymmetry, mounted in symmetric bear-

ings. Because of the asymmetry, the equations

of motion in stationary coordinates would have

time-varying coefficients. The free vibration

equations of the rotor are, therefore, solved

in rotating coordinates, to yield the complex

eigenvalues at any running speed. Extensive

use is made of the work of Lund (7).

The method was applied to a rotor consist-

ing of three masses mounted on a flexible shaft

on which two flattened sections have been ma-

chined. Over a range of running speeds in the

region of the first pair of shaft flexural crit-

ical speeds, the complex eigenvalues were evalu-

ated for different degrees of asymmetry, and the

conditions for stable and unstable operation in

the speed range were established. Tests were

run on this rotor with varying degrees of asym-

metry, and the corresponding predictions of

stability and instability were borne out.

Two significant contributions of the work

presented are, first, the development and veri-

fication of a general purpose method of stabili-

ty analysis and, secondly, the emphasis, by

balancing, of the distinct difference between

the characteristics of forced response vibration

and those of self-excited vibration.

In the following sections, the analysis,

its application, and the test results are

presented.

ANALYSIS

The rotor is described analytically as a

series of stations, at which concentrated mass,

and transverse and polar moments of inertia may

be located. At any station a bearing, repre-

sented by radial stiffness and damping coeffi-

cients, may also be located. The rotor stations

are considered to be connected by massless

elastic beams (fields) capable of deformation

in both bending and shear. Each field can have

principal section moduli which differ from each

other, with the stipulation that all fields have

common principal axes ( and']), which form a

rotating coordinate frame.

In the development which follows, the

transfer equations for a typical station (trans-

fer matrix) are written, first in fixed coordi-

nates, then in rotating coordinates. The field

transfer equations are written directly in ro-

tating coordinates. A general expression for

the motion of the rotor is written in the form:

s = Rc 	
eSt.	 (1)

where

S = 	+ I	 (2)

and

Here ,S are complex and all Phase information

is contained in ^*. The development is actually

performed for the more general case of

e St
	

(3)

Similar equations can be written for the 7] di-

rection. So we can write

a
at	

5 (4)

(5)
a Z	= S 2

ac z

The equations are solved to yield those values

of S at which the complex system determinant is

zero -- the only conditions under which a free

vibration can take place. The rotor is stable

if ,A, the real part of S, is negative, and un-

stable if ,, is positive.

Station Equations of Motion

Fig. 1 illustrates the sign convention for

shear force, bending moment, and translational

and angular displacements in the x-z plane. 0

is the rotation angle for z to x. In the y-z

plane, a similar diagram would show 0 as being

the rotation angle from z to y.
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FIELD n

	xn men	 f n+0 Ont

	

m n	mntl

^
? f UTn ?M^xn^? l JT'°+I^^

Mxn	U Pn	I V ,	Mx,n+lf UP	

I

n ^ I IMx,n'

Vxn	 x,n*I	1 x,n I

Fxn	F9n	 Fx,n+l F9,n+I
In

STATION	STATION

	

n	 ntl

Fig. 1 Sign convention for radial displacement,

angular displacement, bending moment, and shear

force

If we consider that, in addition to in-

ertia forces, any station may be acted upon by

bearing forces, the forces acting at station n

are related by:

	dzx	 dx

V	 M	-._ _	 dtnxn	 n dt 2	 n

	

d 2 y n	dyn

Vyn	V	Nn dt2
	 yn	d[

	+ 	 +K	+g	(6)

	

d i e	d^	 dF

Mxn	 Mxn	 Jtn	2 + Jpn dt	 e	 dtac

	d 2 7	dB	 dB

Myn	MYn	Jtn dt2 - s]Jpn d[	 upn

where K, B are 4 x 4 isentropic bearing stiff-

ness and damping matrices, with no coupling

between translational and angular degrees of

freedom.

Fig. 2 defines the coordinate directions

(	77, z) to be employed in a rotating plane,

and their relation to the fixed (x, y, z)

frame. In addition the relationships between

angles (B, 0) in the fixed frame and (a,/3 ) in

the rotating frame are illustrated.

To translate from the (x, y, z) system

to the (x,77, z) system we must substitute into

the station equations:

x =	cost - 77 sin Sgt

y =	sin SZt + q cos Sgt

B = a cos ct — /3 sin Sit

= a sin Sit + /3 cos Sit

and the result is:

F	̂1 x	 L	as —z	e	Z

,1	INTOx	
y-INTO

PAPER	PAPE

.^	e-OUT OFY	x-OUT OF
PAPER 	PAPER

y	 Q i	V/w t

Fig. 2	Relationship between fixed and rotation
coordinate frames

dB,	 d

IT :1

"n

V 	Mn dty	
Mn( dt - --^

a	a:
n	z	d,n	2

M -	 M 	Jtn	
' + i:.i

pn	at	 Jtn-	n - z_	a[ > +at` 

d 2 ::	d.n	 d e
M n	./tn —Z -;.Jpn

	dt J	 Jtn (-..
	+ 2 -	

d(n^+

	
2 .I

dt	
pn n

d n ^
	dt4 	 (8)

	d.. n	I

do

	+K 	+B 1	+..B" <

.n	I dto	nJ

B	 -B	 V	 V

B	 B	 0	 V

	

wn..re B 	

(9)

V	 V	 D	 -D

D	0	D	D	j
	xx 	xy

(10)
a	2	d`

S 	4
2

we get:

and BXX , Bxy are direct and cross-coupling trans-

lational damping coefficients, Dxx , D 	the

direct and cross-coupling angular damping co-

efficients in the bearing.

Finally, substituting
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E

-V	' V	IM S 2 E n	M (-:; Z ^^ 2<25n^)	
En

_ V 	M S 2 •'	 Mn(2S1 SE -'.
2

 n n )	 nnnn	n	 `

M_	M,	J S 2 a n+;^J SB	J (-RZnn-2PSBn)+22J n
n^	ncn	pn	[n	pn

M nn	M.,	
JCnS2;n JS,	J1n (-Il 2 3 n+2SdS.' n )+f7 2J 8	8

pn	̀	Pn n	n J

(11)

Field Equations

The elastic beams between stations are

considered to have principal axes aligned with

the	']coordinates as shown in Fig. 3.

Let (I^) n be the second moment of area of

the shaft between stations n and n+l, about an

axis parallel to the c-axis, (I '7 ) n is the cor-

responding second moment of area about an axis

parallel to the '7-axis. The relationships be-

tween displacements, forces, and moments at the

ends of the shaft section between stations n

and n+l are:

2	'	Pe I >
	(12)

1

"n+l =
	n

 + n n + (EI )	2 M 'n + ( h	(xGA)nn) V Fn

2	3	(2E I)

nn+1 = nn + 'n 'n + (EL)	2 Mnn +^ 6	(^GA)nn^ V nn	(13

Z

n+l = n + (E I_)n	
k Msn  + 2 V	

(1`t)

P 2
1	)

%+1
B

 n + (E I )	n Mnn +	 (1 Vnn 
n n

M^,n+l	= M1n" + l 	(16 )

Mn,n+1 = Mnn + 'n Vnn	 (17)

- 1	̀t ,	(18)

(19)

low, to implement the solution algorithm, a

total of four calculations is performed, for an

assumed value of S. Each of l' '7 1' a l' R1 is,
in turn, set to 1 while the others are main-

tained as zero. In addition, at the left-hand

end (end 1) the free boundary conditions are

imposed:

X

Y

71

Fig. 3 Alignment of principal axes with rotat-
ing coordinate

M EI = M j1 - V sl = V

" 1

 = 0

 (20)

The result of this calculation for the rotor may

be expressed in matrix terms:

M i,N	I	I	1

",N	I	x''11	
(21)

T(

V ; ,^"	 Ill ^1

V	l
in J	;

where T is a square matrix, and N is the number

of stations. To satisfy the free boundary con-

dition at the right-hand end (station N) re-

quires that A, the determinant of T be zero,
and the values of S which satisfy this condi-

tion are the complex eigenvalues from which the

stability of the system can be determined.

An iterative solution, based on the gen-

eralized Newton Raphson method, is used to find

these values of S. To implement this solution

method, the determinant Ap of the matrix T p

is required, in which the elements of the pth

column of T have been replaced by their deriva-

tives with respect to S. These derivatives are

determined in a parallel operation to the de-

termination of the element values. The starting

values for all derivatives are zero:

d	d	d	d	dM	dM	dV	dV	
(22) )

_i ^1 al al 	̂1	I
ds = ds do = ds = ds = ds = ds = a's

The field transfer relationships for the deriva-
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tives are exactly the same as the relationships

for the corresponding values (since they do not

contain S). The station transfer relationships

for the derivatives are different, however, as

follows:

I	 i	I	IH 22cm^{ IOcmbI3cm - - 144cm-L13cm-- I 10cm I^ 22cm --I

i	I

dV, dV 2 dr 2 d^	do
n

de dsn
S Mn

da
— 0 -2M _ r _25 -Mn

	ds

dV

ds n

dV

dsn

,
S Mn

do	2 do	dr
-ds + 2S -MnMn

ds ds

dM dM 2 do	2 da	dgn d2	2	d'y

ds asn
S J

en as - `^ J [n d. - 2S 57J
Cn	

as + SnJ
pn d. + ' J pn	Sn

dM

ds n

dM

dsn V

2 dpn	2
-

d	dnn da	2	do	I
+ P. JS J

[n - 	J [nds

	

-	SS'.J+ 2S:J[n
ds	 ds	pn

ds	
pn	ds /

d	r

ds n	̂n

d

ds
n fl

+(K+SE+SB)	 +s

d

as n

dan	9
ds	 lnJ

255n a
n
	I	I -2:tMn nn

(23)
2SM	n n  	+25Mn S

n

+J	'	+

2SJ 5n a n + RJpn °n 1	1 -2SE an J[n

2SJ n B n - SJ
Pf
	

J	 \ +2	n [fl

As shown by Reference (1), an iteration, which

avoids convergence to roots already found is
given by

(24)
n	° J=1

where A o ,S 0 are the current values of A and S
in the iteration, J roots, Sj, have already

been found, and (d0/dS) o is the derivative of

0 with respect to S as determined by summing:

d	4
dS	P

p=i

Check of Analytical Method
The asymmetric rotor model of Bones and

Hannam was used to check the analysis for a

TILT- PAD	 TILT-PAD
BEARING	 BEARING

FLATTENED
SECTION

MAJOR DIAMETER OF —'
FLATTENED SECTION

Fig. 4 Schematic of flattened shaft

single mass supported on a massless, flexible

shaft with external damping applied to the

central mass. An exact check of the required

damping value for the stability threshold was

obtained, as shown in Appendix A.

APPLICATION

The test rotor to which the preceding

analysis was applied is illustrated schematical-

ly in Fig. 4. It is approximately 105 cm long.

Viewed from the side the rotor is nearly sym-

metrical, with a central mass and a mass at

either end. Four-pad tilting-pad bearings are

located 22 cm from either end. The bearings

are loaded between the pads, so preserving
isoelasticity in the vertical and horizontal
directions. Between the bearings and the

central mass are two 13-cm long sections of

6.51-cm original diameter in which equal flats
4,32 cm apart were initially machined to give

a configuration both predicted and observed to

be unstable. The analysis presented above was

applied to this rotor with the objective of

finding what reduction in the major diameter,

"D," from 6.51 cm, would be necessary to

stabilize the rotor, and what would be the

influence of the intermediate values of di-

ameter upon the state of stability of the

rotor. (Major diameter refers to the diameter

of the circular portion of the flattened sec-

tions, as illustrated in Figs. 4 and 5.)

If the rotor was unstable, when running

speed was set close to or between the two first

flexural critical speeds associated with the

two principal axes, a pair of roots would be

obtained, both of which would be synchronous

(i,e., the imaginary part of S would be zero).

For one root the real part would be negative

and for the other the real part would be posi-

tive. The latter is an unstable root, since
it indicates the rotor amplitude will grow

rather than decay with time.

(25)
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Audit NO. 1

Evaluation

Acceptability

of Results

Criteria

Activit Objective Critical Parameter Calculation Method Criteria Results Error Band	Probability Yes No •

Design and

Analysis

Provide Adequate LCF Life and

Creep/Stress Rupture Life

Airfoil to Platform Leading

Edgefrrsiling Edge Steady

Stress Ratio

Airfoil Steady Stresses

Steady Stresses at Shroud to

2D-3D Finite Element

Analysis

Steady Stress Beam or

Finite Element Analysis

Steady Stress Beam or

Airfoil Leading

Edge/Trailing

Edge Stress

Ratio

-0.25 Creep

Strength

-°t Yield

Airfoil Interface Finite Element Analysis Strength

1c/ Creep

Strength

Shroud Bending Stress Steady Stress Beam or 1i Yield

Finite Element Analysis Strength

_ Stress

Rupture Strength

Airfoil Platform Bending Stress Steady Stress Beam r Yield

Analysis Strength

_1°s Creep

_Stress

Rupture Strength

Blade Attachment Neck Tensile Steady Stress Beam _1% Creep

Stress Analysis or Hand Strength

Calculation

20

00 D5
( MAJOR

4.48 cm -
_^

DIAMETER)	 D = 6.51	cm	I
80 -	

^^ I	1

60 D5.33 cm i	1 D= 5.61 cm

40 D=5. 8 cm	 I

20
UNSTABLE

0
Anon anon m non II ono

ROTOR SPEED, RPM	
STABLE	-

Fig. 5 Stability analysis -- real part of root versus speed for different major diameters

I-
0

0

0
J

UJ

The nature of the results is illustrated

graphically in Fig. 5, where the aforementioned

positive real part is plotted against rotor speed

for different values of major diameter (with

constant distance maintained across the flats).

For values of major diameter between 5 and 6.51

cm, an unstable speed range is indicated where

the width of the speed range and the peak value

of the real part of S increase with increasing

major diameter. The indication is that a suffi-

cient decrease in major diameter would shrink

the height and width of the unstable speed range

to zero. Interestingly, this dimensional change

also shifts the speed range to lower speed

values, since the overall flexibility of the
shaft is increased.

In Fig. 6 the relationship between the

maximum value of the real part of S and major

diameter D is shown for two different mass

distributions. In one case (the "original"
rotor) the masses at either end are 4.94 kg.

In the second case one of the masses has been

reduced to 1.13 kg -- a change which changes

the mode shape of the flexural critical speed

slightly, increasing amplitude of the bearings
and increasing the potential for damping.

Clearly, the lighter end mass allows a stable

rotor to be achieved with a larger major diam-

eter, 4.80 cm as opposed to 4.62 cm. However,

even 4.80 cm represents only a 7 percent dif-
ference between major diameter and the distance

across the flats; surprisingly, such an apparent-

ly small asymmetry can destablize the rotor.
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Fig. 6 Stability analysis -- real part of

synchronous root versus major diameter (dis-

tance across flats = 4.48 cm)

TEST RESULTS

Four configurations of the test rotor

shown in Fig. 4 were built and tested for

stability near the first bending critical speed.

These configurations are defined in Table 1 in

terms of distance across flats, major diameter,

and end masses. All but the last configuration

were both predicted and observed to be unstable.

The fourth configuration was predicted and

observed to be stable although very lightly

damped. Included in Table 1 are the threshold

speeds for unstable vibration. In each case

the predicted threshold speed is close to, but

slightly higher than observed (by 200, 200 and

50 rpm, respectively). These results are con-

sidered an encouraging test of the prediction

method.

Details on rotor and test bed construc-

tion, bearing configurations, and drive system

may be obtained from Reference (2) where the

same rotor with unmodified round sections had

been used for balancing demonstrations for

operation through three system critical speeds.

For the tests described herein, bearing fluid

viscosity, however, had been changed several

times as noted. When bearing viscosity was

increased beyond 5cS, bearing temperatures rose

above the 5-7 C increase quoted in Reference

(9). Displacements of the rotor under test

were observed and recorded from five noncon-

tacting displacement sensor pairs distributed

along the length of the rotor.

The measured amplitudes for the third

rotor configuration of Table 1 are presented

as a function of speed in Fig. 7, Curve A

shows the amplitudes with some initial unbalance

present in the rotor and has a shape character-

istic of resonant response to unbalance; the

amplitude of response limits the closeness with

which the critical speed may be approached.

When most of the remaining rotor unbalance had

been removed by in-place balancing, utilizing

the Multiplane-Multispeed Balancing method,

with data taken at approximately 8600 rpm, the

rotor system critical speed could be approached

much more closely with very low rotor amplitudes

(Fig. 7, Curve B). However, at 8750 rpm there

was a pronounced and sudden jump in amplitude,

with a slope discontinuity not characteristic

of resonant response. Further attempts to

reduce amplitudes by balancing were unsucess-

ful even though the frequency of vibration was

synchronous with rotor speed. Similar char-

acteristics were observed for all of the un-

stable configurations presented in Table 1.

Bearing damping was found ineffective

as a means to obtain stable rotor operation at

the first critical speed. For example, with

a rotor diameter at the flat sections of 5.72

cm, and the rotor in the best balanced condi-

tion (Fig. 7), an increase in bearing fluid

viscosity from 5 cS to approximately 35 cS did

not produce an improvement in rotor amplitudes

at the first critical speed. Stable operation

Table 1 Rotor Configurations and Conditions

Distance Predicted Observed

Rotor Across Major Condition Threshold of 'threshold	of

Configuration Flats Diameter (Predicted	and Instability Instability

Number (cm) (cm) End Masses	(kg) Observed) (rpm) (rpm)

1 4.48 6.51 Both 4.94 Unstable 9200 i^u0

2 4.48 6.51 One 4.94 Unstable 9500 '1300

One 1.13

3 4.48 5.72 One 4.94 Unstable 8800 8750

One 1.13

4 4.48 4.80 One 4.94 Stable	(lightly -- --

One 1.13 damped)
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2	3	4	5	6	7	8	9	10	II	12	13	14	15	16

ROTOR SPEED (RPM x i0)

Fig. 7 Vertical rotor amplitudes at shaft center -- initial condition and after one balancing run
by the least squares procedure (four vertical probes, rotor with 5.72 cm dia at flat sections)

at or above the first critical speed could not

be achieved. Judged subjectively, the insta-

bility appeared to come in somewhat less vi-

olently for decreasing major diameters at the

rotor flat sections and also for the rotor

with one reduced end mass. Rapid fluctuations

in orbit size ("breathing") which occurred just

prior to amplitude explosion appeared to lessen

as the predicted degree of stability was re-

duced.

By way of contrast, the measured ampli-

tudes for the fourth configuration of Table 1

are presented as a function of speed in Fig. 8.

In this configuration, the major diameter (4.80

cm) is only 7 percent greater than the distance

across the flats (4.48 cm) and the configuration

is predicted to be marginally stable. Curve A

of Fig. 8 is for the rotor in its initial state

of unbalance and Curves B and C show the re-

sults of successive balancing operations. No-

where on the curves is there the pronounced and

sudden increase in amplitudes of Fig. 7, Curve

B, and the rotor could be readily balanced to

operate at and above its first bending critical

speed.

The rapid, but finite, amplitude buildup

at the critical speed indicates a lightly damped

system, thus confirming the prediction from the

stability analysis presented in Table 1. As a

measure of the system damping, the log decrement

can be determined, approximately, from the shape

of the response curve as follows:

(26)

where f+ ,f - are the frequencies of the points at

which the amplitude equals (./5/2) times the peak
amplitude and fn is the resonant frequency (Hz).

The real part of the computed system eigen-

value (A) can be calculated as (-f n ) times the
log decrement.

From Fig. 8, experimental Curve C, these

calculations yield a log decrement of 0.013

(equivalent to a damping ratio of 0.002) and

the real part of the complex eigenvalue, k, _

-1.65. Clearly the configuration of Fig. 8 is

only marginally stable, as predicted. The fact

that the Multiplane Balancing method can balance

such a lightly damped rotor is confirmation of

the effectiveness of the method under nonideal

conditions.
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Fig. 8 Vertical rotor amplitudes at shaft center -- initial conditions and after one and taro bal-

ancing runs by the least squares procedure (four vertical probes, rotor with 4.80 cm dia at flat

sections)

Gravitational Excitation

A rotor with unequal stiffness in two

axes exhibits a nonsynchronous amplitude in-

crease in the speed region around one-half of

the first rotor bending critical speed. This

amplitude increase, generally viewed as the

result of "gravitational excitation," has been

observed for all test cases of the rotor with

flat sections at vibrational frequencies cor-

responding to the first critical speed. The

oscilloscope display of the rotor orbit, char-

acterized by a very pronounced inner loop, near-

ly equal in size to the outer loop, was observed

in the rotor orbit display C see Fig. 9(a)7.

In its original configuration the test

rotor had flat sections with a major diameter

of 6.45 cm and heavier end masses weighing 8.6

kg each. The bearing lubricant had a viscosity

of 0. 65 cS. Under these conditions the rotor

exhibited amplitudes at the gravitational ex-

citation frequency which could not be negotiated

without endangerment of the instrumentation

probes and rotor. When rotor damping was in-

creased through substitution of a bearing fluid

with higher viscosity (5 cS), and rotor mode
shapes were changed to give relatively larger

bearing amplitudes by substitution of lighter

rotor end masses (4.94 kg each), rotor ampli-

tudes at the gravitational excitation frequency

were reduced substantially. (Increasing the

viscosity alone to values up to 65 cS was not

sufficient to effect noticeably lower ampli-

tudes.) Typically, the reduced amplitudes did

not exceed approximately twice the "background"

amplitude values found at slightly higher and

lower speeds.

The level of unbalance did not noticeably

affect the magnitude of the rotor amplitudes

due to gravitational excitation. When one very

light rotor end mass of 1.13 kg was substituted

for the medium-sized steel mass of 4.94 kg and

rotor diameters in the flat sections were pro-

gressively reduced, the severity of the gravi-

tational excitation also seemed to decrease

accordingly. For the final and stable test

condition of the rotor, response to gravita-

tional excitation was insignificant [see Fig.

(b I . It must be noted at this point that the

very same rotor before the flats were added to

it and operating in low viscosity bearing fluid

(0.65 cS) with heavy end masses (8.6 kg each),

occasionally exhibited response to gravitational

10

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/G

T
/p

ro
c
e
e
d
in

g
s
-p

d
f/G

T
1
9
7
8
/7

9
7
2
6
/V

0
1
B

T
0
2
A

0
7
1
/2

3
9
2
3
7
8
/v

0
1
b
t0

2
a
0
7
1
-7

8
-g

t-1
7
2
.p

d
f b

y
 g

u
e
s
t o

n
 1

6
 A

u
g

u
s
t 2

0
2
2



ONE MAJOR DiVlSi N EQUAL S APPROXIMATELY

0.5 MIL - ROTOR SPEED= 4470 RP M

Fig. 9(a) Gravitational excitation of rotor

with 6.50 cr. dia at flat section

excitation. When present, the rav-taticnei

excitation was of low to moderately-lou severity,

but nevertheless had a well-developed inner loon.

ON LUSIOHS

1 The characteristics of a rotor with

flexural asymmetry are a noticeable response

to gravitational excitation when running at

approximately half its first bending critical

speed, and a potential for instability when

operating between the bending critical speeds

associated with its soft and stiff axes.

2 The onset of instability is marked by

a sudden rise in amplitude.

3 The unstable vibrations are synchronous

with rotational speed.

4 Observation for a three-mass rotor with

'	 y.	s se r^ r.	s.

Fig. 9(b) Gravitational excitation of rotor

with 4.80 cm dia at flat section

	PREDICTION of
SI GHT	

, = 024 IN 4
PRESENT ANALYSES  

	5 L 	

K 10

SHAFT

	20 	

7,^ = 045 IN 4

	

K 104 LB/IN B	 4 LB/IN

	2 	—

oi

OS	10	IS	20	25	30	35	40	45

1 DAMPING AT MASS, B LB -SEC /IN

THRESHOLD, 
44
 63

	

-10	AS PREDICTED BY
REF 15)

-20

^	I

0

Fig. 10 Check of stability analysis for asym-

metric shaft. Comparison with Bones and Hannam

(5)

machined flats at a flexible location in the

rotor are consistent with predictions of a

general purpose analysis developed to account

for flexural assymetry in a multi-mass, flexi-

ble rotor.

5 The Multiplane-Multispeed Balancing

method is able to balance, effectively, a

rotor-bearing system whose inferred log decre-

ment, and damping ratio for a bending critical

speed, are 0.013 and 0,002, respectively.

ACKNOWLEDGMENTTS

The work presented in this paper was

sponsored by NASA-Lewis Research Center, The

NASA Program Manager was Dr. David P. Fleming,

The authors' wish to thank NASA for Permission

to publish the results of this work.

REFERENCES

1 Smith, D. M., "The Motion of a Rotor

Carried by a Flexible Shaft in Flexible Bear-

ings," Proceedings of the Royal Society, 1933,

Vol. 142, Series A, p. 92.

2 Foote, W. R., Poritsky, H., and Slade,

J. J., Jr., "Critical Speeds of a Rotor With

Unequal Shaft Flexibilities Mounted in Bearings

of Unequal Flexibility," Journal of Applied

Mechanics, Vols, A77, A84, 1943.

3 Hsu, C. S., "On the Parametric Excita-

tion of a Dynamic System Having Multiple Degrees

of Freedom," Transactions of ASME, Journal of

Applied Mechanics, 1963, Vol. 85, Series E,

p. 367.

11

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/G

T
/p

ro
c
e
e
d
in

g
s
-p

d
f/G

T
1
9
7
8
/7

9
7
2
6
/V

0
1
B

T
0
2
A

0
7
1
/2

3
9
2
3
7
8
/v

0
1
b
t0

2
a
0
7
1
-7

8
-g

t-1
7
2
.p

d
f b

y
 g

u
e
s
t o

n
 1

6
 A

u
g

u
s
t 2

0
2
2



k Hsu, C. S., "Further Results on Para-

metric Excitation of a Dynamic System," Trans-

actions of ASHE, Journal of Applied Mechanics,

1965, Vol. 87, Series E, P. 73.

5 Bones, J. A., and Hannam, R. G.,

"Whirling of Shafts With Asymmetric Stiffness,"

Journal of Mechanical Engineering Science, Vol.

8, No. 4, 1966, p. 437.
6 Black, H. F., "Parametrically-Excited

Lateral Vibrations of an Asymmetric Slender

Shaft in Asymmetrically Flexible Bearings,"

Journal of Mechanical Engineering Science,

Vol. 11, No. 1, 1969, p. 57.

5!•

7 Lund, J. W., "Stability and Damped

Critical Speeds of a Flexible Rotor in Fluid

Film Bearings," ASI0IE Paper No. 73-DET-103.

8 Tessarzik, J. M., Badgley, R. H., and

Anderson, W. J., "Flexible Rotor Balancing by

the Exact Point-Speed Influence Coefficient

Method," Transactions of ASME, Journal of Engi-

neering for Industry, Vol. 94, Series B, No. 1,

Feb . 1972, p. 148.

9 Tessarzik, J. M., Badgley, R. H., and

Fleming, D. P., "Experimental Evaluation of

NIultiplane-Multispeed Rotor Balancing Through

Multiple• 	Critical Speeds," Transactions of ASME,

Journal of Engineering for Industry, Vol. 98,

Series B, No. 3, Aug. 1976, p. 988.

APPENDIX A

CHECK OF ANALYSIS AGAINST REFERENCES

Fig. 10 illustrates a symmetrical single

mass rotor on a light asymmetrically flexible

shaft, supported in flexible bearings. The

mass is damped by a linear dashpot connected

to ground. Bones and Hannam (5) have analyzed

this case to yield the required level of damping

(Be) for the onset of instability. Their re-

sults are reproduced as equation (A-1).

	e^ 	r1 - (1d 2 ) 1 / 2 1 1 / 2
(A-1)

where
zl

d =	d2 

_ 
-1 / _ .1334 for the rotor of Fig. 10

(_ L + 2)
	

(A-2)

ml =	K71= 877.9 rad/sec	 (A-3 )

	

_	 = 100+. raft see	 (A-4)

K L * = 0/LK' + 4b6I J, — 9.983 x 10 3 1b/ in.	 (A-5

Z + 	
L

	143. 	 (A-6)

3

K z } = 
l/
[ZK + 48EL	

= 13.06 x 10 16/in.	(A-7

L

So that Be for the rotor of Fig. 10 is 1.63.

The analysis developed in the present paper

can be used to establish this threshold condi-

tion by plotting the real part (A) of the com-

plex eigenvalue versus damping, and seeking the

value of Be at which.l= 0. This has been done

in Fig. 10 and the resultant value of damping

is 1. 63 , as predicted by Reference (5).
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