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Many inverse problems arising in optics and other fields 1ike geophysics, medical
diagnostics and remote sensing, present numerical fnstability: the noise affecting
the data may produce arbitrarily large errors in the solutfons. In other words,
these problems are fil-poged in the sense of Madamard.

The basic point, in the study of i11-posed problems, is that the development of
adequate computational methods, leading to stable results, requires prior knovledge
of properties of the admissible solutions: global bounds, smoothness conditions,
positivity constraints, statistical properties, etc. The problem is first to incor-
porate the supplementary constraints in the computational algorithm, and secondly
to estimate the accuracy of the solutfons for a given prior knowledge and data accu-
racy. General methods are available only for 1inear inverse problems.

This chapter begins with an outline of the main features of ill-posed problems,
of their connection with inverse problems and of the basic ideas enabling ane to
solve them. Next we discuss regularization theory where the supplementary constraints
are prescribed bounds on the class of admissible solutions. Then we analyze the
application to {11-posed problems of the method of 1inear mean square estimation
(optimen filtering), when prior knowledge of statistical properties of the solu-
tions is available, Finally, we review the applications of the previous methods to
some |inear inverse problems in optics and scattering theory.

5.1 [Ill-Posedness in Inverse Problems

The concept of {ll-posedness was introduced by HADAMARD {5.1] in the field of partial
differential equations. For years, il1-posed problems have been considered as mere
mathematical anomalies. Indeed, it was believed that physical situations were lead-
ing only to well-posed problems )ike, for instance, the Dirichlet problem for ellip-
tic equations of potential theory, or the Cauchy problem for hyperbolic equations
describing wave motion, However, {t appeared later that this attitude was erroneous
and that many i11-posed problems, generally inverse problems, were arising from
practical situations. Nowadays there {s no doubt that a systematic study of these
problems is of great relevance in many fields of applied physics,
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6.1.1 Well-Posed and I11-Posed Problems

It is rather difficult to give a precise and exhaustive definition of an i11-posed
problem. indeed this term covers a lot of various problems presenting many common
features but also differences so important that a global and unified theory is not
yet available. The best characterization is perhaps a negative one: {11-posed prob-
lems do not fulfill all the required conditions for well-posedness [5.1], i1.e.,
existence, wniquancoe and comtimiity of the solution on the data (requirement of
stability). As clearly stated by COURANT and HILBERT [Ref.5.2, p.227), "the third
requirement, partfoularly incivive, fa necessary if the mathamatioal foreulation
fe to deseribe oboervable matural phenomena. Data in wature cawiot possibly be con-
osived as rigidly fized; the mere process of measuring them involves amall errore.
Therefore a mathamatioal problem owmot be coneidered av realiatisally corresponding
to phyeical phenomena unless a variation of the given data in a aufficfently small
range leads to an arbitrary emall change in the eolution. This requirement of "ata-
bility" ie not only essential for meaningful problame in mathematical phyeios, but
alac for approximation methode™.

An example of a well-posed problem is to find a solution u of the Laplace equa-
tion
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in some domain D of the plane, with the condition u = g on the boundary of D (Diri-
chlet problem). 1t is well known that there exists a unique solution which depends
continuously on the data. Indeed, the maximum principle [Ref.5.2, p.255] guarantees
that when g s slightly perturbed into g', the corresponding solution u' 1s ina
neighborhood of u. More precisely, |g-g'| <e implies lu=u'| <e.

Any problem failing to satisfy one or more of the three requirements quoted
above might be called an ill-posed (or fmproperly posed) problem. Nevertheless,
this term is usually reserved to those problems for which the second requirement
(uniqueness) is fulfilled, but not the first and the third ones. Indeed, 25 we shall
see below, existence and continuity are in general closely related.

The first who pointed out the concepts of well- and i11-posedness was J. Hadamard.

Let us recall his famous example showing the lack of continuity on the data in the
Cauchy problem for elliptic partial differential equations. Consider (5.1) with the
boundary conditions

au >3
ulx,0)=0 5;(!. 0) - sin(nx) . (5.2)
It is straightforward to verify that this problem has the following solution:

ufx, y) = 12 sin(nx) sinh(ny) . (5.3)
n

The term n~! sin(nx) departs from zero on the x axis in an i tibi
sufficiently large. However, because of the hyperbolic s!m.":le;c:'o’luti:n.:g.;?rb:-
:;u‘:r;gomus at any given distance from the x axis, provided that n {5 sufficient-

Related to the Cauchy problem for the Laplace equation is the analytic continu-
ation of functions of a complex variable. In fact, let the values of the harmonic
function u, i.e., the solution of (5.1), and fts normal derivative :u/n be known
on some curve T. We denote by f(2), 2 « x« iy, the analytic function f = u+ iy,
where v is the function conjugate to u. Then, on the curve r, v is related to u as
follows

z
viz) = {0% (2')ds + constant , (5.49)

where 2y is one of the endpoints of r. Hence, if u and 3u/3n are known on r, one
may consider that the values of the amalytic function f{z) on r are known. This
shows that the solution of the Cauchy problem for the Laplace equation gives the
analytic continuation of f outside r, which is therefore also an i11-posed probles.

Moreover, ft is worth noting that the determination of an analytic function from
fts values on a curve r, inside the domain of regularity, is a problem which can be
reduced to the solution of a Fredholm Integral equation of the first kind, by means
of the well-known Cauchy formula. Therefore, it is quite natural to guess that also
integral equations of the first kind give rise to i11-posed problems. This is indeed
true, as we shall show in Sect.5.1.2.

To be convinced of the practical relevance of il1-posed problems, it {s sufficient
to have a glance at the enormous amount of literature devoted to this field. Many
references may be found for instance in the books by LAVRENTIEV [5.3), TIKMONOY
and ARSENINE [5.4] and PAYNE [5.5].

5.1.2 111-Posedness and Numerical Instability

Let us consider the following Fredholm integral equation of the first kind:
b
{ Kix, ¥)T(y)dy = 8(x) , cxecd , (5.5)

where the kernel K(x, y) is supposed to be continuous. Assuming that there exists a
unique solution T corresponding to 3, we might add to that solution a function

n
¢l )(x) = C sin(nx) where C is an arbitrary constant. From the Riemann-Lebesque
theorem we know that

b
Tim [ K{x, y) sin{ny)dy =0 . 15.6)
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Hence, taking the constant C and the integer n sufficiently large, we see that
widely different functions ¥ give approximately the same §. As in the case of the
Cauchy problem for the Laplace equation, smal) modifications of § can alter radi-
cally the solution of (5.5).

Without being conscious of the {11-posedness of this problem, one could try to
solve numerically (5.5) by discretizing it. By means of some N-point quadrature for-
mula, the integral in (5.5) may be approximated by a finite sum. Then, supposing
that § is given in M points, the integral equation becomes s 1inear algebraic system

Mif=q ., (5.7)

where (K] 15 a M<K matrix of components '\n = K(x.. y"y-" (the w_are the weight
factors depending upon the quadrature formula used) while f « cf(; )} and g = (@(x_))
are vectors in euclidean spaces of dimension N and M, respe:uvﬂyr.‘ At tM; po!n!.m
let us introduce the usual euclidean scalar product between two M-dimensional vectors

M
(!o ',‘)" o Z'l %h= (5.8)

and the corresponding euclidean norm || gﬂ: = (g. g)". Now, when g is affected by
errors, one could always add to a given solution f a spurious veciur U such that

Il el § = (x1g, K1)y, < €2 (5.9)

where ¢ is an estimate of data accuracy. Let us now investigate the shape of the

set of those u satisfying (5.9). To this purpose let us put the quadratic form (5.9)
in a somewhat different form

® 2
([KI*CK]Y, yhy <, (5.10)

where [K]* is a N <M matrix denoting the adjoint {or hermitian conjugate) matrix
of [K]. Even if [K) is not a square matrix, [K]* [K) is a NxN symmetric, nonnega-
tive matrix, so that it can be diagonalized, Let us denote by 12 the eigenvalues of
[xi* xl1 (A" is also called & singular value of [K]) and assmnmt they are all
strictly positive. Of course this can happen only if N <M. Then inequality (5.10)
defines the interior of a N-dimensional nondegenerate ellipsoid with center at the
origin and axes directed along the eigenvectors of [K]* [K]. The length of each
axis is given by a - ‘“n' n=1, ..., N, and when the eigenvalues lﬁ are ordered
In decreasing magnitude, the length of the greatest axis is /3y, while the length
of the shortest one is €/d1. The ratio between the two lengths, o = A,/), is the
so-called condition mumber of the matrix [K). When a is much greater z’u: one, the
ellipsoid (5,10) contains, along certain principal directions, vectors whose eu-
clidean norm is very large. A small change in the dats vector g may produce a large
error in the solution (or pseudo-solution) of (5.7). The algob;uc system (5.7) is
then said to be {ll-conditiomed,

In general this actually arises when discretizing Fredholm equations of the first
kind. Indeed, et us consider for simplicity an integral operator whose kernal
K(x, y) s symmetric, and Tet us assume that it does not have the eigenvalue zero
[of course, we also assume a =cand b = d in (5.5)]. Then, as it is well known,
such an operator admits an infinite sequence of real eigenvalues (with finite muiti-
plicity) accumulating to zero [Ref.5.6, Chap.2). Hence it is easy to understand
that the finer the discretization of (5.5) is (i.e., the larger N and ), the worse
conditioned the resulting system (5.7) is.

5,1.3 General Formulation of Linear Inverse Problems

In order to make precise the concepts illustrated in the previous sections concerning
instability, we must specify the sets to which the data and the solutions belong.
Moreover, we must define what is meant by “closeness" in each set. This can be done
by Introducing a norm and defining a distance between two functions of the set as

the norm of their difference. Particularly important in many applications is a norm
induced by a scalar product (or inner product) like the norm of a vector in Euclidean
space. In that way one may speak about angles and perpendiculars and perform the
familiar geometrical constructions even for infinite dimensional spaces. A typical
and very important example is the space of square integrable functions on some Inter-
val (a, b). This space, called Lz(n. b), 15 equipped with the following scalar pro-
duct

b
(. g) = | flx)a*(x)dx (5.11)
2
and the induced norm 1s

b
el = (e, 0= ( { I %ax)® . (5.12)

The space Lz(a. b) is not only a normed space, but also a #ilbert epace [Ref.5.7,
Chap.1). This means that ft is complete with respect to the norm, i.e., that every
Cauchy sequence converges to an elesent of the space. Moreover, ft 15 a separable
space: there exists a countably infinite orthonormal sequence (u") such that every
element of the space can be indefinitely approximated in norm by linear combinations
of the vectors u . Such a sequence {s called a basis and every function f can thus
be written as
b

f= '["a fln
where f_ = (f, u ) are the Fourier components of f with respect to the basis (u ).
In the following we shall often use the so-called Pareeval equalfty which expresses
the scalar product of two functions in terms of their Fourier components

{5.13)
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(f.9) = vI|-0 .95 - (5.14)
Another norm, which is often used in the case of continuous functions on the closed
interval [a, b], is the so-called wniform norm defined as follows:

7l = :a;“b ftx)] o (5.15)

f.e., the maximal value of the modulus of f on the interval [a, b). Convergence with
respect to the norm (5.15) s uniform convergence and the space of continuous fumc-
tions is complete with respect to this norm.

After these few preliminaries, we can give a more precise meaning to the concept
of ill-posed limear inverse problems,

First let us define the direst problem: it is a mapping of a space F of functions,
called by CHADAN and SABATIER [5.8] “parameters" and by BALTES [Ref.5.9, p.1] “source
functions™, into a space & of functions, called "results" or “data", In the analysis
of imaging systems a function of F is called an “object" and a function of & a “"nofse-
less image". We assume that F, & are normed spaces and that the mapping fs given by
a linear operator A. We write A: F & and, in mathesatical language, the space & is
called the range of the operator A.

Usually the operator A 1§ continuous. This means that to any sequence of elements
of F, say (f(" J\ converging to the null element, there corresponds a sequence
(Af(")) which converges to the null element of &. This property ensures the stabili-
ty of the direct problem: any perturbation of g vanishes when the inducing pertur-
bation of f tends to zero. Besides it Is always possible to Introduce a norm in &
such that G becomes a complete normed space. Let us assume now that the inverse
mapping l'l exists, which is equivalent to require that the equation Af = 0 has
only the trivial solution f = 0. Then a theorem of Banach [Ref.5.10, p.83) implies
that A”) s also continuous. At this point one could try to define the inverse prob-
lem as the problem of solving the functional equation

Mg, (5.16)

where g is a given function of G. The continuity of "1 would ensure the stability
of the solution.

However, this approach is inadequate for the following reason. The operator A
has usually a smoothing effect. Consider, for instance, the integral operator of
(5.5): if the kernel K(x, y) has continuous derivatives with respect to x up to a
certain order, then the same property holds for 3(x). In any case the operator atten-
vates the higher frequencies - see (5.6). Now, in general, measurement errors or noise
destroy the smoothness properties of §: the *measured result” g fs no longer s func-
tion of & (in the case of imaging systems g is the “noisy image”), In other words,
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as remarked by SABATIER [Ref.5.11, p.5], one has to extend the space G into a larger
space G containing all possible results of measurements. The space G must be equipped
with a norm suitable for describing experimental errors: a L®- space with the L°-
norm for instance, when one considers mean-squared errors, or a space of continuous
functions with the uniform norm (5.15), when one considers maximal absolute errors.
It happens that & fs no longer a complete space with respect to the nors of G and
the operator Al is no longer continuous. The fnueree problem twrna out t3 be an
{ll-posed problem. Besides the equation Af « g might have no solution, because g
does not necessarily belong to . We see that the questions of existence and con-
tinuity are closely connected.

We shall call F the solution apace and G the data space . If we assume 3 simple
additive model for noise and measurements errors, then we have

Af +h=g9 . (5.17)
Since both f (the solution) and h (the noise) are unknown and since the equation
Af = g might have no solution, it follows that:

ithin a
t we can do is to search for some f reproducing the ivo? w
almb?:suncoruinty. The problem is then reformulated as 'ol?ovs. ,h\d { such that

5.18
"Af'q‘lgizo { )

he “size" of the noise, measured with the norm of G. 2
‘I"lm"th: ;:e\tngus formulation 5 adequate if the set H of all the funct:ons ! ::t;:
fying (5.18) is bounded and sufficiently "small® so that any elm.lt of H mig e
taken as an approximation of the "true™ solution. However, when A=l is not coc'vm’
vous, N is not Tvded In other words, xiven an arbitrary n ¥ r Ahou can A
two functions fY? , £{2) satisfying (5.18) and such that | £(1) - fl2) i ¢ ~'«. n‘.
is precisely the meaning of Hadamard's example discussed in Sect. S.I.li' n suc
case, 85 we shall see below, some supplementary constraints on the solution are

necessary.

The situation illustrated above is quite similar to that of {ll-conditioned sys-
tems a5 described in Sect.5.1.2. Evidently, in the finite dimensional cate the set
H is always bounded, but 1t is very large along some directions. ;

Finally we want to remark that, when the inverse operator does not exist, the
previous analysis can be repeated considering for (5.16) only solutions of minimal
norm. These solutions can be expressed in terms of the gemenaliszed fmvweroe (or
pseudn-inverse) of the operator A [5.12]. The generalized fnverse is an extension,
for operators in functional spaces, of the Moore-Penrose inverse for matrices. When
the cperatar A has a smoothing effect, it happens that its generalfzed inverse is
not contimous with respect to the norm of the data space G and therefore we get
again an i1l-posed problem,
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5.1.4 Prior Knowledge as a Remedy to 11]-Posedness

In Sect.5.1.3 we saw that, for an i11-posed problem, the set H s unbounded 50 that
(5.18) is not sufficient for determining meaningfu) approximate solutions. The main
idea, common to most available methods for curing 111-posedness, is to restrict the
class of admissible solutions by means of suitable prior krcwledge. In the following
we shall always assume that the inverse operator A'g,.:ists.

In regularization mathods, a subset M of the solution space F is defined in such
# way that the intersection of N with the set M, should be a set K of reasonably
small sfze (see Fig.5.1),

UL CONDITIONED
PROBLEM

Fig. 5.1. INlustrating the difference

Eh 111-posed and well-posed prob-

!ue:. and the basic idea of requlari-
on

The problem is then said to be regularized {f & collapses around the element A'li
when g tends to an element § of G, i.e., when the noise tends to zero. In such a 4
case one also says that comtinuwous dependence of the eolution on the data has been
mestored,

The set M can be defined by imposing global constraints on the class of admissi-
ble solutions. For example, one might ask for nonnegative solutions, or for solutions
satisfying prescribed bounds, lying in compact sets, etc. The relevance of compact-
ness as a way for restoring continuity was emphasized by TIKHONOV [5.13] who also
introduced the concept of reqularization. Besides he showed, in the case of Fredholm
integral equations of the first kind, how to incorporate the constraints into the
computational algorithm,

The role played by prescribed bounds in i11-posed problems for partial differen-
tial equations, has been particularly emphasized by JOHN [5.14) and PUCCI [5.15)

(in Sect.5.1.5 we shall give a simple example of this approach). Later, alang these
Tines, MILLER [5.16) formulated a regularization algorithe, having in mind the prob-
lem of analytic continuation (for an application of this method to the analytic
continuation of scattering amplitudes, see also MILLER and VIANO [5.17]), Since it is
formulated in the framework of Hilbert spaces, the method of MILLER [5.16) Is easily
adapted to the general formulation of inverse probless gfven in Sect.5.1.3. The pre-
scribed bound on the solution is then expressed by means of a linear operator 8 as

follows

18l p <E o {5.19)
where £ {s a given pasitive constant, The operator B is called by Miller the con-
straint operator. The method of TIKHONOV [S.13] and the method of MILLER [5.16) are
not exactly equivalent even if, in many cases, they lead practically to the same
results. We shall discuss these points in Sect.5.2.3,

The global bound (5.19) should express some expected properties of the solution
and has to be prescribed according to the physical character of the probhem one con-
siders. If the solution represents for instance a signal, then one may know some
realistic upper bound for {ts energy. Very often also, some smoothness condition on
the solution can be prescribed by bounding its derivatives. The role of this prior
knowledge is to discriminate between interesting solutions and spurfous solutions
generated by uncontrolled propagation of data errors. The principle of regularization
pethods is to include the additfonal conditions explicitly, at the start, instead
of resorting consciously or not, during the computations, to some tricks eliminating
the instability. The essential drawbacks of such apposite tricks is indeed that their
impl ications, on the class of admissible solutions, often remain in the dark.

Another route to regularization is provided by the theory of stochastic processes.
The idea is to associate random processes both to the class of admissible solutions
and to the data set, Again we must have some prior knowledge about the solutions.
For |inear mean-square estimation (which is in gemeral the best one can do) it is
enough to know expectation values (mean values), autocorrelation and cross-correlation
functions of data and solutions.

Aong these lines most work has been done on f11-conditioned algebraic systems,
arising from the discretization of 111-posed problems. A good review on this subject
is the paper of TURCHIN et al, [5.18). Stochastic regularization for {11-posed prob-
lems has besn forsulated by LAVRENTIEY [5.3] , MOROZOV [5.19] and FRARXLIN [5.20],

when data and sclutions belong to Hilbert spaces, the fundamental mathematical
tool i given by the theory of weak rwidom variables [Ref.5.7, Chap.6]. Then linear
mean-square estimation (optimum filtering) is performed, allowing a comparison with
regularization theory based on the constraint {5.19), as presented in [5.21,22]., In
the stochastic approach, one says that a continuous dependence of the solution on
the data (f.e., stability) has been restored if the mean-square error on the solu-
tion tends to zero when the noise tends to zero, This requirement imposes conditions
on the autocorrelation functions (covariance operators) of the solutions and of the
noise, Stochastic regularization methods will be analyzed in Sect.5.3.
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5.1.5 Holder and Logarithmic Continuity

In Sects.5.2.4 and 5.3.2, we wil) review some convergence results ensuring that con-
tinuity on the data has truly been restored, by means of prior knowledge. This means
that the error in the solution converges to 2ero when the data error « vanishes.
However, convergence theorems are not necessarily enough for practical purposes:

one has to know whether the convergence is fast enough or nct in order to allow ef-
fictent numerical computations. In this connection, we have to distinguish between
two different types of continuity. For some problems, the error on the solution is
proportional to ", 0 <a<l. Such a continuity, called Wiidur aontimdty, my in
general be considered as fairly satisfactory (5.14]. Indeed, the number of signifi-
cant digits in the solution is then a fixed percentage of the number of significant
digits in the data. However, there are some problems where the optimal bounds for
the solution error are proportional only to |in ¢|™", 20, Then a lowering of the
data noise by many orders of magnitude, does not {mprove significantly the solution
accuracy. This Is logaritimic contimuity which appears very poor for numerical com-
putations. In other words, a real improvement of the solution is only possible if
further constraints may be introduced.

As an illustration of these different types of continuity, let us consider the
problem of analytic continuation of functions holomorphic in the unit disk. Suppose
that the data are given on a curve r contained in the interior of the dick. The do-
main whose boundary is the unit circle and the curve r, may be conformally mapped
in an annulus with inner radius a and outer radius R. The data are then given on
the fnner circle. Let f(z) be a function holomarphic in the annulus; if we denote
by M(c) the maximum of the modulus of flo exp(ig)) on the circle of radius o,

4 20 SR, then by Hadamard's three circle theorem [Ref.5.23, Chap.5), we have

In(p/R
o= Tt - (5.20)

From this fnequality it follows that analytic continuation to points within the
annulus is stable if prior knowledge assures that the admissible fum:ngns ﬁ bound-
ed by E on the outer circle. Inﬁsd. ” us take two such functions f(1) and
consider their difference f = f(1) - (2}, The modulus of f is bounded by 2¢ on the
inner circle and by 2E on the outer circle, so that, by (5.20), 1t s bounded by
2E(</E)" on any circle of radius p. This result implies Holder continuity for ana-
lytic continuation to points within the domain of analyticity, However, » is equal

to zero for o = R, and therefore (5.20) does not ensure the stability up to the
outer circle. If one pretends to continue a function precisely up to the boundary

of its analyticity domain, then a mare restrictive bound is necessary. For instance,
one requires that also the first derivative is bounded, In such a case it is possible
to show that, at the boundary, one ru logarithmic continuity [5.14]. This fact is
not surprising since analytic functions are smooth and well behaved deep inside

their holomorphy domain, but may grow rough and oscillatory when approaching the
boundary.

Mio) < M{a)1° ()1,

For general inverse problems, one expects that the type of restored continuity
will depend upon the smoothing or filtering effect of the operator A. Consider for
instance a Fredholm integral operator. Then the reqularity properties of its kernel
are related to the decreasing rate of its eigenvalues, In particular, for analytic

m

kernels, the eigenvalues tend exponentially to zero [5.24]) and therefore, if the
constraint is not too restrictive, we get only logarithmic continuity. In other
words, some information contained in the “true® solution is lost in the data, A:cord-
ingly one expects that there are severe Timitations on the restont!on of fine de-
tails in the solution. To check this paint it is convenient to consider the recon-
struction of a "blurred solution®, i.e,, the restoration of local netgm.ed averages
(Sect.5.2.4). Then it is possible to define a “resolution 1imit", practically noise
independent, giving a measure of the size of the finest details which can be re-
stored. This will be illustrated by many examples in Sect.5.4.

5.2 Regularization Theory

The concept of regularisation was introduced by TIKHONOV [5.13]) in the study of
Fredholm integral equations of the first kind., The basic ideas have already

been discussed in Sect.5.1.4. A similar method was developed by MILLER [5.16] for
fmproperly posed problems in a HWilbert space setting. We chose the latter method
for the following reasons. Firstly because, using the geometrical properties of
Hilbert spaces, it is possible to justify, by means of elementary arguments, the
main points of the theory, Secondly because Miller's theory allows precise estima-
tions of the solution accuracy {Sect.5.2.4).

5.2.1 An Outline of Miller's Theory

As seen in Sects.5.1.3,4, the regularization of a linear inverse problem can be
formulated as follows: to search for functions f satisfying both constraints

2
IAf-gllgse (5.21)

and
[lefllp <€ . (5.22)

The spaces F and G are Hilbert spaces, A:F -G is a known continuous operator, « is
an estimate of the data accuracy, £ is a prescribed constant and, finally, B:F «F
is the constraint operator.

Many different choices are possible for B, accorﬂlm to the available prior know-
ledge. The simplest one is B = 1 (the identity operator in F); then (5.22) is a
constraint on the norm of f. Another usual choice is to let B be a differential
operator (see Sect.5.2.3) and then the bound (5.22) is a smoothness requiremont on
the solution. However, for the general formulation of the theory, it is not neces-
sary to specify 8. It Is only required that B {s densely defined in F and that it
has A continuoua inperes 8-, In other words, there must exist a constant g such
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that || "(l;:l“ '||;- Therefore, the set M of the functions satisfying (5.22) is
bounded, and hence also the set K of the functions satisfying (5.21,22). Of course
the set X is not allowed to be empty, and this property depends on the values of

the numbers ¢ and £. A couple (e, E) is said to be permissible [5.16) {f there exists
at least one function f which satisfles (5.21,22).

Let us denote by 1 the set of permissible couples. It can be proved [5.16] that
this set is convex, {.e., it contains the segment joining any two of its points. Its
boundary can be drawn as follows. Let us introduce the functional

ota; 1) = [1Af - gl| 2 + allBrN 2 , (5.23)

where a iE a positive parameter. Then, since B! s bounded, there exists a unique
function f mlnimlzln’ the functional @(a; f) [see also the subsequent discussion
from (5.25) to (5.27)). If we write

" ”Af' - all G* Ea « || n'u“F (5.24)

it can be proved that ¢, 1s a continuously increasing and E, a continuously decreas-
ing function of o, when o runs from 0 to +=. Moreover, since f_minimizes || Af - gl G
under to the constraint ||Bf|| ¢ = E, and 1ikewise minimizes || BfILp under the con-
straint || M-ul * c4, then ﬁ is exactly the set of points which are above and to
the right of tl gurve fege Ej)y D<o« 4=, Since n {5 a convex set, the computation
of only a few points on its boundary curve, coupled with linear interpolation in
between, would give a good {dea of fts shape.

Let us assume now that the couple {e, £} 1s permissible; then if K is not too
"large", any function of K may be taken as a satisfactory estimate of the unknown
solution. We are faced with the following two problems:

2) how to exhibit at least one function of K;
b) how to estimate the accuracy of the solution.

For solving these problems it s convenient to find out a simpler and more sym-
metric geometry than that of the set K. To this purpose, ane can introduce two sets
Ko and K, sandwiching K [5.25,26). Indeed, if we consider the functional defined
in (5.23) with a = (¢/E)

o(f) = lIAf - gll 3+ (BPNee 2 . (5.25)

then the set lo of the functions f satisfying the condition o(f) g:z 15 contained
in K, while the set ll of the functions f such that &(f) 52:2 contains K.

In order to show that the sets Ko and Kl have a simpler geometrical structure
than the set K, we must consider the following operator:

C = A%A + (/)80 , (5.26)

where A* and B* are the adjoints (hermitian conjugates) of A and B, respectively,
Observe that A* :G<F, so that A*A: F «F,

The operator C: F «F is defined on the domain of B*8 and has the following
properties: it is a positive definite operator, i.e., for any f in its domain
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(Cf, f)e>0; it is self-adjoint, i.e., C* = C3 it has a continuous inverse since,
fru. u: analogous property assumed for 8, it follows that there exists a positive

2 t, for
constant y2 such that [} Cf[[ £ 21| €1l g- The Tast property fap)ies tha o
given g, we can introduce the function

Feclag . (5.27)
Then the functional (5.25) may be rewritten as follows:

o(f) = (CLE-F1 ., 1f - P+ gl - (o, ATl - (5.28)
It is clear that the function f minimizes the functional and that

o(f) = all 3 - (g, Af)g 20 (5.29)
Now, in order to investigate the geometrical structure of the sets Koo Ky+ assume

for simplicity that the operator C has 2 complete orthonormal set of aigenfunctions
{u.); then the condition O(f);cz can be written in the following form:
n .

(5.30)

b i 8 3. -
I valty - ol < 6% - Ulollg - (5. A)g)
where (721 is the set of the eigenvalues of C m? L !" are the l'ournr collx::ﬁ:ts
of 1, f ';n the basis {uJ, t.e., fro = (f, "n)f' = (Fy updpe- :t th!s p:;nt s
clear that the sets Ko. K‘ are infinite-dimensional “ellipsoids having the same
center f and the same principal axes, the 1atter being given by the eigenvectors

of C. r 3
Now, does f belong to the set K? A sufficient condition for this fs o(f) <¢",

which can be easily verified by numerical computation.

K, Ky. The
BY A & ti resentation of the relation between the sets 0. X Ky
2!1 si'éz. Kic:e-n:r::nted 25 homothetic ellipses with center {
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Besides the set Ko is nonvoid if and only if this condition 1s satisfied. In such
3 case, the sltuayon is schematically represented in Fig.5.2. It is then clear
that we may take f as an estimate of the unknown solution.

5.2.2 Eigenfunction Expansions and Numerical Filtering

Let us suppose now that A is & compact operator. A typical example is an integral
operator over a finite interval and with continuous kernel. The corresponding inverse
problem s the solution of a Fredholm equation 1ike (5.5). Existence theory for
these equations was developed by PICARD [5.27], using expansions in tewms of the
eigenfunctions of the operators A*A and AA*. Picard's theory generalizes immediately
to the case of compact operators in Hilbert space, The operator A*A is a compact,
self-adjoint, nonnegative operator and its inverse exists since A'l exists, From

the spectral theory for compact operators [Ref.5.7, Chap.3), it follows that A®A
admits a countably infinite set of positive eigenvalues ‘.u'z'). and that the set tu)
of the corresponding eigenfunctions is a basis in F. Each elgenvalue has finite
multiplicity and (nﬁ) can be ordered as follows: og?.ui;ﬂz_)_... .« Moreover a;‘:<0
when n-ss=. The ‘n“n’o’ and the u, are called, respectively, singular values and
singular functions of A. If we introduce the vectors

'n A l'l.ll."'ll (5.31)

it is easy to check that

Mu, = oy o A%V, = e (5.32)
and that
KAy, = a2u o Mev, = aly (5.33)

The zet tv,) is a complete orthonormal set in the closure of the range of the
operator A [Ref.5.28, Chap.5.2], f.e., in the closure of G. Therefore "’n’ isa
basis for representing noise-free data.

Solution (5.27) takes on a simple form when the u, diagonalfze B*B. In such a
case, we have

.-

2
s g-o *nfnn (5.34)

and B has a continuous inverse {f and only 1f 8, 2 £ >0 for any n. The u, diagonalize
also the operator C, and the corresponding eigenvalues are given by V'Z‘ . nﬁ ‘
(e/€)%62. Now, from (5.32) it follows that

L
i .z.-o “nIn’n * (5.35)
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where 9 = (g, 'n)s' and from (5.27) we get

f {' 7‘—""21‘“" gz s (5.36)
ne0 ol + /)%y " "

btained as follows. Let us assume for simplic-
Then let us denote by N the greatest
he a, form a nonincreasing sequence).
lecting :s"/E in comparison with L

Another solution of the problem is 0
ity the the a;‘: form a nondecreasing sequence.
integer such that = > (z/[)a“ (recall that i
Truncating the serfes (5.36) at n = N and neg
for n<N, we obtain

f 'i‘ Ry (5.37)
f= a,. gy

kg nonn
refore is also an approximate

-
f belongs to K, [5.16] and the
e . . -known truncation method

solution. We recover here, with a prescribed cutoff, the well
which §s in use for eliminating the noise amplification due to eigenvalues very
close to zero and which s usually called mumerioal fittering [5.29).

bound « and the
thods have the disadvantage that both the error
coﬂ:::.g;:cgd:‘:g"nw be known, However, often in pnctico.‘on\y ¢'i;‘ l‘zmrt" I?cn i:
is possible to elaborate procedures which require the know :dge : yuwer bomum
of the couple (e, E}, For instance, let us suppose that we know a good

# for the data accuracy but none for E.

Ffg. 5.3. The region um of permissible couples fc E)

V-
tain an estimate of the solution taking as our approx 4
oy ': ::"t:: space F which minimizes || Bf || with respect to the con

Never

:::?:tt?!':f.-‘:len = 7. In other words we will take as our approximation the func-

5.3, This method
i ined by the condition ¢, = 2, a5 shown tnuﬂg. »
et e A %‘.J‘mrs.i by WOROZOV (5.30) and colled the “resicue method”. A
complete discussion of this po nt can be f in [5.16].
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Up to now we have considered an operator A such that A*A has only a discrete
spectrum. By means of a simple example, we illustrate how the regularization proce-
dure works when the spectrum is continuous. To this purpose we consider the case
of a convolution operator

R

(Af)(x) = [ K(x - y)f(y)dy . (5.38)

If the function K(x) is integrable over (==, +=), then its Fourier transform

= P
K{v) = [ K(x) e'z"""dx

——

(5.39)

is a bounded continuous function on (-=, +=), such that [i(v)l<0 when |y| 4=
(Riemann-Lebesque theorem), If we take as solution and data space the space of
square integrable functions, f.e., F « G = Lz(—o. +=), then A :F <G is a continuous
operator. Besides A".(uMch exists if K(v) does not vanish over some fnterval) is
not continuous since K(v) tends to zero at infinity,

Now we can take as a constraint operator B

VRS
(BF)(x) = [ &(v)f(v) e“*"®Vdy ., (5.40)
In such a form we can vrita._for instance, a differential operator of order n with
con:unt coefficfents. Then 8(v) is a polynomial of order n, l'(v) TapEmut.y
L and the domain of B s the set of the functions f such that i(v)f(u) is square
iutegnb!e over [-=, 4=), Besides, let us remark that B has a bounded inverse if and
only if 8{v) has no zeros on (-=, +=),

Since the operators A®A and B*B commute, we are in a situation completsly analogous
to that fllustrated in the preceding example, Therefore, from (5.27) we get

;(l’ = }. i‘(“)

< 2rixv
- - d
e RO e/ o T ¢

(5.41)

This formula corresponds to the expansion (5.36). OFf course, also in this case, we
can obtain a second approximation corresponding to the truncated solution (5.37).
lndeed: Tet us denote by A the set of the values of v such that Ii(v)l ;(c/!)li(v)l;
since K(v) tends to zero at infinity while i(v) is never zero, A is a bounded set
of (==, +=). Then the second solution is given by

fx) « | g%f} A T _

5.2.3 Tikhonov Regularization Method

A general method for solving Fredholm equations of the first kind was proposed by
TIKHOKOV (5.131. The method was successively developed and generalized by Tikhonov
himself and by many Russian mathematicians. A copious 1ist of references of the
Russian school can be found in [5.4].

Let us consider the integral operator

b
(A)(x) = [ R(x, y)f(y)dy , ccx<d (5.43)

a
whose inverse is assumed to exist. The solution space F is the space of the con-

tinvous functions over [a, b], normed with the uniform norm (5.15). The data space
G is the space I.zu. b). The purpose is to construct a uniform approximation to the

solution of (5.5).
The basic idea is to restrict the class of admissible solutions to a compact sub-

set of F. Then a general theorem of functional analysis, (due to Tikhonov himself)
assures the continuity of the inverse mapping [Ref.5.4, Chap.1, Sect.1], The re-
striction to a compact subset is achieved by means of a "regularizing functional®
a(f): the compact subsets are defined by the condition n(f);tz. where E° is a

given arbitrary constant. :
The functional proposed by Tikhanov for Fredholm equations of the first kind is

b
atry = | (et 1e ()12 + quoleex)P1ex (5.44)
a
where the weight functions p(x) and g(x) are strictly positive. It is possible to
prove, by means of the Ascoli-Arzels theorem [Ref.5.10, Chap.1], that the set

u(f) « [2 is a compact subset of F. Next a “regulanised family of approsimate sclu~
tions® (f 1, a>0, is defined as the set of functfons minimizing the functionals
n

d
ola; 1)+ | [(Af)(x) = alx)|dx + aa(f) , (5.45)
=

where o is a free parameter.

The functions fu are the solutions of the Euler equation for &(a; f)

3 b z
...(Iv(x)?;(x)l' + q(x)f (x)} + | Rix, y)f (y)dy = B(x)
) fila) = fi(b) =0 . (5.46)

where

d d
flx, y) = [ K*(s. 0)K(s, y)ds , B{x) = | K*(s, x)g(s)ds . (5.47)
c [
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Denote by (’:" >0, a '““‘e" data converging to the error-free datum § when
«-<+0 and let'e = || g, -9|| .. Besides, let G(c) be a value of the parameter a such
that cye? <a(c) <coct (whefe €] G2 Are given arbitrary constant); f.e., 3(c)~c?
when ¢ <0. Finally, denote by !, the solution of (5.46) with g = g, and u = ae).
Then l‘of in the uniform norm, when ¢ <0 (T is the un que solution corresponding
:g ;.ﬁ error-free datum §) [5.13). A simple proof of this result can be found in
In order to compare Tikhonov's method with the method outlined In Sect.5.2.1,
we can uks as solution space Lzsa. b). The space of continuous _functions is a sub-
space of L<{a, b) and the set n(f) <E¢ is a compact subset of L2(a, b). Then we re-
:lo"k m: t:: condition a(f) <E< can be written in the form (5.22) {f the operator
$ such that

(B*BF)(x) = ~Ip(x)f'(x)1"' + q{x)f{x) ; f'(a) » f'(b} = 0 (5.48)

Indeed, by means of a partial integration, it s easy to see that, for any f in

the domain of BB we have: (B*Bf, 2, = 0(f). We want also to remark that the opera-
tor B*B has 4 discrete spectrum with' eigenvalues accumulating to infinity. Indeed,
the eigenvalue equation for B*B is nothing else but a Sturm-Liouville problem over
{a, b]. It should also be rked that the functional (5.45) coincides now with
5.23). Besides the solution f_of (5.46) can be formal y written as in (5.27), with
e/E)€ replaced by a in (5.26)7 Clearly the method outlined in Sect.5.2.1 is essenti-
ally a generalization of Tikhonov's method to the case where F and G are Hilbert
spaces and A: F -G an arbitrary linear Sontimous operator. Besides the parameter
;oi:dc:gl;g;tly taken proportional to ¢, the constant being given by the prescribed

u .22),

Numerical computations on Fredholm equations of the first kind have been done by
many authors using the method described above [5.32-34), When uniqueness does not
hold, generalized {nverses must be used. A simple discussion of existence and unique-
ness theorems, using singular function expansions can be found in [5.35], The clear
result is that generalized inverses are not continuous. Their reqularization has
been analyzed using TIKHONOY's method [5.12].

5.2.4 Stability Estimates

Here we come back to the method of Sect.5.2.1. Indeed, if we want to estimate the
error on the approximate solution (5.27) it is necessary to know both constants,
« and E. Of course, it is meaningless to speak about errors in the solution without
specifiying how the accuracy of the solution is defined. When F is a Hilbert space,
without further specifications, then there are two natural choices. The first is
to measure errors in the solutions by means of the distance || f(” - f(z)ll g+ The
second choice is to measure errors by means of the quantity (seminorm, in mathematical
language) kf“) _’(2)' ');l- where w is a suitable function of F. As we shall see,
this choice is convenient for the analysis of "blurred solutions®. We do not cons {der
here the case where errors are defined in terms of the uniform norm (5.15) (for a
discussion of this problem see (5.22,363).

In the first case the error may be defined as U)e maximum value of || f ~f|| F
where f is any function of the set K, Recall that f is given by (5.27) and that K
1s the set of the functions satisfying (5.21,22). We shall write

ARG N NN, LN -

i - f (5.49)
&(v, E3 9) gfn:l “f '”F . ‘
In Fig.5.2 #{r, E; @) s the maximum distance between any point of K and f; it i3
clear that this maximum value s attained at the boundary of K.

Lot us now denote by Ao(n E; g) and ‘1(«. E; 9) the maximm length of the semi-
axes of Ko and K‘. respectively. Then, looking at Fig.5.2, we see

. 5.50
Soles £ 9) < 8ley €5 ) < 8y(e, Exg) . (5.50)
The quantities &,(c, 5 g), 1 = 0,1, may be easily related to the data g and to the
spectrum of the operator C, Assuse, for simplicity, that C has a discrete spectrum
and Tet 12(c/E) be the smallest eigenvalue of C. Then, from (5.30), ft follows that

ytes €5 0) = by [ - (lanE - o At 0 1 -0 (5.51)
where rg = ¢2 and ti = 2:2. When € has a continuous spectrum, (5.51) is still true,
+2(</E) being the infimm of the spectrum of C. Therefore fylc, €3 ) and &(r, E3 9)
can be computed in practical cases, and they give, respectively, a lower and an
upper bound for &(c, E3 g).

Inequality (5.29) shows that there exists an upper bound for &(c, E, 9) indepen-
dent of the data function g. More precisely: (e, E, g) <é(c, E), where

8(c, E) = HW:‘IET ‘ (5.52)
The quantity 4(e, E) 15 called by MILLER [5.16) stability eotimate. Indeed, if

B(cs E) <0 when c =0, for fixed E, then the error in the solution of the inverse
problem also tends to zero. In other words, {f the noise tends to 2ero and merg-
fore g3, where g = AT represents nofseless data, then the estimated solution f
tends to the exact solution T. This corresponds to the collapse of the ellipses Ko
and Kl of Fig.5.2 into a point. A general condition for ensuring this is that 2 har
a compant fmpersa. This is just a reformulation of the general result of Tikhonov
(see Sect.5.2.3).

We can now state wore precisely what is meant by Milder eontimuity and logarithmia
sontivuity (Sect.5.1.5). The first case corresponds to &(c, E)~c", O<a <1 (for
fixed £) and the second to A{c, £)-Ilnr|'ﬁ. fsD. An elementary discussion of the
relationship between these properties of the stability estimate and the properties
of the couple of operators A, B can be done when assuming that the operators A*A
and B*R commute.

Like in Sect.5.2.2, consider firstly the case where A 15 3

Then, from (5.52), recalling that the eigenvalues of C are given by vf = »
(z/:)?eg(:mu follows that

ct operatnr.
.



&(e, E) = vZ¢ Sup[o: + (c/t)zai ]-" - (5.53)
n

First of all, let us observe that we cannot restore the continuity by choosing
bounded £,. Indeed if we take, for fnstance, gy = 1 in (5.53) then we have, for any
€0 (e, E) = /ZE. In fact 8(c, £) =0 for c -0 and fixed £, 1f 8 satisfies the follow-
ing conditions: 1) each eigenvaiue of B*B has finite multiplicity; I1) the 6p

to infinity for ne+s [5.26]. These assumptions are equivalent to require that B~

1% a compact operator,

More precise results can be obtained if stronger assumptions are imposed on the
En. For instance, if we assume that for n-e4e, #a~ap", u >0, then, by computing
the minimum of the function g{s) = s+ (c/E)2s=0, 550, it is easy to show that
6{c, E)~E(e/E)" where o= u(u 4 1)1, However, the condition ng~and s too restric-
tive when the a, tend to zero very rapidly. This occurs, for instance, for integral
operators having an analytic kernel, since their singular values have an exponential
fall-off [5.24]. In such a case, » more reasonable condition [5,22,26] is to take
fip growing as a power gf n, f.e., fp~nY, >0, But, observing that the function
o?i? = exp[-as) + (¢/E)%s2u, 50, has a minimun for so-!ln(zj!): when ¢ <0, it
follows that &(¢, E)~E[In{c/E)|™ . In most cases the condition & ~n¥ implies a
geo:st;a:v)'t upon a finite number of derivatives of the admissible solutions (see

t.5.4).

As a second example, we consider the case of the convolution operator {5.38), the
constraint operator B having the form (5.40). Noting that the infimum of the spectrum
of the operator C is given by

VAe/E) = fart Ik I® + (/e 1R P
from (5.52) we get
fes €)= /2 ¢ supl IR 17 o (/1210117 (5.54)

In this case, we obtain results very similar to the previous ones, Let us suppose,
for instance, that R(v) is a rational function (this may happen in the case of an
electrical network), without zeros on the real axis, whose asymptotic behavior for
|v| 4= is given by R{v)~u™® (m is a positive integer). Then we can take as con-
straint operator 8, a differential operator of order n, with constant coefficients;
in such a case #(v) ¥s a polynomial of order n, and therefore f(v)~o" for || «+e,
Then, asymptotically, we have 3(v)~(R(v)17¥, u = n/m, and ?ence we have Holder con-
tinuity. More precisely, 6(c, E)~E(c/E)® with a = u{u+1)"' = n(m+n)=1 <1, Observe
that a~1 when n>>m, i.e., when the admissible solutions are very smooth. On the
other hand, if R{v) decreases exponentially for |u|-+= while &(v) increases as a
power, then the restored continuity is only logarithmic. As is well known, the
asymptotic behaviour of K(v) for |v|-=+= is strictly related to smoothness properties
of K(x). In particular, R{v) decreases exponentially when K(x) is an analytic func-
tion. A Tist of various problems which can be reduced to the solution of integral
;mut;c;ns of convolution type can be found, for instance, in [Ref.5.4, Chap.4,
ect.3).

As pointed out in Sect.5.1.5, when the restored continuity is of logarithmic
type, it is convenient to consider the reconstruction of "blurred solutions”. For
the sake of simplicity, we analyze essentially the case of the convolutfon operator
(5.38). Then we can proceed as follows. Let no(x) be a positive, even function such
that

4 -
[ wpladx = 1, f xPw(x)éx = 0F (5.55)

ALl

and let
=
!o(xo) a L uo(xo - x)f(x)dx . {5.56)

The "blurred sohftion" fn(xo) is a local weighted average of f_over the distance D,

and_an estimate fo(xo) for it is obtained b;_r replacing f with f in (5.56). The error

in fu(xo) is the maximm value of |f°(xn) "n"‘o” where fntxo) corresponds to an

arbitrary function of the set K. Since we consider a convolution opev:ator commut ing

with the translation operators, it 15 quite clear that the error iv_| fo(xoj fs in-

dependent of g and hence it is enough to evsluate the error in fD(O) = (f, "D’F'
For a fixed D, we define the error by

(e, E3 g, wy) = sup [(Ff = F, o)l . (5.57)
(e EL 05 ) o Sur oF

In other words, it is the maximum value of the component of =t along the direction
of the vector w. If we look at Fig.5.2, we clearly understand that

“o(fn E'q 9. 'o) £ 6(‘0 E'u a. 'n) < 61(‘0 E; 9. “D) . (§~50)

where ao(c. £: 9, wn) and al(:, E; 9, "D) are quantities analogous to (5.57), the
supremum being taken over the sets Ko and Kl' respectively. Again So(c. E; 9, "D)
and 41(1. E; 9, uo) can be easily computed. Indeed, if we use Fig.5.2 as a schematic
representation of the infinfte dimensional problem, we see that the component along
Wy of a vector u = f-f of Ko is maximal when u coincides with that paint ug of the
boundary of Kq such that the tangent to the ellipse at u, is orthogonal to o Now,
if we write the equation of the ellipse as (Cu, u)r = b°, then the equation of the
tangent in Uy is given by (CUO. “)F = bz and therefore the Salngem is orthogonal

to the vector Cuo. This vector is parallel to " if g = aC ¥ where a i5 a con-
stant which can be determined by requiring that Ug belongs to the boundary of l(o
It tgllm u‘;u A= b(c"uo. un);.". 50 that &gle, £ 9, wp) = [tugs vtD);l =
B{C™"uys Wy)g- Using o similar argument for K; and recalling (5.30), we have

- -1
Biles E5 90 M) = Le3 = (1all g - (a2 ADNUC Iy, ) (5.59)
where ‘: = :2 and r.f - 2:2. For infinite dimensional “"ellipsoids™ the previous
argument can be made completely rigorous using the Schwarz inequality.
Again we can find an upper bound on the error, which is independent of g, i.e.,
8(cs B3 90 wy) <8(e, Ez wy) where [5.16]

8e, €5 wp) = /2 (€, wlf - (5.60)



It is possible to prove that &{¢, E; "D) tends to zero when ¢ <0, provided that
the constraint operator B would have a bounded inverse. Hence in this case, we are
allowed to take 8 = . This type of continuity can be called weak oontimelty.

More generally, the problem of restoring “blurred solutions" can just be formu-
lated as the problem of restoring a family of linear functionals like (f, "A)F
where 3 is some suitable parameter (1ike the center of the averaging Interval).
Such a point of view is usually adopted for inverse problems in geophysics 15.37,38),

5.3 Optimum Filtering

When statistical properties of data and solutions are available, filtering methods
provide an alternative way for regularizing 111-posed problems.

5.3.1 Random Variables in a Hilbert Space

Since we will use a perhaps unfamiliar description of stochastic processes, we be-
gin with a brief sketch of the working frame, For further details the reader may
consult standard books on random processes 1ike [5.39-41) or, for the more specific
questions concerning Hilbert space valued random variables, [Ref.5.7, Chap.6) and
the review article [5.42].

Let us first recall that a random variable (in short: r.v.) X is an application
of some set 2 (the set of the outcomes « of an experiment) on the set of the real
numbers, 1.e,, X‘u) s a real number called a value of the r.v. X. A probability
measure P |5 defined on the subsets of 0, called events, and X is described by the
distribution function

Fylx) = PIX 2 x] = Plu|X(w) < x} . (5.61)

where one must read the r.h.s. as the "probability of the event containing a1l out-
comes » such that X(w) < x". The mean value of X will denoted by = E[X], where
E means mathematioal otation, and its varignoe by of = u(x--x)g’. Two pr more}
r.v. are said to be jointly distributed if they are defined on the same space Q; then
they may be described by the joint distributfon function

;xy(ln Y) =PIt 2 x, ¥ £ y] = Plu|X(s) < x, Y(a) <yr N (5.62)

Tnted ¢ uyy ﬁ.?{ﬁﬁ::‘rfi.“i'.'x‘.‘ ¥ 15 Slowed :!’:p:?: g Jointly distribut-
ed real r.v. X, Y.

A Hilbert wpace valued random variable T is an application of n on a Hilbert space
Fo 1.e., £lw) is an element of F. When F is a space of functions, then ¢ is a stocha-
stic process. We prefer, however, to use the previous appellation, since stochastic
processes are not necessarily defined in a Hilbert space. It is quite obvious that,
if F is a real (complex) Hilbert space, then, for any w in F, fy * (60 W)p 15 a res)
(complex) r.v. Accordingly, the Fourier components of ¢ in a basis fu ) of F are an

infinite set of jointly distributed r.v. 7 = (£, u")'.. Simplifying somehow, we
can define £ by requiring that, for any sequence u"' of real numbers, the following
probabil ity makes sense:

Pl(l = .10 [2 s .2' CEE ) tl‘l s l“. aanii) (5.6’)

However, in order to include processes 1ike white noise, one has to consider weuk
wiidom wardables (In short: w.r.v.). In this case it is required that (5.63) be de-
fined only for any sequence having a finite number of elements different from +-,
Such & probability measure on F is also called a cylinder et moamre, because 1t
is only defined on the "cylinders" of F, i.e., the sets which are bounded only along
2 finite number of directions [5.7,42]. Indeed, a5 it is the case for white noise,
the probability that £ takes values in a bounded set is not necessarily defined.
Let us remark that, in writing (5.63), we have implicitly assumed that F was a real
Hilbert space; the extension to complex Hilbert spaces and ta corresponding w.r.v.
is quite obvious, Next, let us only mention that an alternative way to the intro-
duction of w.r.v. 15 to define 1ike GEL'FAND and VILENKIN [5.43] generalized pro-
cesses, {.e,, applications of 1 into a space of distributions,

In the following we will assume, for simplicity, that all w.r.v. £ have zero
mean; in other words, for any w in F, E[(£, n)Fl = 0. This is not a restrictive
hypothesis since, when the mean is not zero, one can always consider, instead of
£, the reduced w.r.v. &' = £-E[£], At this point we sti1] have to introduce the
concept of covariance operator Ru of the w.r.v. . Such an operator is strictly
related to the so-called autocovariance function of a stochastic process (for zero
mean processes autocorrelation and autocavariance functions coincide). Indesd, let
us assume for a moment that F is Lz(a. b) and that it is possible to define in some
way the complex r.v. £(x), where x is a point of [a, b]. Then the autocovarianse
Sunotion of £ 15 gliven by

Ry, (s ¥) = ELE()E(y) (5.64)

and we call covariance operator R“ the integral operator whose kernel is {5.64)
b
(R, f)(x) = ! R, (x, ¥)f(y)y . (5.65)

"White noise” is by definftion a Gaussian process g for which, formally, R“(:. y) '
= ¢ze (x=y). and hence R“ = le. where 1 is the ldentity opsugor in F, From
(5.64,65) and the definition of the scalar product in Lz(a. b) 1t 1s =asy to check
that, for any f, w in F

(R’.tf' N)r . E[(f. ':)"([- ')" - (5.66)

In the theory of w.r.v. (5.66) is adopted as a definition of R((‘ a definition which
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remsins valid in any Hilbert space F. Indeed, we will always assume that the w.r.v.
has a finite second moment, i.e., we require that E[|(z, !)F!zl is finite for any f
in F, and s a continuous function of f. Then the r.h.5. of (5.66) is a continuous
bilinear form over F and hence there exists a bounded, Tinear, self-adjoint, non-
negative operator lt“ fulfilling (5.66) (see, e.g. [5.71).

For two stochastic processes £, n the cross-covariance function is defined by

Reo(%e ¥) » ELe(x)n*(y)) (5.67)

and the cross-covariance operator lt‘;'| is the integral operator whose kernel 1s
(5.67). If £ takes values in the Hilbert space F and n in the Hilbert space G,
then R(n :G+F, and it is easy to check that

(R("gv ')r = El(g, ")5(" f)r' ' (5.68)

Equation (5.68) can be taken as a definition of the cross-covariance operator for
processes having a finite second moment. Besides the following relation holds:

'(n ¥ R:t'

5.3.2 Best Linear Estimates

With the previous background, let us turn back to our linear inverse problem. The
basic equation is (5.17) and the functions f, g, h will be considered as values of
Jointly distributed w.r.v., respectively £, n, ¢. The w.r.v. £ takes values in the
Hilbert space F, while n and ¢ take values in the Hilbert space G, The w.r.v. g,
N, € are assumed to satisfy the following equation

AE4z=n, (5.69)

where the linear operator A :F <G is continuous, and fts inverse A'l 1% supposed to
exist. The inverse problem consists in estimating a value of £, given an observed
value g of n. Prior knowledge would be knowledge of the joint distribution of the
w.r.v. ¢ and ¢ (solutfon and nofse). This is usually too much for linear estimations.
It is enough to assume a knowledge of the mean values of the w.r.v. £, ¢ and of the
appropriate covarfance and cross-covariance operators. The following assumptions

are usually introduced:

1) & and ¢ have zaro mean;

11} £ and ¢ are wicorrelated, i.0., R
1) l:‘ existe.

et 03

The third assumption is the mathematical formulation of the fact that all components
of the data function are affected by nofse, or In other words that no component of
the noise 15 equal to zero with probability one. Thanks to the assumptions 1), I1)
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the covariance operator of n is given by (see, e.g. [5.20])
R"\'\ " All[(A' 3 R“ {5.70)
and the cross-covariance operator R"" is
R, = R A . (5.71)

We will also assume that a“ contains a parameter ¢, which tends to zero when the
noise vanishes, |.e.,
L ¢ (5.72)
Rc__. =cHN,
where N is a given operator (for white noise N = 1).

The classical procedure of linear mean-square estimation can now be formulated
as follows. A ifmear eatimator of £ will be any w.r.v. iL = Ln where L:G+F is an
arbitrary 1inear continuous operator. From a value g of n one obtains then & Ifncar
eatinata of the possible values of £, f, = Lg. Now we have to find some way of eval-
uating the validity of such an estimator. For instance, we can measure its validity
in estimating the scalar r.v. {£, W) {for any given element w in F) by the mean-
square error

R
62(cs wi L) = ECI(E = Lny wplD) (-2

It is then natura! to ask whether there exists an operator Lo minimizing the erov"
(5.73). If the covarfance operator u“ has @ bounded inverse, Lo exists and 15 unique
for any win F. It is aiven by

-1 =2 A (5.7¢)
Lo = Reafon * RecA*IARGA® ¢ R, )

The w.r.v, £ = Lo" ts called the beet Linaar catimstor of £ and, given a value g of
n, the best linear eetimate f for the value of ¢ is

-1 (5.75)
f- numm“A' . Ru) q .

Ref.5.7, Chap.6] or [5.20]).
Let us just sketch the proof of this result (see, e.9. [ g gl R
i Rer has a bounded inverse, R., has also a inverse a 0 r
T s ontinuous Operator from G into F. On the other hand, using (5.06,68),
one can write

ECI(E = Lny w)gl?} = (R = R, L® = LR+ LR LeTw, W)

s (IL - LgIR_(L* - g, wp & ((R,, = LR, Lghw, w)g
(5.76)

- L 2 Lg, the
nd, since the operator (L -Lp)Rnq(L® - L3) s positive definite when
.-mm- is auﬂzd if and on?y L. Lo._ket us still remark that m‘e‘:rw:‘:t:;m
result can be extended to the case where R;4 §s not bounded: there "R' X .
continuous operator Ly minimizing (5.73) if and only if the operator Rp R,

bounded on its domain [5.21].



We consider also the case of a w.r.v. £ with a finite variance defined by
2 o
Efliellg) = E (] o(""' E)p(, u ) <« 4=, (5.77)
ns|

where (up} s a basis in F [note that (5.77) does not depend upon the choice of a
particular basis]. Let us remark that g.n can also be written with the help of
the covariance operator Rre, using (5.66)

-
e elid I, (Regype ) = Trace (8,,) . (5.78)

Hence we see that [ has finite variance if and only if Ree has a finfte trace (one
says then that R;: is a nuclear or trace class opernorl. When © has finite variance,
we may define the following “global® mean-square error (for the estimator iL = Ln)

e ) =€t - tall D) (5.79)

which will be finite if and only {f Ln has also a finite variance, Nhen it exists,
the operator Lo, which minimizes (5.73), minimizes also (5.79) if and only if L n
has a finite variance. Nhen Ry; has inverse, the previous condition i
satisfied if the operator Lo = RenReA 1s of the Schmidt class, f.e., it satisfies
the condition trace ( ) < 4=,

Now, as in Sect.5.2.3, let us briefly discuss the situations where (5.75) can be
conveniently represented by means of eigenfunction (singular function) expansfons.
We consider first the case of a compact operator A, using the sase notations as in
Sect.5.2.3. We expand ¢ and ¢ in terms of the efgenfunctions of the operators A®A
and AA*, respectively; their Fourier components are the random variables A
(c. "n)r' (S (z, v.)‘. Then we assume [in addition to I) - II1)] that

IV) the fourier components of [ are mutually wncorrelated ga well aw the Fourier
corponants of ¢,

Equivalently, the following representations for R__ and R__ are valid:

113 (44
4 4
2 2 2
R“f - E.o Ppfaln o R“g = ¢ Lo VoIne ¢ (5.80)
where = (f, “n)F‘ 9, * {9, v.)G. p'z' is the variance of £, and ¢2u: the variance

of ‘n [recall (5.72)].
Then the best 1inear estimate (5.75) becomes

to 20, 0T ' (5.81)

and ft results that the operator Lo is bounded 1f and only if sup(a p2u ?) < 4=
15.21,221.
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fquation (5.81) can also be written as follows:
-
f-5 - exp(-2J,.)] g-! Up o (5.82)
n=0 n
where
:.292 {5.83)
n'n :
3, * 112 ln(l . 77) 2

f is interesting because, in the case of Gaussian processes, we recognize
::‘3,. m average mutua Onfomilon contained {n the scalar random variables fp =
(Ls up)f and n, = (ny vo)e (see, e.g. [5.42]). Indeed, we have

3 o (5.84)
Jg - -172 n(l rn) -
where rp, given by

. [ete,mat?
n

= (5.85)
: TP Y P
Ef 1z, |°1ECIn, 1)

r

; 20: v,
Was n

is precisely the correlation coefficient of fn and np. The best linear estimate f
h:nz appeaf-s as a penalized version of the unstable formal solution A-lg «
i wﬁtgnun. where the penalized components are those components gn containing too

n
Tittle information about the components fy. -

A truncated solution, similar to (5.373, can be obtained by introducing the g
set [(<) of the valyes of the index n such that apeq > cvp. This condition is‘equ‘-
valent to require re > 1/2 ar Jp = (In 2)/2. If rp-0 when n-+= [this condit m‘\ s
assured by the conditfon sup(a ,1,7v ) < += which implies the convergence of (5.81)
for any g in G, then the set [{¢) fs finite and we can consider the finite sum

%y 5.86)
n n °
neEll{e) n

It can be proved [5.22] that f.o minimizes ;S.?J) when we consider linear estimators
with only a finite mmber of components different from zero.

As & second example, let us consider the case where A is a convolutlon operator —
see (5.38). Besides we assume that both ¢ and ¢ are stationary proverses with suto-
covariance functions R, (x=-y) and R_(x-y), respectively, Let 5 _.(v) and 5::"’

(19 (17 A
be the power apeotrss (spectral density) of £ and ¢, respectively; then (5.75) takes
the usual form of a Wienmer filzer [5.40,41]

3 . o5 & X .
flx) = T s ; Paglt) ats) ™y . {5.87)
{8 Seelvies  (v)
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5.3.3 Mean-Square Errors

The r.v. (¢ -Lon. "F is the error we comit when taking "'0"' ")F as an estimator
of (&, "’r' Its variance is

8(es w) = ELI(E = Lgne W)l (5.89)

and therefore &(c; w) is the mean-square error in the estimation of (z, v)'. The
parameter ¢ is defined by (5.72). For simplicity let us consider only the case where
R‘_‘ has a bounded inverse. Then the optimum filter Lo certainly exists and, from
(5.74,76) it follows that

8es W) = (IR, = LR Low, w)E (5.89)

Furthermore, it is possible to prove that, when both inverse operators R;:, and A1
exist, then &(c; w) <0 when ¢ -0, for any w in F [5.21).

It s now matural to define a relative mean-aguare woor as being the ratio be-
tween the variance of the error and the varfance of the estimated r.v. (f, ")F
(5.201. Since EL|(¢, w)e|%) = (R, ¥y W)gs we get from (5.89)

* )
(IR LR LoTwiw)

5.9
(Rypwawg L

brepfei W) =

This quantity gives a precise measure of the reliabflity of the estimate. It is
{nteresting to remark [5.20] that, when A is ot continuous, one can find a se-
quence (w(")) such that ‘rel(" u("))d when nda, for fixed «. In other words,
in the case of an i11-posed problem, for any value of - >0, there will be vectors
w in F for which the r.v. (g, ')F cannot be relfably estimated,

When Ryp is of the trace class, f.e., ¢ has a finite variance - see (5.78) - and
Rgz has 'a bounded {nverse, then the optimum filter Lp is of the Schmidt class and
one can define a "global" mean-square error as d(cz = 4{e; Lp) - see (5,79). An
expression for &(c), similar to (5.89), can be derived remarking that Oé(t is the
trace of the covariance operator of £-Lgn

5(e) = [Trace®,, -~ LR Lo11* . (5.91)

When the inverse operators RPf and A1 both exist, then one can prove that 4(c) =0,
when c 0 [5.21]. il )

In the case of a compact operator A, when assumption IV) of Sect.5.3.2 is satis-
fied, (5.89) becomes

w A2
“n'n
ﬂuw)-:(i V2, 52

2\4
v * 5.92
n=0 a o ¢ty | ol ) ¢ )

where w = (w, u“)r. It 15 quite easy to show that 4(c; w) =0 when ¢ 0 [5.21],
under the sole condition that the operators R.: and n;: exist (5.21,22].

(13
As regards the "global® mean-square error (5.91), it becomes
22
B )
‘(l) LA < z —z—-g—"-z—-?)" . (5.93)
n=0 ap0nte Vp

It 15 also easy_to show that 5(c) -0, when ¢ <0, provided that ¢ has a finite vari-
ance, i.e., tpef <= [5.21].

In the case of a convalution operator A and of stationary processes 4, ¢, one can
only define the mean-square error (5.89), Indeed, the covariance operator of a sta-
tionary process is never of the trace class. An expression for é{c; w) can be easily
derived using (5.87,89).

5.3.4 Comparison with Miller's Regularization Method

In Miller's method, the estimates of the solution of the problem (5.17) have to
betong to the set K defined by (5.21,22) and this is a “rigid" condition, in the
sense that all the functions outside K are rejected as meaningless. In probabilistic
methods, the restrictions are less categorical since one considers the probability
distributions of the solutions and of the errors. In fact, the knowledoe of R“
corresponds to the bound (5.21) for the error, while the knowledge of uu corresponds
to the bound (5.22) for the solution. Moreover, both Miller's method and optimum
filtering are least square methods. Hence, it is not surprising to find similarities
botween the solutions provided by the two methods. Indeed, thanks to the following
identity, valid when R} and R} exist

. -1 3 G o3 | .
(A'RCA + R IR, A" = A'RTI(AR, AT 4 R (5.94)

it is easy to show that (5.27) and (5.75) coincide formally when putting
T Ry = 28’ . (5.95)

In fact, the condition Introduced by Miller in order to restore continuous depen-
dence on the data (i.e., that the constraint operator B should have a bounded in-
verse) corresponds to the condition that the w.r.v. £ has finite second moment, §.e,,
there exists a bounded operator Ru defined by (5.66). Moreover, the mean-square error
(5.89) can be considered as the analogue of the stability estimate (5.60) for the
restoration of “blurred solutions®. Thanks to the identification (5.95), they coin-
cide up to a factor /2, Looking at the relative error (5.90), we are tempted to de-
fine its fellow in regularization theory by
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(C°lu.u);:’

8 (e, Es w) = ¢ ; 5.96
.40 T IRTE e

In fact, it is aiso possible to derive this formula in an intrinsic way, without

reference to its probabilistic analogue [5.26], In spite of different starting points,

the similarities of the solutions and of the error estimates are very interesting
and therefore the conjunction of both points of view can provide complementary {in-
sights on the reqularization of linear inverse problems.

For the reader's convenience we summarize the main analogies between Miller's
regularization method and optimum filtering in the following scheme.

Reqularization method

Data the function g; g = Af +h
Prior lIhllg = lIAf-gll g < e, |IBF| o < E; knowledge of «, € and of
knowledge the operator B
Requirement an estimate of the function f
Solution Ty YL T

Optimum filtering
Data a value g of the r.v. n = AL+¢
Prior L, ¢ are zero mean, uncorrelated r.v.; knowledge of the covariance
knowl edge operators R“. R“
Requirement an estimate of a value of ¢

A . . -1

Solution f ReA [AR_A 4R 179

5.4 Linear Inverse Problems in Optics

Surveys of inverse problems in optics and electromaanetics can be found in [5.9,45).
Due to the rapid growth of research in this field, we do not attempt a complete re-
view. Dur aim is to focus on stability problems and therefore we select only a few

examples, using for simplicity the scalar theory of light. The harmonic time depen-
dence exp(-fwt) 1s assumed, and by wave functions we mean scalar complex amplitudes.

A PR | MMOEEEAL M v - —
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5.4.1 Inverse Problems in Fourier Optics

The problem of restoring data that have been degraded by a linear band!imited system
has for long received much attention both in optics [5.46] and in radio astronomy
[5.47,48), For simplicity we will consider only a one-dimensional system. Then, in
the absence of nofse, such a system is described by a linear equation like

},22 S{x = y)¥(y)dy = g(x) , {5.97)
where 5(x), the point spread fimetfon, has a Fourier transform which vanishes out-
side a finite interval [-0/2, @/2), T is the wave function in the object plane and
g the wave function in the image plane. We call 7 the object and g the nofseless
image.

Since T is zero outside the interval [-X/2, X/2], its Fourier transform 14 an
entire analytic function, So 1t was observed [5.46,42] that analytic continuation
in the frequency domain will in principle allow for restoration of unlimited details
of 7. As remarked by many authors [5.49,50], this result seems to be in contradiction
with the concept of rumber of degrees of freedom of an image [5.51-53], which essen-
tially means that the image never contains encugh information to reconstruct the ob-
ject unambiguously. The contradiction disappears if one takes into account the npise
and logarithwic contimuity, which arise for object restoration.

Prolate Spherofdal Wave Punctione (PSNF)

We summarize here the main properties of the prolate spheroidal wave functions
o"(c. x) [5.54-56], which are a fundamental tool for the analysis of bandlinmited
systems, The %(c. %) can be defined as the continuous solutions, on the closed
interval [-1, 1], of the differential equation

101 = 2 (1)) + cAxPolx) = welx) . (5.98)

|
Continuous solutions exist only for certain discrete positive values y of the para-

meter y :°"‘o“1 <.us o Then on(c. x) is just the solution of {5.98) corresponding
to the eigenvalue Xp* The behavior of Xn when n-+= 15 [5.57]

xp* (0 e 1) ¢ 3l o(..i,) ) (5.99)
n

The on(c. x) can be uniquely extended to entire analytic functions, and they will
be normalized as follows:

e 2
[ logles x)|%ax =15 n=0,1.2, ... . (5.100)
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The PSWF are also solutions of the eigenvalue equation

1
sinfcix-y))

I =Sy talee Yy = 39 (e, x) . (5.101)
The efgenvalues A, form a decreasing sequence: l>\° LR RRTE >0 and have a step
behavior: they are approximately equal to one for values of the index less than
lo = 2¢/n and then fall off to zero exponentially. More precisely, their behavior
for n-+= is [5.58)

i n
A O(E expl-2n ‘"‘E)” A {5.102)

The efgenvalues i, dre also the normalization constants of the PSWF on the interval
{~1, 1]

1
!1“" (o x)%ax =, . (5.103)

The fundamental properties of the PSWF are:

a) The 4nlc, x) are band) imited functions; their Fourier transforms vanish out-
side the interval [-¢/2x, ¢/2¢)

o
/ e-Zvivl’"(c' x)dx = (_”n c: (c. Zw)°(2w (5.108)

where o(s) « 1 for |s| <1 and oss) =0 for |s|>1 (see, e. ? [5.591)
. bi'm vnlc, x) are a basis in the space of the square- nteqnhle bandl imited
unctions.

€) The functions un(x) = Ai%nlc, x) are a basts in L2(-1, 1).

Statements b) and ) exhibit a remarkable property of the PSKF: they are ortho-
gonal over two different intervals. This property is fundamental for the extrapola-
tion of bandlimited functions.

Perfect lowpase Filter

We consider first (5.97) with the point spread function S(x) = (-:t)'l sinfsin)
(perfect lowpass filter through the band [-n/2, 0/2]). The connection with the gene-
ral formulation of a linear inverse problem, given in Sect.5.1.3, is as follows.
Since the object radfates a finite power, we can take l2(~ll2. X/2) as solution
space F. Assuming that the noisy image g is known only on the iInterval [-X/2, X/2],
we can also take Lz(-ﬂz. X/2) as data space G. Then, object restoration consists
in inverting the integral operator

X2
v sinlsf{x -
o <[ st dl eiyyay (5.105)

The operator A is self-adjoint, nonnegative and compact. The quantity R « ol s
the Fapleigh revolution dictamocs and "0 = X s the mumber of degrees of freedam
of the image. Observe that "0 is the number of elgenvalues of A which are approxi-
mately equal to one and also that Nj - Trace(A) [5.60]. In fact the eigenvalues of
A are the )\ assoctated to the PSWF with ¢ » «aX/2 and the corresponding eigenfunc-
tions are

u,(x) = (g%;)"t,,(c. %"-) o € =owOXf2 . (5.106)

In order to apply to this problem the general! results of Sect.5.2.2, we need a con-
straint operator B8 commuting with A. This requirement is satisfied by the differen-
tial operator

@®°80)(x) = -1 < F)rtnnr + i) (5.107)

since, from the definition of the PSKF, it follows that the u . defined by [5.108),
are the eigenfunctions of B B and the x  are the corresponding eigenvalues. Further-
more, by means of a partial integration one gets

2
(42 - 52y 1et ) Pex + ’x : X2 | #0x) | 2ax {5.108)

(8'ef, f) }’2

e 4
so that condition (5,22) is a constraint on the first derivative of f. Note that
(5.108) has the sase form as (5.44); however, the functions p(x) and g(x) in (5.108)
are not strictly positive. Hence the set defined by (5.22,108) is not compact with
respect to the uniform norm (5.15) (see [Ref.5.36, p.195]) but it is conmpact with
respect to the L™-norm,

Now the restored object is given by (5.36) with o« A, 8 = /x and

x/2
9 = I!/? 9(x)u, (x)dx (5.109)

or by the truncated solution (5.37). It is interesting to remark that, since the

*n decrease exponentially fast when n ~N°. while LAl the number of terms N in
(5.37) 15 equal to No (the number of degrees of freedom) plus a number of terms
which is roughly proportional to [In |, which number {s therefore rather insensitive
to the noise. This fact is strictly related to logarithmic continuity [5.61]. Indeed,
if we consider the stability estimate (5.53), witha = 3 and s /;n. from the
behavior (5.102) and (5.99), we conclude that (¢, E)~E|1n(zlt)| . This result can
be extended to the case where a finite number of derivatives of f are bounded 15.22,
36]. The following statements are justified,

1) The error on the restored object tends to zero when ¢ -0 and therefore, '»
principle, unlimited resolution of details is possible (at least in the framowork




of classical optics, since the previous anmalysis does not take into account the
quantum-mechanical 1imitations on measurement of the 1ight field (5.62]).

I1) When the object is not extremely smooth (what is equivalent to so¥ that its
Fourier transform is not negligible outside the band [-0/2, n/2] — see [5.22,611),
the error on the restored object tends to zero so slowly that, in prectics, resolu-
tion beyond the limit corresponding to the number of degrees of freedom becomes
impossible, This conclusion agrees with the results of earlier analysis of object
restoration [5.63,64]),

More precise results about resolution can be obtained by considering the restora-
tion of "blurred solutions" as sketched in Sect.5.2.4. The "blurred object® {s given
by (5.56) (the integration ranging now over [-X/2, X/2]) at least when D << X and
0 is sufficiently far from the borders. Then the error in the restoration of ID(O)
= (f, "D)F 15 an estimate of the error we commit in the restoration of details whose
sfze is D. One should expect a trade-of f between resolution and error [5.63]: the
restoration error has to be greater for smaller values of D.

In order to analyze the effect on resolution of different types of nofse [5.63],
we focus on optimum filtering methods. The relative error in the restoration of
ID(O) is given by (5.90) with w = "y Let us assume, for simplicity, that the stoch-
astic processes describing object and noise satisfy the assumptions I) - 1V) of
Sect.5.3.2. Besides we assume that the variances of the Fourier components of the
object [with respect to the basis (5.106)) are constant, f.e., o2 = E2. This assump-
tion is reasonable if the correlation distance & for the stochastic process repre-
senting the object (4 gives the sfze of the finest details that should be resolved)
is much smaller than the Rayleigh distance R. Then, from (5.90,92) we get
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where || wyl| is the norm of wy i L2(-X/2, X/2) and the Wy A€ the Fourfer coeffi-
cients of " in the basis (5.106). We consider two types of noise in the image plane
[5.63): white mezeurament roise, 1.e., V= 1, and band-limited measuremmt noise,
.., W2 = 1. In both cases it is easy to show [5.26] that &, (e/Es wp) =1 (100
error) when D0, i.e., when wy tends to the Dirac delta measure,

In Fig.5.4 we give the results of numerical computations (the numerical method
is described in [5.26)) for c = 10, X = 2 and un(x) = No(x/d) sincz(x/d) N s a
normalization constant, n(s) is the characteristic function of the interval [-1, 1]
and d is a parameter related to D through (5.55)]. In the case of white measurement
noise, the curves are rapidly decreasing up to a value of D/R of about 0.5 and then
become rather flat. Besides a lowering of ¢ from 1072 10 10°® does not modify the
situation in a significant way, If we accept only an error of a few percent, then
it is difficul to get a resolution better than R. One expects that superresolution
should become even more difficult for greater values of ¢ [Ref.5.65, p,470]. Figure
5.4 also shows that a smoothing of the noise (band-limited measurement noise) [5.63)
is equivalent to a lowering of the white noise from 1072 to 1075,
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Fig. 5.4. Relative errors vs the resolution
parameter D/R, where R = «X/2¢c (X = 2,

¢ = 10). Undotted curves correspond to white
measurement noise and dotted curves to band-
1imited measurement noise, In both cases
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The case of inecherent {Iluwination in the object plane [point spread function
S(x) = n(:m)'z sinz(-m). frequency band [-0, n1] has been analyzed by many authors
[5.66-68]. In this case, as well as for any bandlimited system, the restored con-
tinuity is also logarithmic. Indeed, thanks to the Paley-Wiener theorem 15.69),
the point spread function of a bandlimited systes, with bandwidth 1, is an entire
analytic function of order o, 0<pcl, and type 1 £vit. Then, it follows from general
results of HILLE and TAMARKIN [5.24] that the singular values of the intsgral operator
defined by (5.97) have the behavior a ~C exp(-Dn 1n n), n=+=, where C, D are suit-
able constants. As we remarked in Sect. 5.2.4, this behavior implies logerithmic
continuity. Therefore it should be possible to define, for any bandlimited system,

a resolution limit and a number of degrees of freedom, practically noise {ndependent.
For instance, in the case of incoherent illumination, this number has been estimated
to be of the order of 2aX (the bandwidth is 20), corresponding to a resolution limit
of about R/2 [5.68]. This result agrees with an analysis of the restoration of
*blurred objects" [5.26]. However it must be remarked that, in the case of incoherent
i1lumination the solutions have to satisfy a positivity constraint which could im-
prove the resolution limit (for a brief discussion of this point see Sect.5.4.6}),

Bandwidth Estrapolation

A method which has been proposed for the analysis of an arbitrary bandlimited system
s the following [5.46,48,70-72): by Fourier transforming the image one can abtain
the Fourfer transform of the object over the band [-2/2, 0/2] of the system; since
this Fourier transform is an entire analytic function, by analytic continvation

one could restore its values for all frequencies and therefore also restore the
object, We remark that this problem is mathematically equivalent to the extrapola-
tion of optical images beyond borders [5.59,73]).




Let f be the object and § {ts Fourier transform

A X2
flv) = | e'z'i“f(x)dx i {5.111)
X/2

The data § are the values (affected by errors of f on the band [-0/2, 0/2] and we
can take L2(-0/2, 0/2) as data space G. The soigtion space F is the set of the func-
tions f 1ike (5.111), normed with the norm of LZ{-=, +=). Then F is a Hilbert space
of analytic functions, The direct problem is merely the restriction of f(v) to
[-a/2, 0/2], f.e., (A’)‘v) = f(v) when |v| <a/2, (Af)(v) = O elsewhere. Then

A* :G«F is the integral operator [5.22

o Y2 intex(vev')] =r vea s
Woiw) = [ 2R gutpent (5.112)

Observmg that A* coincides with the integral operator £§.105). except for an ex-
change of o and X, one can write for these operators A, equations 1ike (5.32) where
o, = Y1, (the eigenvalues of the PSWF) and u,, vn are replaced by (c = naX/2)

Uy () \/—Z- (AR %3) v Volv) = J?,{; $alcs %3‘-)0(;";!) . (5.113)

From properties IT), I11) of the PSWF {t follows that (u_) is a basis in F while
{vn} s a basis in G. Remark that the expansion of f(v) ¥s a series of the u, is
egutvalnt to the expansfon of f(x), in (5.111), as a series of the uy given in
(5.106). Indeed 1M, and Uy are related by (5.104).

BUCK and GUSTINCIC [5.70] assumed that the stochastic processes, represennng
the object and the noise, satisfy conditions 1) = IV) of Sect, 5.2.2 and that n

= Ez (where the ": are the variances of the components of the object in the basis
fupt). In the case of white noise, their solution to the problem of analytic con-
tinuation is given by (5.85) with ay " ‘n'."i . E2, v: =1, 9, = (9, Gn)ﬁ and u
replaced by d" (we denote this estimate by f). [t has been remarked by these authors
that an increase by a factor of 10 in the signal-to-noise ratio E/c adds only one
more significant term in the series (5.85) for f (and therefore, for large aper-
tures, the improvement in resolution is negligible), The same estimate f was ob-
tained by VIAND [5.73] in the framework of regularization theory, considering the
constraint operator 8 « 1 [compare with (5.36) where a, = A fp=1,9,= (c}.in)s
and vy replaced by J"). This assumption is equivalent to requiring that the object
radiates a finite power. VIANO [5.73] proved that such an estimate converges to the
“true solution®, when ¢ <0, uniformly over any finite interval containing the band
[=8/2, 0/2). In order to have stability with respect to the norm of F, stronger
conditions on the objects are required, If we introduce, for instance, the constraint
operator (5.107), then ft §s easy to prove (as in the case of the perfect Towpass
filter) that the analytic continuation of the Fourier transform of the object out-
side the band [-0/2, /2] is stable with respect to the norm of F, but that we qet
only logarithmic continuity. This result agrees with the conclusions of [5.70].

L e L DU ——

5.4.2 Inverse Diffraction

According to SHERMAN [5.76] and SHEWELL and WOLF [5.74], lmn’o diffraction can be
defined as the problem of determining the field distribution on a boundary surface
from the knowledge of the distribution on a surface situated within the domain where
the wave propagates. An extensive treatment of uniqueness in inverse diffraction

is given by HOENDERS [5.75) both in the scalar and in the vector case.

The fundsmental reason of the instability of inverse diffraction is that space
acts 1ike a filter for the higher modes. For instance, in the scattering of a plane
wave, with wave nunber k, by a body whose largest dimension is R, only kR modes are
propagated up to the far zone, while the others are attenuated,

Imvarae Diffraction from Plane to Plane
The direct problem is to determine a wave function u, solutfon of Helmholtz equation
in the half-space 122,

2 2

vuertu=0 {5.114)

satisfying Sommerfeld's condition at infinity and the condition u = up (uo being a
given function) on the plane z = 5 This solution can be most conveniently expressed

in terms of Fourier transforms [5.74,76]. If we write

ulp, 9 z) = }f erilex ¢ av)y ey o 2ydx ay (5.115)
than

WPy qi 2) = explikm(z - zg)lulp. a3 %g) . (5.116)
where

m=(1-p2-0)", Im(m) 20 . (5.117)

The inverse problem is the following: given the values g (affected by errors) of

the wave function u on the plane z « 2220, ostimate the values of u ?n any z plane
between z, and 2. If the radiating power is finite, then u is sguare integrable
over any z plane and therafore we can take L"(R”) both as solution and as data space.
Nriting T(x, y) = u(x, y, 2). a(x, ¥) = ulx, ¥, zl) (@ i the noiseless wave func-
tion), from (5.116) we derive that g = Af, where

(M) (ps @) = expl+ im(z, = 2))f(p. @) . (5.118)

GO
Instability is due to the effect of inhomogeneous (evanescent) waves (p” +q > 1).
Assuming that f is generated by a field distribution on the plane z = % (with an
Lz-mn bounded by fz). we get a class of admissible solutions defined by the con-
straint operator

(89) (p. q) = expl-in(z - 29)If(p, @) . (5.119)




The operators A, B have the form (5.38) and (5.40), respectivaly, with f((v. q) ~
emlim(zl -2)] and i(p. q) = exp(-tm(x-zo)) 50 tha.t the roqu!arized solution is
given by (5.41) or (5.42). Besides, observing that g(p, @) = [K({p, q)17", v =
(z-zo)/(zl-x). from (5.54) &(c, E)~E(c/E)® follows, where n = “"o)/“l -xo).
Dcacl.

This result is very similar to "three line theorems" derived by MILLER [5.77] in
the case of the backward heat equation and the Cauchy problem for the Laplace equa-
tion. As we see, we get Holder continuity if z>2p, while we do not have stability
for 2 = zg (in this case 8 = ). To restore the stability even there, we have to
take stronger constraints, If we assume, for instance, that the wave function on the
plane z « 2 has also square integrable first derfvatives, then we have stability up
to the plane z = zg. In this case, however, the restored continuity is only logarith-
mic (see Sect.5.2.4). Finally, if the wave function on the plane z = 2g {s assumed
to contaip only spatial frequencies below the wave number k, f.e., d(p, qi zg) = 0
ifp2 4 9% 1, then a well-behaved inversion formula can be derived [5.74]. In other
words, inverse diffraction can be formulated as well-posed problem when the effect
of evanescent waves can be disregarded. It has recently been shown [5.117-122] that
the total field due to the inhomo. us waves does not decay exponentially with dis-
tance z, but much slower (2°3/2 or 272), In view of these results, the inverse dif-
fraction problem seems to deserve reconsideration.

Inveree Diffraction for Cylindrical Wavea

We consider a wave function u = u(o, ) (o, » are circular cylinder coordinates),
solution of (5.114), satisfying Sommerfeld's radiation condition at infinity and
the condition u = Up on the circular cylinder of radius v The solutfon of this
problem (direct problem) is represented by the Fourier series

(1)

bo W\ (ko

ule, 9) = § Rilad
h=-= Ho (lpo)

co'™ , (5.120)

where the n,('” are the Hankel functions of the first kind 'and the c, are the Fourier
-

coefficients of uy(e) = ulog, #) !

0 ~ing
C,,-g;[ ulogs v) & dy . {5.121)

The inverse problem is as fallows: given the values g (affected by errors) of u on
the cylinder of radius P >0 estimate the wave function over any cylinder of ra-
dius 0, 0g <o £0). If we denate by § (o) = U{oys #) the noiseless data and by
Flo) = ulz, o) (o <o0y) the unknown solution, then, from (5.120), § = AT where

ing

(1)
o WD
(W) = ] onter) el (5.122)

ne-= W7 (ko)

and the = cnﬂil)(b)m!'”(kpo) are the Fourier coefficients of 7. We take
Lz(--. ) both as solution and data space. Then, if F{y) « ulu, o) 15 generated by
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a wave function on the cylinder of radius g the class of admissible solutfons on
the cylinder of radius ¢ is characterized by the constraint operator

(1)
4o WS (kal)
ohte) o3 Tt

ine (5.123)
Neem un”’(un) n®

which {s derived from (5.120) and the equali!{ (8)(9) = ulog, 9). If we write

an * I o D (ko) | 8, » ) (ko)) (ko) |, then the estimated wave fune-
tion is given by (5.36) or (5.37) (remark that now the index n takes values from
-« to +=). From the behavior of Hankel functions when [n| 4=, it follows that X
ag~expl=|n|* Infe,/0)] while g, ~explin] In{o/cq)]. These behavior: imply & ~a"
with u = ln(p/ao)/ln(el/o) and from (5.53) one has 6{c, E) ~E(c/E)" with o =
ln(oloo)l 1n(o‘/po) (for a more precise estimate see [Ref.5.78, Chap.3]). 1t is
interesting to compare this result with the stability estimate for analytic con-
tinuation implied by Hadamard's "three circle theorem” (Sect.5.1.5). A similar re-
sult holds for harmonic continuation in a disc [5.77].

2
The constraint operator {5.123) does not imply stability in the L"-norm when
p = pg (in this usrs « 1). Then we have stability if, for instance,

e
8?2 - ||%:.||2 sNME=g (nle 1)1?"12 P o {5.128)
NEwe

remark that, if the wave function u represents a z-polarized electric field,
%?:.?SE::‘[: =0, £; = u, then the components H:, Hy of J: magnetic field are pro-
portional to o~l3u/ay and au/3p, respectively. Therefore, in this case, (5.124) f=-
plies a bound on both E, and H,. However this constraint gives only | aritheic con-
tinuity, since £, ~n wﬁﬂe ap tends to zero exponentfally (Sect.5.2.4).
The previous results can be easily extended to the case of spherical surfaces,
using the expansion of the wave function as a series of spherical harmonics ﬂ(o. ).

Imverea Diffraction from Far-Field Data
For simplicity we consider again cylindrical waves. Then the wave function (5.120)
has the behavior

ulos 9~ /1oe= € FGle)s b= e (5.125)

where g is the acattering amplitude (or patters function)

£ v i.q" ing (5.126)
= c e . .
) vzv--- Hy ' (kng) W

The direct problem is to compute g, given the wave function Ug on the cylinder of
radius Py The inverse problem is to estimate u on any cylinder of radius o,
9g L0 <=, given a noisy scattering amplitude 9. If we write fle) = ulo, 2}, then
from (5.120,126) we get g » AT where



4= n
Af . o AL S X
(Af)(9) ri"__ ;'f‘n{;, H0 (5.127)

We can use again (5.123) as a constraint operator. Then we have o, ln“)(t )’ l

= W (kog) P (ko) | and 1t 15 easy to see (using the results of Sect.s.2. 4)
thﬂ m regularized solution (5.36) or (5.37) {8 stable with respect to the Lz-
nonm when ¢ >p. For o =pq the constraint (5.128) implies at most logarithmic continu-
fty. It §s interesting to understand in which cases one can get Holder continuity.
Let us consider, for instance, a perfectly conducting circular cylinder of radius o
{1uminated by 3 plane wave. Then, at the surface of the cylinder the scattered wave
takes the values ug(s) = ~exp(ikoy €0se) = u(og, v). If we write fle) = ulogs o)s
we have the Fourier expansion

& 1
fo) e -1 1%, (kog) '™ (5.128)
LEES

since H{!(kog)d, (kog)| ~(xIn])™L, 7 satisties the condition

Lad
Hein? =1 Mgt 1* <62 (5.129)
vhere € is 3 suitable constant. Equation (5.129) fmpl es o, = anl and from (5.53)
we get 4(c, E)-E(c/t) » 1.e., a rather good M&lder continuity. This arises also for
scatterers with very smooth shape.

Finally, we discuss the angular resolution which can be obtained in the restora-
tion of the wave function on the cylinder of radius op We consider the restoration
of a "blurred wave function” (Sect.5.2.4) and we use the constraint (5.123) with
o =0g (1.e., B = 1), The "blurring function® is wyle) = No(e/d) smcz(vld). The
constants N, D are given by (5.55) (where the integration ranges over [-d, dl).
Then the relative error, for the restoration of the "blurred wave function® at
7 *» 0, can be computed by means of (5.96) (with B = 1). The numerical method is
described in [Ref.5.78, Chap.3). In Fig.5.5 we give the values of the reluwe
error as & function of the parameter u/no where 0 = \/(Z-po) = (kao) [Ref.5.78,
Chap.3), for 1 =« 2"0 and A = po/z As we see superresoluuon. i.e., restoration of
details of the order of a wavelength and below, is easier when the wavelength is
greater than the radius % of the cylinder.

5.4.3 An Inverse Scattering Problem for Perfectly Conducting Bodies

An interesting combination of analytical and numerical techniques, involving the
solution of Tinear probleas, has been proposed by IMBRIALE and MITTRA [5.79] in
the case of the inverse scattering problem for perfectly conducting bodies, and
applied to the restoration of circular and elliptic cylinders,

0

Fig. 5.5. Relative errors vs the resolution
puu:ﬁr D/Dg, where Dy = x/Zw . Undotted
curves correspond to A » dotte
curves to ) = 209, (Curve ). zlt = 107¢;
(Curve 2), </E = 10-4; (Cum 3), «/E = 10°6

0/0s

We consider only plane wave incidence and we assume that the plane wave 15 2 po-
larfzed. The perfectly conducting surfaces are assumed to be parallel to the z axis,
s0 that the electromagnetic field may be derived from the single quantity E‘ = u
The fncident wave function is given by "o("' 0) = exp(ikoo cosg) and the associated
scattered wave function ug has the asymptotic behavior (5.125). The total field
U=y tu satisfies the Helmholtz equation (5.114) in the free region and is sub-
jected to the boundary condition u = 0 on the surfaces of the bodies.

The datum of the problem is the noisy scattering amplitude g and the main idea
of the mathod is the following: reconstruct the wave function near the obstacle
(from the knowledge of g) and locate points where the total wave function is zero,
in order to fdentify points of the surface of the scatterer, This progras can be
accomp) {shed in two steps. The first srep is essentially the problem of inverse
diffraction from far-field data discussed in Sect.%.4.2, Indeed, if o0 is the radius
| of the circle tangent to the surface of the body (see Fig.5.6), at the exterior of
this circle the field can be represented by the series (5.120). However, the radius
%0 s not known and must be determined: one must solve the inverse diffraction prob-
lem for various values of 0 and choose the value for which the restored field has
a zero. This zero gives a point of the surface of the scatterer, Of course, the
accuracy in the determination of the zero depends on the accuracy in the restoration
of the near field. As we have remarked in Sect.5.4.2, if the scatterer is a circular
cylinder the accuracy can be very good (Hilder continuity). One can conjecture that,
generally, the accuracy in the restoration of the near field is good when the Sur-
face of the scatterer is very smooth and poor when the surface of the scatterer is
rough. The seoond step is the analytic continuation of the wave function into the
region of nonconvergence of the series (5.120), i.e., o “og 1f we know that the




Fig. 5.6. Geometry for analytic continua-
tion into region o <pp in the case of a con-
vex body

scatterer is a comver body, then the analytic continuation can be accomplished by

a simple technique of shifting the origin of the coordinate system [5.79] (see Fig.
5.6). Since the new coordinate system is obtained by translating the original one,
then the scattering amplitude in the new system can be easily obtained from g (5.79].
The solution of the problem of inverse diffraction, with the new scattering amplitude
as data, gives another point of the surface of the body. The procedure can be repeated
and, since the body |s convex, a few points can be sufficient in order to characterize
the shape of the scatterer. An accurate amalysis of this method in the case of a per-
fectly conducting efroular oylinder has been done by CABAYAN et al. [5.80], using a
stability criterion due to TWOMEY [5.29]), which {s equivalent to use the truncated
solution (5.37) in the special case B = 1. They show that even a "coarse" near-field
map can give some information on the size and center position of the scatterer. Of
course, the results of the method are very good because in this case, as shown in
Sect.5.4.2, we have Hilder continuity.

Nhen the body Vs not convex, analytic continuation of the wave function can be
done as follows (5.79]. Once the total field, outside the minimum circle enclosing
the scatterer, has been restored, then one cln take a point in the exterior region
as the origin of a new coordinate system p', 3' and represent the total field in
the neighborhood of this point as a series of Bessel functions

4o J (ko'
ulp'y ') = | 2 )c;‘e
fe=s 3, (kog)

ing'

. (5.130)

The circle o is interior o tho region p >pg (see Fig.5.7) and the cp are

the Fourier cuif?clonts of u{og, » Of course, the summation of this sertes is an
§11-posed problem if o' >0, since N"ih )/J"(taé)lc—exp”nnnga Jo4)) when In| = e,
A discussion of the regulariution of (5.130) can be found g 8, Chap.3].
The results are very similar to those for inverse diffraction. Anyuay one can esti-
nu the uries (5.130) which, in prm:iple. converges in the interior of the circle
pi>pps 12 to the body surface. anco o1 1s not known, one should estimate the
serieg (5.1 ) for varfous values of o >o ‘nd choose the smallest value of o' for
which the restored field has a zero, S0 a m point of the scatterer has been deter-
mined. By a series of overlapping circles it {s then possible, in principle, to ob-

Fig. 5.7. Geometry for analytic continuation
nto region o <ng In the case of an arbitrarily
shaped body

tain values of u in all the points of the space external to the scatterer. 0f course
error propagation can prevent having a satisfactory estimate of the shape of the
scatterer.

The previous method of analytic continuation has also been used by AHLUWALIA
and BOERNER [5.81] for recovering the electrical size, the surface locus and the
averaged local surface impedance in the case of circular cylindrical monobody and
twobody shapes. The same authors have also extended the method to the case of spheri-
cal surfaces [5.82],

5.4.4 Inverse Scattering Probleas in the Born Approximation

We consider two problems: the determination of the shape of a perfectly conducting
body and the reconstruction of the refractive index of a semi-transparent object,
When a perfectly condusting object 15 {1luminated by an electromagnetic wave,
the scattered field can be determined using the Born approximation {also krown as
Kirchhoff's or physical optics approximation) if the wavelengths A are small com-
pared with the characteristic dimensions of the scatterer. Assuming that the measured
data are the values of the backscattered far field, then the determination of the
shape of the body is a Tinear inverse problem [5.83,84). Consider a plane wave, with
electric field E,i(r) . Eo exp(tks +r), scattered by a smooth, convex and bounded
target v, The backscattered field gb(v_-) i.e., the field observed in the direction
Sy = “Sp» is given by gb(;)~o(5)(zﬁr)‘l exp(ikr)go. re4=, p(k) being proportional
to the backward scattering amplitude. Then ane can prove that, in the Born approxi-
mation

r(k) = la(t) +0 (k) = [ y(r) exp(2ik « r)dr , (5.131)

where k = ks, and y(r) is the characteristic function of the target, i.e., y(r) = 1
when r is in 1, y(r) = 0 otherwise [5.83,84] (see also [Ref.5.75, Sect.3.2.5)). If
the backscattered field could be measured for all frequencies and for all directions
of incidence, then the Fourier transform of y(r) would be known and y(r) could be
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determined, In practice, r(k) is measurable only in a restricted domain of the

k space. This does not seem to be a serious restriction, as regards the possibility
of a unique reconstruction of v(r), since r(k) is an analytic function of k [Ref,
5.75, Sect.3.2.5). However, this reconstruction, which is equivalent from the mathe-
matical point of view to bandwidth extrapolation (Sect.5.4.1), is not stable,

In radar applications, r(k) is measured only in a set of points interior to the
annular region m< k| <M, where ky « m/2 and kp = M/2 correspond to mininum and maxi-
mum values of the usable frequency band. It must also be remarked that the lower
bound has ta be large emough in order to assure the validity of (5,131): the largest
wavelength in the incident field, )] = 4«/m, must be short compared to the target
shape. The inaccessibility of Jow frequency information s essentially related to
the intrinsic limitations of the Born approximation. The instability due to this
fact has been investigated by many authors [5.85-88]. PERRY [5.86), for instance,
applied Tikhonov's regularization method to the one-dimensional case, assuming that
r(k) is known for !ki| z‘l (perfect high-pass filter). In other words, he did not
care about the limitations due to the lack of information at high frequencies. If
the object is located within the interval [-X/2, X/2], then y{x) can be determined
as the solution of the Fredholm integral equation of the second kind

Y2 sinfo(x-
) - I, SRS vy = ot

where g(x) 15 the inverse Fourier transform of the available values of r(k). Equation
(5.132) has the form l-lgy = 3where A is the integral operator (5.105) with

(5.132)

*0 = m, Therefore solving (5.132) is not an i11-posed problem in the strict sense
but, when m is large, i} is an §11-conditioned problem. Indeed, the condition number
of 1-A is a = (1-3g)°%, where is the largest eigenvalue of A. From the behavior
of g for large m [5.89] it follows: a~(2x/mX)? exp(mX)/4. In radar applications

mX is relatively large and therefore a can be rather large. After discretization,

an 111-conditioned problem shows the same features as an f11-posed problem and there-
fore regularization methods can be useful.

In order to circumvent the lack of Information at low frequencies, another tech-
nique has been first suggested by BOJARSKI [5.83), and further developed by MAGER
and BLEISTEIN [5.88]. The essence of the method {s to examine not the characteristic
function of the target, but rather the directional derivative of this function, In-
deed, if s yy Is the derivative of y in the direction of the unit vector s, then
its Fourier transform is the product of r(k) by the factor s+ k. In this way, one
simul taneously attenuates low-frequency data while enhancing the effect of high-
frequency data. One expects that the Timitations of the method are essentially due
to the lack of information at high frequencies. The function s - ¥y 15 highly singular;
more precisely s -9y = s - 08 where n is the unit outward normal to the surface of
the body and & 15 a Dirac delta measure concentrated on the surface of the body. As
proved by MAGER and BLEISTEIN [5.88], similar features are shown by the function

hir, §) = -‘_)2] s - ka(k)r(k) e”'E " ok (5.133)

(2n

Here a(k) is the characteristic function of the domain in k-space (interior to the
annular region m« [k| <M) where the backscattered field is measured. In the high-
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frequency limit (m»>s 1), if o 15 a point on the surface of the scatterer, then
Rel(h(r, s)) ~ (constant)|r - u_-ol"lsin(nir_' =rpl) = sintmlr - ryl)) (5.134)

provided that the vector r-r, is orthogenal to the surface at ry and {ts direction
coincides with a direction of incfdence. Therefore the function Refh(r, )} has a
central lobe which peaks on the target surface in regions with surface normals paral-
tel to directions of incidence. The height of the centra) lobe s proportional to
M-m and its width is approximately equal! to 2+/M if M>>m, Remark that 2«/M « 12/2
where i, is the smallest wavelength in the incident field. It must also be observed
that this result has been derived by MAGER and BLEISTEIN [5.88] for noiseless data,
Now, the factor s -k does not only erhance the effect of high-frequency data but also
the effect of the noise on these data. Error propagation in the determination of
Re(h(r, s)) is controlled by the quantity (condition number) a « M/m. When this
parameter is large, the resolution limit is certainly worse than 12/2. For the nu~
merical examples presented by MAGER and BLEISTEIN [5.28), « 15 of the order of 2
and therefore the results are quite good.

Finally we want to remark that an Improvement of the resolutfon limit Intrinsic
to Reih(r, s)) would require an analytic continuation of the backscattered field
in the region |k| >M, From the analysis of bandwidth extrapolation done in Sect.
5.4.1, it clearly appears that this problem is affected by logarithmic continuity
and therefore an improvemant of the resolution limit szZ is practically impossible.

The recenstruction of the refractive inder of weakly scattering semi-transparent
objects, using the Born approximation, has been widely discussed [5.90-94], with
special attention to the problem of uniqueness of the solution [Ref.5.75, Sect.
3.4.3). As shown by WOLF [5.91,95]), modulus and phase of the scattering amplitude
can be derived, using holographic data, from the homogeneous part of the angular
spectrum of the scattered field. DXNDLIKER and WE1SS [5.92] stressed that appropri-
ate variation of the direction of the incident wave is crucial for holographic 30
lreconstruction.
" The wave function u satisfies the equation

vzu + l(gnz([)u =0 .,

(5.135)
where nfr) is the (possibly complex) refractive index at the point r. If the object
is situated In free space, then n(r) = 1 outside the object. Equation (5.135) can
be recasted in the following form

u s K= Flo (5.136)




where
F(r) = -kgtnz(v:) -1 . (5.137)

The function F(r) is called the scattering potential and it is evidently zero at

all points outside the object. Consider an incident plane wave u'(v_') = exp(!kogo ar);
then the Sorn approximation can be used for the determination of the scattered wave
function "5(5)' if the object scatters weakly, i.e., if "‘sl <« Iu‘l. When this con-
dition is satisfied, in the far zone we have

exp(i "o r)
U’(l_'. kogo) ot A‘(koéot ‘o!) . (5.138)
where
Aglkgsge ko) = [ F(r') expl-ikgls -sq) - £'ldg’ . (5.139)

Therefore the Born approximation to the scattering amplitude is essentially given

by the Fourier transform f(l_z) of the scattering potential F{r). Inspection of (5.139)
shows that, for a fixed direction of incidence 55, Ay gives those Fourier components
of F(r) which correspond to points on the surface of the sphere with center “o!o

and radius to By varying the direction of Im:ldenr.e Sp 2 (theoratically infinite)
number of experiments would allow one to determine F(t) for all values of k lying
within the sphere of radius 2&0. Then a band)imited approximation FM([) to the
scattering potential is given by
WeTax . (5.140)

Fpe (D) F(k) e

1
(2r) {'." .‘.uo

A rough measure of the limit of resolution of WOLF's approach [5.91], Intrinsic to
(5.140), 1s given by aolz = wlko (when the scattered field is determined by side-band
holography the Timit of resolution is about 910 [5.95]1). An improvement beyond these
Himits {5, In principle, possible since F(k) is an analytic function when the ob-
ject s localized within a finite volume t. We encounter, once more, a problem
which is equivalent, from the mathematical point of view, to bandwidth extrapolation.
Therefore a significant improvement of the resolution 1imit seems to be, in practice,
impossible, Besides, the effect of the noise can be very important (it is necessary
to detect a3 weak scattered field in the presence of a strong unscattered field), so
that even the theoretical limit of resolution cannot be reached. A new approach te
the optical inverse scattering problem, based on interference with three variations
of a spherical reference wave, has been proposed by LAM et al. [5.123).

Experiments have been undertaken in order to investigate the use of the technique
suggested by Wolf's theory [5.91,95] and computational reconstruction of objects
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from holograms has been attespted [5.96-98]. Very simple objects have been consider=
ed, i.e., rectangular (homogeneous and inhomogeneous) and cylindrical bars, In these
cases, because of the symmetry of the objects only one hologram is needed. The re-
ported numerical results show spurious oscilliations which probably can be smoothed
by a filtering of the Fourler transform of F{r). The 3D scattering potential of
nmicroscopic objects (40 ym diameter) has recently been reconstructed by FERCHER et
al. [5.124].

5.4.5 Object Reconstruction from Projections and Abel Equation

Object reconstruction from projections and Abel equations are two examples of (n-
verse problems which arise when the variations of the dynamical functions over a
given wavelength are so small that diffraction can be neglected. For both problems
there exists an enormous amount of literature. Our purpose is only to point out
that, as a consequence of the physical approximation Intrinsic to these problems,
the restored continuity is quite good (Hilder continuity).

Assuming straight line ray propagation with the amplitude (or the phase) of
the ray controlled by the line integral of a density function, a projection of the
object onto a plane is measured. Typical examples are X-ray shadowgraphs. In two
dimensions the mathematical formulation of the problem is as follows. Let F(r) be
a density function which has support in the circle r| <R and let L be the straight
Tine defined by $-r = p. Here r = {x, y! is a point of the plane, s = (coss, sing),
D<g«r, is the unit vector orthogonal to L and p Is the distance of L from the
origin, ~m<p«4=, If t w (-sing, cose) is the unit vector of the direction of
L, consider the line integral

e -
o(p, #) = | T(ps ¢ qt)dq . (5.181)

Obviously a(p, ¢) = 0 when [p| 2R. The function g(p, ¢) 15 known as the fafon
traneform of T(r) and, for fixed ¢, it gives the projection of 7(r) onto a straight
line parailel to s. Thus, in two dimensions, object reconstruction from projections
is exactly the inversfon of the Radon transform. The solution of this probles was
given by RADON [5.99) in 1917. Nowadays there are many fields of application: it is
sufficient to mention computerized tomography (see, e.g. [5.100,101)), radfo astro-
nomy [5.102], electron microscopy [5.103], radar target shape estimation [5.104]
and so on (see also [Ref.5.45, Sect.2.3)). Solving (5.141) s an i11-posed problem.
This fact clearly appears from the Radon inversion formula (5.100] since it contains
the derivative of the noiseless data g. In order to investigate error propagation,
let us take as solution space F the space of the square integrable functions, which
have support in the circle [r| <R, and as data space 6 the space of the squsre in-
tegrable functions over the rectangle 0<y<a, |pl 2R. Then the linear operator A
defined by (5.141) is a continuous operator form F into G [Ref.5.100, Sect.12).
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Using Parseval's equality for Fourier transform, the norm of f can be written as
follows:

“"'E'{rm

where hiv, ¢) = M"i(vg) and 5 » {cosy, sing), Then, from the "projection slice
theorem” (see, e.g. [5.105]) or [Ref.5.45, Sect.2.3.4])

[(r)1%dr = _’.‘, Z do r (hlv, o)128v & (5.142)
X 5 (2!) --

y ipvs
(Af)(p, 9) = 7;[ e " f(vs)dv (5.143)

and from Parseval's equality it follows

" R * b 2
naeng - [ ] 1600, o)1 %dp = -“,;gav [ el g, (5.144)

Finally we can require, as a constraint, a bound on the first derivatives of f(r).
This bound is not very realistic in many applications of the Radon transform, since
one should also reconstruct discontinuous functions. However our purpase is only

to discuss, in the simplest way, the stability of the inversion procedure. Then,
using again Parseval's equality we have

‘o
Il""f'{,,d, (52« B |z)4["(-2:—)1£¢' I P, )l . (5.108)

It is now easy to recognize that the stability estimate for the Radon inverse prob-
lems 15 given by (5.59) if we put [K(uv)| = |v)™ and [8(v)| = |u]. Therefore
[8¢v)] = [K{v)]™, v = 2 ond &(e, E) ~E(c/E)* with a = 2/3. The restored stability
is quite good and this result should be related to the fact that, in this mathe-
matical model, diffraction has been neglected.

When the object has circular symmetry, then g(p, ¢), given by (5.141), is the
same for all ¢. Put ¢ = 0 in (5.141), so that p = x, q = y. In terms of the vari-
able p » (xzoyz)" we have (x, y»>0)

g9{x) = 2 ; el(o (5.146)
{o"=x")

This is a form of the Abel integral equatfon which is also fundamental whenever
Fermat's principle can be used for the calculation of the rays. Many applications
of the Abel equation are discussed in [5.106]. From the previous remark we expect
that the same kind of stability holds for object reconstruction from projection
and the Abel equation. However it is interesting to derive directly this result.
To this purpose let us consider the inversion of the following integral operator
(the various forms of the Abel equation can be treated in a similar way):
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(Af)(x) = (1) ;- ) N {5.147)
Aax(y)
taking LZ(O. 4+=) both as solution and data space, Then A:F -G is a linear continu~
ous operator. Introducing the Mellin transform of f,
- ba &)
fylv) =£ Ve igdx (5.148)

i't is easy to show that the Mellin transform of Af is given by (r(1/2-1y)/r(1-1v))
!u(v). Using Parseval's equality for Mellin transform [Ref.5.107, pp.94-95] we get

4o T i
I a2 = | 1any ) Zax » Lo 1 tahle) oy iZas (5.149)

Take the constraint operator defined by [Bf)(x) = xf'(x). Observing that the Mellin
transform of Bf is given by -(l/ZHv)f"(v) and using again Parseval's equality we
get

‘e 4
neel? « 3 R R AL (5.150)

From (5.149,150) it 15 easy to recognize that the stability estimate (¢, E) for
the Abel equation fs given by (5.54) with [K(v)1Z = v Iegh(zv)~[v]™t, [o] = 4=,
and Ii(v)lz = VZOU‘-vz, ] 4=, Since lé(v”-lih)]“’, Ju| 4=, with y » 2,
it follows (e, E)~E(:/E)2/3, i.e., the same result as for the inversion of the
Radon transform.

5.4.6 Concluding Remarks and Open Problems

In this review of a continuously expanding field, we restricted ourselves to some
typical linear inverse problems, and so we omitted many important topics where
regularization methods apply as well. Let us mention for instance, polarization
utilization in electromagnetic inverse scattering [5.45, and Chapt,7 of this
volume] and laser anemometry data analysis [5.108,109). Regularization methods can
also be useful for synthesis problems [5.110]). The main difference between inverse
and synthesis problems can be easily understood in the case of an antenna: the in-
verse problem is the identification of an actual antenna from measurement of Its
radiation pattern, while the synthesis probles is the design of an antenna producing
o given radiation pattern. In the latter case, rather than in stability, one is in-
terested in "sensitivity": if the computed antenna s not exactly realized, how
much will its pattern function be modified?

Since the mathematical pathology of all those problems is quite similar what-
ever the particular field one considers, we think that regularization theory should

—
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provide a unified framework for treating linear inverse problems and for investi-
gating thoroughly their stability. However, regularization methods are by no means a
cure-all. Indeed, a5 we have seen, the faster the decay of the eigenvalues (singular
values) of the operator A, the greater the loss of Information due to the smoothing
effect of A, Hence 1t {5 expected that in some cases, the available data are truly
insufficient and no meaningful prior knowledge can provide a satisfactory solution.
Very important in this connection is the precise valuation of error propagation in
the regularized inversion procedure. This enables us to estimate in practical cases,
the accuracy of the solution for a given noise level! and a given prior knowledge. We
also showed that this error anmalysis enlightens theoretical guestions |ike the prob-
lem of superresolution. Summarizing the results of Sect.5.4.1, we can say that super-
resolution appears practically impossible for imaging systems with a large aperture,
because 1t would require unreal istically high signal-to-noise ratios. This is due

to a very fast increase of the relative error on blurred solutions beyond the Ray-
ledgh limit. A similar feature arises in near-field reconstruction from the scatter-
ing amplitudes (see Sect.5.4.2): the reconstruction of source details of the order
of a wavelength and below (for a review on this subject see [5.111)) appears very
difficult when the wavelength A is much smaller than the characteristic dimension t
of the source. Superresolution becomes however easier when ) is of the same order
as t.

More fundamental questions are still open in the field of i11-posed problems.

The first point, very important, is to develop a sound theory when data are given
only at a finite number of points (in regularization theory, as described in this
chapter, one assumes that the data are functions defined everywhere). Some results
in this direction have been obtained for the problems of analytic continuation
[5.112,113] harmonic continuation [5.114) and numerical differentiation [5.115]). In
these cases, the main ideas of regularization theory (prior knowledge, least-square
methods, stability estimates) have been maintained.

A second point would be to extend regularization theory beyond fts actual frame:
1inear problems and prior knowledge expressed in the form (5.22). For instance, a
positivity constraint, which appears naturally in some problems, cannot be expressed
in this way. For particular §11-posed problems (harmonic continuation, backward heat
equation), 1t 1s known that positive solutions are necessarily stable [5.116],
However, the requirement of positivity alone is not sufficient for stabilizina Fred-
holm integral equations of the first kind. Some algorithms, reviewed in [5.72]),
have been developed for introducing the positivity constraint in the analysis of
imaging systems but, to our knowledge, no theoretical analysis of the solution ac-
curacy has been done. It is clear that a supplementary constraint of positivity
improves the solution, but the quantitative estimation of this improvement is still
an open question.

m
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