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The Stability of Pseudospectral-Chebyshev Methods*

By David Gottlieb**

Abstract. The stability of pseudospectral-Chebyshev methods is demonstrated for parabolic

and hyperbolic problems with variable coefficients. The choice of collocation points is

discussed. Numerical examples are given for the case of variable coefficient hyperbolic

equations.

1. Introduction. The purpose of this paper is to analyze spectral Chebyshev

collocation (otherwise known as pseudospectral) methods for hyperbolic and

parabolic problems. We shall show that these methods converge at a rate that is

faster than that of finite differences. The analysis is based upon results presented in

[1]. This reference outlines the general theory of convergence of spectral methods

and proves that if a spectral method is algebraically stable in some norm, then the

method is strongly stable in an algebraically equivalent new norm. If in addition

the method is consistent by virtue of its truncation error tending to zero in this new

norm, then convergence is implied.

The application of this theory to hyperbolic and parabolic problems had been

discussed in [1] mainly for constant coefficient hyperbolic and parabolic problems

and, in the case of Chebyshev methods, mainly for the Galerkin and Tau methods.

In this paper we discuss the collocation methods and prove stability for the

variable coefficient case. The new idea that enables us to establish stability for

collocation methods is to use a formula for Gauss-type integration. We use the

positive weights given by this formula as the new norm and prove energy conserva-

tion in this norm. Using the same technique, a new proof is presented for variable

coefficient hyperbolic and parabolic problems when solved by spectral-Chebyshev

methods using Tau methods. These proofs are more general than those in [1] in the

sense that they include the variable coefficient case.

1. A numerical solution of the problem

(1.1) u, = Lm,

where u G H, H is a Hubert space and L is an infinite-dimensional operator,

consists of two steps. The first is to choose a finite-dimensional subspace of H, say
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108 DAVID GOTTLIEB

BN, and the second is to choose a projection operation PN: H —> BN. The ap-

proximation to (1.1) becomes

(1.2) duN/dt = PNLuN,       uN G BN,

which may be solved on a computer. Spectral Chebyshev methods are defined by

choosing BN as the N-dimensional space spanned by polynomials of degree

N + k — \ that satisfy boundary conditions.

There are three ways which have been used to choose the operator PN, namely

Galerkin, Tau, and collocation.

In the Galerkin method for homogeneous boundary conditions, we choose <j>n,

n = 1, . . . , N, as the basis of BN and solve

(^-L«w,^)=0,       n = l,...,N,
(1.3) V  dt I

N

For the Tau method, we choose {<£„} to be a set of orthogonal functions such

that (</>„, <bj = 8nm and expand
N + k

UN  =    2    an$n>
n=\

where k is the number of boundary conditions. Then set

(1.4) ^- LuN,^=0,       n = l,...,N.

The condition uN G BN provides the other k equations.

In the collocation method, we set
N

n=\

and require

(1.5) -^-Lm„ = 0   forx,,    j=l,...,N.

It had been observed by Orszag [1] and Kreiss and Öliger [2] that the collocation

method can be carried out efficiently in the physical space in contrast to the

Galerkin and Tau methods which must be solved in the transform space. This fact

enables one to use the collocation method efficiently for nonlinear equations. We

refer the reader to [1] for further discussion of this fact.

In the next sections we will illustrate the above procedure applied to parabolic

and hyperbolic equations.

2. Consider the equation

(21) u, = S(x)uxx,        -\<x< 1,0 <8<S(x),

«(±i,0-o.
In the Galerkin-Chebyshev method, we choose

(2 2) *" = T" ~ T°'   " eVen'

<>n = Tn - Tv   n odd>

where Tn(x) = cos(n cos~'x).
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THE STABILITY OF PSEUDOSPECTRAL-CHEBYSHEV METHODS 109

We expand uN = 2^_0 an$n(x) so tnat un(± *> 0 = u and set

(2-3) /_'
<t>n

*< {) ox2\^-X—2
dx = 0,       n = 2, . . . ,N.

It is readily seen that for nonconstant S(x), it is difficult to solve the equations for

(2.3). Orszag has found some efficient transform methods to evaluate

a2«*

/>>£

</>„

9*2    VT^

In general, however, solving (2.3) for the coefficients {an} is time-consuming.

In the Tau method, we set

;v+2

«JV =    2   «„^(jc),
n = 0

and require

/'

1

1 Vl - x2

together with

(2.4)

l0UN

\  3'
S(x)

3_X

ax2
Tn dx = 0,       » - 0,..., N,

N+2 N+2

2  aJH(\)-   2  «„=0,
n=0 n=0

# + 2 N + 2

2 ^„(-l)« 2 (-i)"fl„-o.
n=0 n-0

We face the same complications for getting the coefficients as we had for the

Galerkin method.

In the collocation method, we set

«* = 2 /„(<)</>„«,
n = 2

where the <¿>n's are defined in (2.2). Then we demand

(2'5) a,     .^

for some points x,. If the x, are chosen to be cos -rrj/ N so that the boundary values

are included, there is an efficient way to solve (2.5), by taking advantage of the

orthogonality of the trigonometric functions. Set

N N

un(x) =  2 o„Tn(x),    uN(xj) =  2 anTn(xj),       0 < j < N.

duN        /  _ 9 2uN
S(x)-^- = 0    at x = xJt  j = 1, . . . , N - 1,

Then

n = 0

2    ^ mi*

n=0

(2.5a)   a„ = TFr ^ — «„(jc^cos —,       c0 - c„ - 2,c* - 1,1 < k < N - 1.
to» k~0 Ck

Using the properties of Chebyshev polynomials, we may set

92«»(*,)      £

dx2
= 2 bHTn(Xj),

n-0
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110 DAVID GOTTLIEB

where the coefficients bn may be found from

N

cJ>n =      2    P(P2 - n2)ap.
p = n + 2

p+ n even

We refer the reader to [1] for the derivation of the last equation. We then go back

to the physical space and solve

^{Xj) - Six^ixJ,      ;«l,...,iV-1,

uN(xo) = "*-(■%) = °-

This procedure is very efficient and may be generalized without any problem to

nonlinear equations. In practice we would use the Chebyshev polynomials to

interpolate u spatially and then to evaluate the spatial derivative at the desired

points Xj. Finally the solution would be advanced in time using the original

nonlinear equation to find the time derivative at the points Xj in the physical space.

In order to prove convergence we need the following two results.

Lemma 1. Let u satisfy u(± 1) = 0 and have a continuous first derivative. Then

rl       ««,,
(2.6) I xx      dx < 0.

For the proof we refer the reader to [1, p. 82].

Lemma  2.   Let  x, = cos nj/N, j = 0, . . ., N.   Then  there  exist  Wj > 0, j =

0, . . . , N, such that

(2.7) C       /{X)       dx=Í f(Xj)wj,     S »j = *-
•/-|Vl-x2 y = o 7=o

for any f(x) which is a polynomial of degree at most 2N — 1.

This lemma can be found in [5]. We are now ready to prove the stability of the

Chebyshev collocation method for the heat equation.

Theorem (Stability). Let uN be the Chebyshev collocation approximation (2.5) to

the heat equation (2.1). Then

SL uUxj, t)        JÍ   ,,      ,   w¡

Proof. Since

and

we get

d-^-(Xj,t) = S(xJ)^(xJ),      j=\,...,N-\,

"/v(^o) = »n(xn) = °.

(2.9) 2 M*>)^f(*,)-^7T = 2 «„(*,)^(*>,.y=o "' ¿yxj)     j=0 dx
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By Lemma 2 and the fact that the degree of uNa 2uN/dx2 is 2N — 2, we get

a2M

2 «*(■*,)—r(-*/K = f
32ma

y-o ■vT A  "" ox2
dx < 0.

The last inequality follows from Lemma 1, since uN(± 1, t) = 0. Therefore,

d   N wj

Vt ̂ /^^xj) < °'

and (2.16) follows.

The next step for showing convergence is to show that the truncation error tends

to zero as N tends to infinity. In view of the discussion in [1, p. 48] the truncation

error is given by

(2.10) ('■sw5,,"-vw5)'1
where u G C°° is the solution to (2.1), PNf(x) is a polynomial of degree N that

interpolates the function/(x) at the points x¡, and

"High
1/2

TTJ
Xj = cos —,j = 0,...,N.

N

Theorem (Consistency). Let u, PN and || • || be defined as above. Then

(2.11)
'■(Pjs(x) — PN-S(x)

dx2'"    ~"'dx2
■iM

for any positive r.

Proof. From (2.5a) we can express PNu by

where

On the other hand

>>= 2 rr.W.

2  £  "(*,)
«» = -Tj 2 -— Tn(xj).

" y = 0     cj

where

"(*) =^-TQ+  2 a„Tn(x),
Z n = l

2  ri "W^w
¿X.

'-' Vl-x2

It is well known that an = 0(\/np), for any/». Moreover, an can be expressed in

terms of the a„'s by the formula

(2.12)

1       £   Tk(Xj)Tn(Xj)  t   2   £       *   Tk(Xj)T„(Xj)
«„ = TF«o 2-+ T^ 2 ak 2-

Jy       7=0 C7 /V   *-l       7=0 Cj

=  an  +  a2N-n  +  a4N-n +
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112 DAVID GOTTLIEB

and therefore

(2.13)

Define

Then

SWtïP»u - SW^-Ï" = SW 2 (a„ - an)T: - S(x) f aj;.
dx ox n=0 n-N

g(x) = S(x) 2 aj';.

W*)|a - .2 *(*,)( Î^T^Jwj = o(±).

Moreover, since \a„ - a„\ = 0(l/Nr)by (2.12), we get

sWttV
dx

S(x)^-u
dx2

- °(M
and since \\pN\\ = 1, (2.11) is proven.

3. In this section we would like to treat the hyperbolic equation

(2 \\ «/ = S(x)«x>    S(x) > 0,        \x\ < 1,

m( l,/) = 0.

We concentrate upon the collocation method. There are currently two ways of

performing the collocation method. The first one is to collocate at the point

xk = cos irk/N, k = 1, . . . , N, and to use the boundary condition for x0 = 1. This

means that we collocate at N — 1 points in the interior of the domain and also at

the outflow boundary; we do not collocate at x = 1 since a boundary condition is

imposed at this point. The other way is to collocate at the points xk = cos irk/N,

k = I,.. ., N — 1, and to use the boundary condition at x0 = 1. This amounts to

using N — 1 interior points for collocation and to impose a boundary condition at

the inflow. The outflow boundary is not treated at all. We would now like to show

how to carry out these two methods effectively.

In order to carry out the first one, we expand

(3.2) "*(■*„> 0 =  2 ak Tk(x„),        n = 0, . . . , N, xn =
■nn

cos
*:=0 TV'

and solve for aL

(3.3) öj. =
ckj = 0    Cj N '

c0 = c„ = 2, c, = 1, 0 # / ^ N.

Equation (3.3) is evaluated by using the Fast Fourier Transform (FFT) method.

Now

(3.4)

where

(3.5)

9m n

"57(*»»') = 2 bkTk(xn),
ax *=o

K- 2   2PaP-
LA   k=p+\

k+p odd
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The evaluation of the right-hand side of Eq. (3.4) is carried out using FFT. Then

Eq. (3.5) is solved for the bk's with O(N) operations, that is a simple recursive

formula is used,

bN=0,    bN_x=2Nan,

and

h+2 - h --2(k + \)ak+l.
ck+2

Then we solve, in the physical space,

-rf (xj, t) = S(xj)-£(xj,t),      7=1,..., N,
(3.6) ót dx

uN(\, t) = 0.

A very efficient time-marching technique which is explicit and unconditionally

stable has been developed in [3] and can be used for the solution of (3.6).

The second way of collocation is carried out as follows. Set

ff-i nn

(3.7) vN(xn, 0=2  dkTk(x„),       n - 0,. . ., N - 1, x„ - cos —.
*=o Iy

It can be shown that dk can be expressed in terms of ak derived in (3.3). In fact

(3.8) dk = ak + (-\)N-x2aN(-\f/ck.

Equation (3.8) is derived as follows:

N-l

uN(x„, 0=2  akTk(xn) + aNTN(xn)
k = 0

N-l

=   2  akTk(x„) + (-1)      2aN
k = 0

2 ^~ Tk(xn) - H^ TN(xn)
k~0     ''kCL C

= "ÎÏ °kTk(*n) + (-If-^N Y ^T-Tk(x„) = YdkTk(x„),
k = 0 k = 0      Lk k=*0

ioT n = 0, . . ., N - I.

Now

where

dvN "_1

-ä-T (Xn> ')  =     2    Y* Tk(X„\
ax *=0

1
(3-9) yk = ~    2     2pdp,

Ck   k=p+\

k+p odd

and we solve

dvNJxj>f)      c,    , dv»(xJ' ') -     , v     ,

(3.10) dt dx

vN(xo> 0 = °-

Observe that uN in the second way of collocation (3.7)-(3.10) is a polynomial of

degree yV — 1, whereas in (3.2)—(3.6) it is a polynomial of degree N. The similarity
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114 DAVID GOTTLIEB

between these two different methods can be seen in the case where S(x) = 1. Since

duN/dt — duN/dx is a polynomial of degree N that vanishes at x = -1 and at the

zeroes of T'N(x), we get

(3.11a) duN/dt = duN/dx + t,(1 + x)T'N(x)

and, by the same argument,

(3.11b) dvN/dt = dvN/dx +r2T'N(x).

It is interesting to note that for the Tau method one gets the error equation

(3.12) dRN/dt = dRN/dx + t3Tn(x),

where RN is the Tau approximation to u. It seems that the Tau method can be

viewed, in the case of the constant coefficient problem (3.12), as a collocation

method based on the collocation points

it  2k - 1
(3.12a) zk = cos|-|       N    j, k - 1,..., N.

This observation suggests a convenient way of using the Tau method for the

variable coefficient case as well; namely, set

9ÄN o/    X SRN(3.13) -^-S(x)-^ = 0,       x = zk,k=l,...,N.

This method reduces in the constant coefficient case to the Tau method. In order

to establish stability for the collocation method described in (3.7)—(3.10), we need

the following

Lemma. Let xk = cos wk/ N, k = 0, . . . , N - 1, then the quadrature formula

(3.14) f J\±If(x)dx = NÍlf(xk)wk,
J-l V   '        x k-0

where

(i -*,)[!-;(*,)]'J-'(x-*kf Vi-*

*-râ/>W£x
-   dx > 0
x

is correct for every polynomial of degree 2N — 2 or less.

Proof. Let/(x) be a polynomial of degree 2N — 2. Set g(x) = (1 + x)f(x). Since

g(x) is a polynomial of degree 2N - 1, formula (2.7) is exact.

•i  (1 + x)f(x)
N-l

(3.15)   f u ZJlHr) dx = 2 (i + xj>Axj) =2(1+ *>/W-
-7-1    Vl-X2 7 = 0 7-0

Equation (3.15) implies (3.14) and wk can be derived by a standard argument.

Now let vN be the collocation approximation to u, obtained by (3.7)-(3.10). Then

(3.16) ^ = s(x)^,       * = *„,„ = !,...,/V-l.
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Multiplying by vN(xn)wn/c(xn), we get from (3.16)

and by (3.14)

(3.17)

2    VN(Xn)-^-(Xn)^7-\   =    2    %Wt-(í,)W,
n = 0 "' à\xn) « = 0 ox

^ l,/l + x     2|1 lfi vl
< 1 VT^rz vn\-i -j\   -,       , dx.

2V1      x 2-/-i(l -x)Vl -x2

The boundary term in the right-hand side of (3.17) vanishes since vN(\) = 0 and vN

is a polynomial and therefore

d N~x w

(3.18) -rt  2 «¿0O«TT < 0

or

AT — 1 ■*• W— 1 *

2  ■£(*., 0-=77T<   2  4(^,0)^fr.
n = 0 ^(^n/* n-0 "H-Sj

From the definition of w„ it follows that the norm described by the weights

wn/S(xn) is algebraically equivalent to the norm in which we have consistency,

therefore algebraic stability is proved. The same idea can be utilized in showing the

stability of the Tau method. In fact, from (3.12) it is evident that

(3.19) 20 + Zj)^Rn{Zj)^{Zj) =i _4_W^)(1 + Zj),

where j, are the weights in the Gauss-Chebyshev integration. From (3.17) it follows

that

(3.20)

d £    y¡   n2l   A    fi   RN   qRn    i + x    ,
T, 2 l-rn\z¡> 0 = I    1-â-, dx
dtjZi \ - zj   Ny J   '    ./_, 1 - x   9x   yj _ x2

= - /    -~    . dx < 0,
j-'0-*)2 vT^?

which proves algebraic stability.

The stability of the collocation method described by (3.3)-(3.6) follows im-

mediately from that described in (3.7)-(3.10). It can be seen from the relation (3.8).

In fact, setting

9mw      9mw      ,.        jdwN      dwK9m^_9m^= / dwN      dwN \

dt        dx      K       X\   dt        dx j'

one gets (3.11a) from (3.11b). This completes the discussion of collocation method

for scalar equations. We refer the reader to [4] in which proper ways of imple-

menting spectral methods for systems is discussed.
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116 DAVID GOTTLIEB

4. The proofs presented in the last section were confined to the case in which

S(x) does not change sign. This might be a weakness of the theory rather than that

of the collocation method. Numerical experiments using the pseudospectral meth-

ods have indicated that there is no instability, that is they show the solution does

not grow with jV even when S(x) changes sign. There might be problems owing to

growth in time of the solution or to the existence of a stationary characteristic in

the neighborhood of either the boundary or some interior point. But these prob-

lems seem to occur because of lack of spatial resolution and not because of

stability. In order to illustrate this fact let us consider two equations:

(41) u,= -xux,        |x|<l,

m(x, 0) = f(x),

and

(4 2) "' = xux>       \x\ < !'

m(x, 0)=/(x),    m(± 1,0 = 0.

We attempt to solve (4.1) and (4.2) by the Chebyshev collocation method. Accord-

ing to the popular belief, there should be instabilities in the solution since x

changes sign in the domain. However, as indicated in Table I below no such

instabilities were found. As a matter of fact, we can prove the following

Theorem. The Chebyshev collocation method for (4.1) is stable.

Proof. Let uN be the Chebyshev approximation to u, obtained by the collocation

method. Then

du,, du*, itj
(4.3a) ^f + *lf = 0'       x = cos^J = 0,...,N,

as in (3.2). Or

dVir dV\r 77/
(4.3b) ~di + x-¿ = 0'       x = cos^,j=l,...,N-\,

as in (3.7). Since uN is TVth degree polynomial and vN is N — 1 degree polynomial,

we get

9h\, dwN

(4.4) -ä?--*-ä?'        -i<X<l

where w is either uN or vN.

We now refer the reader to [1, pp. 85-87] for the proof that (4.4) implies stability.

Theorem. The Chebyshev collocation approximation for (4.2) is stable.

Proof. Now uN satisfies

aus duN irj   .
(4.5) ^T = *lx~'       *-cos-,y-l,...,/V-l,

uN(± 1,0-0.

Note that (4.5) has boundary conditions in contrast to (4.4). Let Wj be defined in

(2.7). From (4.5) it is clear that
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%luN(Xj) du "-'     xj 9m

< I -, , "N—dx
J (1 +x)Vl -x2        x

= - Í-77T-^0 -x + x2)<0
J (1 + x)5/2(l - x)3/2 '

and that proves stability.

It goes without saying that the proofs of the last two theorems can be extended

to all the functions S(x) such that S(x)/x is of constant sign. We conjecture that it

is true for any S(x).

In Table I we show the results of applying the Chebyshev-pseudospectral method

to four equations.

Table I

L2 Chebyshev errors for the solution of (4.6)- (4.9)

N

17

33

65

",(1 + x)ux

1.13 • 10"'

1.79 • 10-3

8.5 • 10-5

M, = (1   - X)UX

9.4 • 10"6

4.7 • 10~7

2.2 • 10-8

M, = xux

1.16- 10"1

2.59 • 10"4

1.22 • 10"5

M, = -XM,

2.05 * 10"6

1.05 * 10"7

5 • 10"9

The first equation is

(4.6a)     m, = (1 + x)ax,        |x| < 1,    u(x, 0) = sin ttx,   u(\, t) = sin(2e' - l>7r.

The solution to this problem is

(4.6b) m(x, 0 = sin ir[(l + x)e' - l].

This problem has a characteristic boundary at x = -1. Moreover, for large t the

solution has a large variation in the neighborhood of x = -1.

The second problem is

(4.7a) u, = (1 — x)ux,    u(x, 0) = sin ttx.

The solution is given by

(4.7b) m(x, 0 = sin w[l - (1 - x)e~'].

The line x = 1 is a characteristic boundary, but, in contrast to the equation (4.6), the

neighboring characteristics point from the boundary towards the domain. The third

is

, . M, = XUX,     u(x, 0) = Sin 77X,
(4.8a;

m(1, 0 = sin(7re'),    m(-1, 0 = -sin(7re')-

The solution is

(4.8b) m(x, 0 = sin(7Txe').
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And the fourth is

(4.9a) m, = - xux,    u(x, 0) = sin mx,

where

(4.9b) m(x, /) = sim>xe?"')-

All these problems were solved by Chebyshev-pseudospectral methods with the

modified Euler time-marching techniques. With the time step Ar = 1/Axmin, we

advance from the time 0 to the time r = 2. Note that since x^ - x^,, = 0(1/N2),

then Axmin-0(1/^).

In Table I we show the L2 Chebyshev errors of the solution of the problems

(4.6)-(4.9). It is clear that the Chebyshev collocation method is stable for all these

problems and has the same rate of convergence. However, the errors for problems

(4.6) and (4.8) were much larger than those of (4.7) and (4.9). In fact taking 64

modes in the solution of (4.6) and (4.8) produce the same error that 17 modes

produce for (4.6) and (4.8). This is a problem of accuracy and not of stability. The

question now is, do we retain spectral accuracy? To answer this question we ran the

problem (4.8) with smaller and smaller time steps until the results were not

changed, which means that we were limited only by the space accuracy. For 17

modes we got an L2 error of 1.16 • 10_1, whereas for 33 modes and the fine time

step we got an error of 6 • 10~5. This indicates that the order of accuracy in space

is indeed better than any algebraic order.

Conclusion. It has been shown in this paper that the pseudospectral-Chebyshev

methods are convergent in variable coefficient parabolic problems and in some

cases to hyperbolic problems. The analysis shows that the rate of convergence is

greater for finite difference methods or the finite element method. It seems that for

a single first-order hyperbolic equation the method remains stable even when the

coefficient changes sign, though in this case care must be taken to have adequate

spatial resolution. This fact, combined with the fact that collocation methods are

easy to apply in the nonlinear case, shows that the pseudospectral method is in

general preferable to Galerkin or Tau methods.
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