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Summary. The eigenvalue problem for linear adiabatic radial perturbations
of relativistic gas spheres is presented in a tridiagonal matrix formulation.
Two classes of relativistic polytropes are studied. Curves of marginal stability
are found in the (n, q) parameter plane, where n is the polytropic index and
q is the ratio of central pressure to density. Jeans’ criterion for relativistic gas
spheres is established and a local, purely general relativistic, instability is
exposed. It is also shown that the sign of the binding energy is unrelated to
stability against small perturbations.

1 Introduction

The stability of relativistic equilibrium configurations for both stars and star clusters remains
a topic of continuing interest. In this work we present a tridiagonal matrix formulation of
the eigenvalue problem for linear adiabatic radial perturbations of relativistic gas spheres.
This method has been used by Castor (1971) on adiabatic pulsations of Newtonian stellar
models. Here, we extend the matrix method to general relativistic models. This technique is
not included in the catalogue of methods by Bardeen, Thorne & Meltzer (1966).

Two classes of relativistic polytropes are studied. For each class, the matrix method
allows one to obtain curves of marginal stability in the (r, ) parameter plane, where n is the
polytropic index and g is the ratio of central pressure to density. The curves of marginal
stability are the principal result of this work, and it is seen that > 4/3 is not a sufficient
condition for stability, where v is the adiabatic index. It is also shown that g must be
bounded in order to satisfy causal propagation of the adiabatic perturbations. Jeans’
criterion for the instability of relativistic gas spheres is established, and a local instability of
purely general relativistic origin is revealed. Binding energy and its relation to stability is
discussed. Finally, for the polytropes considered here, it emerges that the more compact a
model is, the more stable it is.
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2 Equilibrium models

The equilibrium spacetimes are static and spherically symmetric with metric

guvdx"dx" =a*dt* — b*dr* — r*dQ? (1)

where dQ? is the metric of the unit sphere, a =a(r) and b = b(r). Perfect fluid flow is
assumed with energy momentum tensor.

Y =wutu” — p(g" — utu®), (2

where u =a 19, is the matter 4-velocity, p is the isotropic pressure and w is the mass—energy
density. The interior metric (1) is matched to the vacuum Schwarzschild metric at the zero
pressure surface.

Two classes of polytropes will be studied.

ClassI: p=awltin (32)

Class II: p = aw " Y™ g, (3b)

where a and n are constants with » the polytropic index and a = a(w).

Class I has been studied by Tooper (1964) and by Chandrasekhar (1964), but the stability
features have not hitherto been fully explored. Class II was recently introduced by Glass &
Harpaz (1981) and contains the most famous exact equilibrium solutions. n = 0 corresponds
to Schwarzchild’s constant density solution (up to an additive constant) and n=75 is
Buchdahl’s relativistic Plummer model (Buchdahl 1964; Fackerell 1971). The equations of
state (3a) and (3b) are most useful for modelling globular clusters (the n = 5 model of Class II
has been extensively studied in that connection), and the numerical evaluations of the
equilibrium models below use numbers that are reasonable for clusters.

The metric components can be expressed in terms of physical variables. The hydrostatic
support equation is

1 dp 1 da
rwa e @
Using the equations of state (3), equation (4) is integrated to yield
Class I: @ =B(1 +awl/m)~(1+n), (52)
Class II: ¢ = 8 — (1 + )WY, a and $> 0. (5b)
Matching to the vacuum Schwarzschild solution at p(ry) = 0 requires
2 =1 _2M/r, (6)

for both classes, with M the total mass.
Buchdahl’s theorem (Buchdahl 1959) gives 8 a lower bound and so § is restricted to the
range

-<fB<1.

The other metric component b (r) is expressed in terms of the mass function m(r) by

b2=1—2m/r 7
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and where
dm
— =4ar'w. €))
dr

The equilibrium equations can be obtained from the following variational principle: for a
fixed chemical composition, the total energy

b
M= f 4nriwdr ©)
0

is stationary with respect to all adiabatic variations of w(r) leaving unchanged the total rest
mass

b
M, =f 4nrtp(1 —2mfry Vidr (10)
0

where w=p(1+¢€), p is the rest mass density and € is the specific internal energy. The
variational principle yields the Tolman—Oppenheimer—Volkoff (TOV) equation

m 2m\ 1 dp
411pr+—2-+(1——~ — —=0, (11)
r r/p+wdr
along with the adiabatic condition
ldp 1 aw 19
pdr p+wdr ' (12)
The adiabatic index v is defined by v =d(In p)/d(In p) and so
p +w (dp/dr)
Y@ =—— : (13)
p (dw/dr)
Substituting the equations of state (3) yields
1
ClassI: y= (1 +~) (1 +£) (14a)
n w
1 p\?
Class II: v = (1 +—) (1 +—) ) (14b)
n w

For both classes, y(r) at the boundary has the Newtonian value
b = 1+ )
n

and at the centre has the values

1
ClassI: vy, = (1 +—)( 1+4q),
n

1
Class IL: v, = (1 + ~—) (1+q)%

n
where q =p./w.. For both classes, the adiabatic index behaves as a function which
decreases monotonically from its central value to its Newtonian value at the boundary.

6
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For a particular value of n, an equilibrium model is constructed by choosing the two
parameters (q, w,) and then solving the TOV equation (11), using equations (3) and (8). The
mass equation is integrated from the centre outward, and the TOV equation is solved itera-
tively (on the surfaces of concentric shells) from the centre outward until p (r,) =0 is
reached. (Between 150 and 200 shells are used, depending on the particular model.)

The value of the parameter 3 then can be found from equation (6). a can be obtained from

ClassI: awl"=gq, (15a)
q8
1+qm+1)

Class II: awl™” =

(15b)
Both equations of state (3a) and (3b) depend only on the parameters n, g and w,.

For each class, n = 5 is the upper bound for n. As in the Newtonian case, the n = 5 models
have finite total mass and infinite extent. Within each class, lower values of n characterize
more compact models (i.e. a greater percentage of the total mass within a given central
region). This is shown in Fig. 1 for the Class II models. The curves for Class I models are
similar. The relationship between Class I and Class II models is seen in Fig. 2. For a fixed
value of n, Class II models are more compact than Class 1.

The TOV equation (11) and the mass equation (8) remain invariant under the scale
transformation
p=wg'p, wW=wg'w

! . (16)
F=wi?, m=w!'m.

For fixed values of the parameters n and q, it is clear that varying w, cannot alter the
structure of an equilibrium configuration. Thus, in the following stability analysis, the
stability of an equilibrium model depends only on the values of n and q =p./w,.

3 Perturbation equations

We consider a spherically symmetric system with radial motion of the matter in the comoving
gauge. The metric is

ds?=A%dr?* — B*dx® — R*dQ?, (17)
1.0-—;g
~\\ ’,—-D”e]
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Figure 1. Density and mass curves for Class II models with g = 0.3. Solid lines denote n =1 and dashed
lines n = 5. Both models have central density w, = 10*g/cm?. Circles and squares denote computed points.
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Figure 2. Density and mass curves for ¢ =1, n =1 models. Solid lines denote Class II and dashed lines
Class I. Both models have w, = 10*g/cm3. Circles and squares denote computed points.

where
A=A(r,x),B=B(t, x),R =R(1, x).
The energy momentum tensor is given by
Th=wU*U,—- P(8% - U*U,), (18)

where U = A719,. Adiabatic motion is assumed implying P = P(W) and 4 = A (W). The field
equations are well known and will not be given here (¢f. Glass & Harpaz 1981). Now, a per-
turbation expansion is introduced. For any quantity A defined on the spacetime of metric
(17), we assume the expansion, for some suitable A,

A=a+N;+ N4, +

about the background spacetime of metric (1). The (7, x) coordinates are dragged along by
the linear Lagrangian displacement R; and we map back to the equilibrium spacetime in
order to express all perturbation quantities as functions of (¢, 7). In particular

Ry=exp (wt) X (r).

Since the linearization procedure is straightforward, we omit details and merely give the key
equations. The Lagrangian perturbations of the pressure and density are given by

() ()2 S

Note that for the equations of state considered here, the boundary condition P, (r5) =0 is
always satisfied when R (r) is finite.
The fundamental eigenvalue equation for radial perturbations is

w?bh? dz 1da\* 2m
2 X=[41rrb2(p +w)z +d—~2(——) ——bz]X
r

3

a adr r
+(1(17 Aarb v + dy )dX d*X (20)
—— —A4qr z——})— -
adr P dr/ dr ydr2
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where v is the adiabatic index given in equation (13), and

Yp (lda 2)
= , z=pl—— ——).
Y p+w Y adr r

Equation (20) was first derived by Chandrasekhar (1964). (Showing equality of equation 20
with Chandrasekhar’s equation involves some use of the equilibrium field equations.)

4 Matrix equation

The spherical equilibrium configuration has been constructed on the surfaces of N con-
centric shells. Equation (20) is now evaluated on the surface of each shell yielding the ¥
dimensional matrix equation

w?X = [Z]X. 21

Equation (20) can be written symbolically, with values on the jth shell, as

e () ()
w = e , . — +hn.{1———
A RS Jdr]_ Idrzj
where e, f'and h symbolize the respective coefficients on the right-hand side of equation (20)
multiplied by a?/b%. The number of non-zero diagonals of the N x N matrix [Z] is deter-
mined by the differencing scheme for evaluating the derivatives of X. We choose the ‘nearest
neighbour’ scheme which causes [Z] to be tridiagonal. Thus, we take three successive shell
surfaces labelled r;, 7,7, (i =j — 1 and k =j +1) and evaluate the derivatives as '

(dX) X - X,
dr j

(22)

, (23a)
tig

where ry =r; — r;, and

d?X 2 (X, — X; X - X;
( 2) =_[( k ])_( ] ’)] (23b)
ar’ 7 rg Fik tij
The jth row of equation (21) can now be written as
1 (2h; | 2hi 1 1 1 (2h;
szj=’—‘ (——]—f})Xl‘l'[e]——‘—‘](—‘l’—)]Xv]'l‘—*(—] +f}')Xk7 (24)
Fig \Tij Tig \ljg  Fij Yik \ Tk

exhibiting the three non-zero diagonal entries of [Z]. The coefficients f; prevent [2] from
being symmetric. [Z] has the property that Eﬁ“ 2P +1>0 and can be called quasi-sym-
metric. The reality of the eigenvalues is guaranteed since [Z] can be transformed to a sym-
metric tridiagonal matrix by a similarity transformation using a diagonal matrix (Wilkinson
1965, p. 335) when 28 1 2P 11> 0. The Sturm sequence method is used to locate the eigen-
values since it yields the lowest eigenvalue efficiently, and also indicates the number of
distinct eigenvalues in the range considered.

Using the elements X7 of matrix [Z], one defines a sequence of polynomials { fp(W?),

p=0,...,N} such that f,(w?) is the principal minor of order p of the tridiagonal matrix
[ — w?I]. Thus,

f0=13 f1=2%_w29

(25)
fo=(EB—w)fy_y —257SE_(f, .

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny Gz uo 1senb Aq 62Z0G0L/6S L/1/20Z/2101E/SeIuW/Wod dno0|Wapese//:sd)y WOl papeojumod


http://adsabs.harvard.edu/abs/1983MNRAS.202..159G

FTOB3VNRAS. 2027 “159G!

Stability of relativistic gas spheres 165

The polynomial fy (w?) is the characteristic polynomial of [£]. Given’s theorem (Isaacson
& Keller 1966) provides the result that the number of distinct eigenvalues of [2] in the
interval [a, b] is S(b) —S(a) where S(a) is the number of sign changes in the sequence
{fo, f1(@), ..., fn(@}. Any one of several iteration schemes can be used to reduce the
interval until the lowest eigenvalue has been located.

In our calculations we use the following tests to insure that the lowest eigenvalue has
been accurately located.

(a) The initial interval is chosen large enough so that S(b) — S(a) = N, thus verifying that
[Z] has N real eigenvalues.

(b) Upon obtaining the lowest mode, w3, the gauss elimination method is used to calcu-
late the corresponding eigenvector X,. X, must be zero at » = 0, finite and non-zero atr =r,
and have no nodes in between. (Note that the bottom row of [Z] reflects the constraint that
the coefficient of d® X/dr? vanishes on the surface. The consequent finite (non-zero) value of
dX/dr on the surface is consistent with the inhomogeneous nature of the boundary
conditions.)

(c) w3 and X, are substituted into equation (21) and the left and right-hand rows
compared. In our calculations we find agreement no worse than 1 part in 10'2.

5 Stability results

In the absence of dissipation, the dynamical equations are time-reversal invariant and give
the squared frequencies w? of the normal modes as real continuous functions of » and g.
The transition from stability to instability occurs at the values of n and g for which the
lowest mode w32 vanishes.

marginal stability
e

class
I %S
ol I

causality restriction

i/

pet

[
% i 2 3

Figure 3. Marginal stability curves for Class I and Class II in the (n, g) parameter plane. The stability
region is to the left of each curve. For n = 0.1, calculations of Class I models did not give instability for
large g (within computer range) and likewise for Class II with » = 1. Equation (32) gives the causality
restriction for each class.
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Stability results obtain in the upper right quadrant of the (n, g) parameter plane picked
out by n>0, g > 0. The classic Newtonian result for polytropes is given by the vertical line
of marginal stability n=3. The region of Newtonian stability is the rectangle O0<n < 3,
0< g <1/3. Since general relativistic effects are destabilizing, one expects stability only in
some reduced portion of the Newtonian region. This is seen to be true when causality
bounds ¢q. (See equation 32 below.) Fig. 3 shows the curves of marginal stability for Classes I
and II. Note that Class II has a larger stability region than Class I.

- Since the curves of marginal stability extend beyond values of ¢ =1, the question arises as
to whether the region g > 1 has any physical relevance, since the dominant energy condition
is violated. In the next section the speed of the adiabatic perturbations and their causal
propagation are discussed.

6 Speed of the adiabatic perturbations and Jeans’ criterion

The local adiabatic sound speed is

2=
vg = s
ptw dw

The maximum value of vy occurs at the cente and, with the use of equation (14), is given by

1
Class I: (V)max = (1 +—) q, (27a)
n

1
Class II: (W)max = (1 + —~) q(1+q). (27b)
n

Unbounded g clearly allows vg greater than light speed. However, it is the group velocity
which determines the physical speed of the perturbations. To find the group velocity, one
must first obtain a local dispersion relation. Consider a perturbation quantity ¥ satisfying a
wave equation. Since we are studying linear waves in non-uniform media, ¥ is expanded in
an asymptotic series

V=exp [i00,0] T Falr,0),
n=0

where k = 9,0, and w = —09,0. The F,, are terms of successively smaller order in some rele-
vant small parameter and 9, F,,, 9, F,, = 0(F,+). The series expansion for y is substituted
into the wave equation and a hierarchy of equations is obtained for 9,0, 9,0, F,; and their
derivatives. The equation for F§=F,F§ is obtained from the first two equations of the
hierarchy and can also be obtained from the Lagrangian (in the frequency domain)

L =G(w, k)F3,

where G (w, k) = 0 is the desired dispersion relation. The Lagrangiah for equation (20) given
by Chandraskhar (1964, equation 61) is (in our notation)

et e GR G G ) GG+

¥ ptw/\b
4/ 1 dp\ (a\? s -
“;(,,w)(a)(z) v -snpv (28)
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where ¢ =r*X/a. Followmg Whitham (1974, pp. 392-399), one can read off the dispersion
relation from the Lagrangian:

O P R [T I T MR i1

ab’*(p +w)=

2r?

(In the Lagrangian, one can take Y ~ Fy cos (k7 — wt +8) and think of the sin® and cos?
terms as time averaged to 1/2.)

Since w and k are defined as coordinate components of the wave vector, frequency and
wavenumber must be transformed to a local Lorentz frame in order to discuss causality.
With respect to (a1 9,, 571 9,) the transformed quantities are

, k=

(€3]
wz_
a

5

The transformed dispersion relation is

2=t k% — 12, (29)
where
2
u*(r) =—— Gp +4 o] ( )'an,
c
and
) (Gm 47 2Gm\!
ot=(E24 4765 (12",
P2 T, c%r

upon using the TOV equation (11) and inserting G and ¢ so that the Newtonian limit is
obvious. Note that (29) is free of metric quantities. The group velocity with respect to local
light cones is

dos (1 u2 )"1/2 (30)
v =——;= —_ ~ .
¢ dk N\ 2k

Instability occurs for all sufficiently long wavelengths such that
k< ufus. 3D

In the Newtonian limit, u = 2(Gm/r*)"? gives the spherical version of Jeans’ classic result
for an infinite homogeneous medium (Chandrasekhar 1981). Equation (31) is Jeans’
criterion for general relativistic spheres. Note that there is a local, purely general relativistic
instability at any point in the sphere where 2m(r) approaches r. This supports the well-
known result that equilibrium configurations must have 2m < r at all interior points.
Examining v, shows that vy < 1 is a weak condition (since v, is always greater than vg)
and the very least required by causal wave propagation. It follows from (27) that g must
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satisfy the relation:
n
ClassI: g<—, (32a)
n+l
n 1/2

Class II: <(— +~) —-1/2, 32b

? n+l 4 / (32b)

where 0 < 7 < 3 in the stable region.
The central redshift z, = 1/a, - 1 must be similarly bounded. From equations (5) and (15)

1+ n+1

ClassI: z, = (-——ZL— 1, (33a)
1+g(n+1

Class I1: z, = Iraer) (33b)

7 Binding energy

The energy radiated away in the formation of a condensed equilibrium configuration from
initially diffused particles is the binding energy

BE=M,— M. (34)

M, given in equation (9), can be written as the Whittaker (1935) integral over the proper
3-volume dV = b4nridr:

1)

M=f (w +3p)adV (35)
0

The total rest mass is given in equation (10)

)
M0=j pdV.
(]

The adiabatic condition (12) can be integrated using equations of state (3a) and (3b),
resulting in
ClassI: kp=w(l+aw!/m)—" (362)

Class II: kp = w (8 — naw ™). (36b)

k is a dimensionless constant which fixes the proportion of internal energy density to total
energy density. It is constrained only by 0< p < w. We will examine the case k = 1.

The integrands of M and M, can now be compared. Recalling a(w) from equation (5), one
obtains

2p/w

ClassI: a(w+3p)=pB 1+ ) (37a)
1+p/w

Class I: a(w + 3p) = p + 2aw 1117, (37b)

It follows for Class II that the M integrand is always greater than p and thus M > M,. For
Class I, one can establish the result, when < 1/2 and g <1, that M < M,. In summary, for
k=1,

ClassI: BE>0 when 1<z,<2 and ¢g<1.
Class II: BE < 0 always.
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It is also clear that by changing the thermodynamics, i.e. changing k, the sign of the binding
energy can be changed. One must conclude that the sign of the binding energy is unrelated
to the stability of an equilibrium configuration against small perturbations. This is consistent
with the remarks of Zeldovich & Novikov (1971, section 10.12).

8 Concluding remarks

The principal result of this work is contained in Fig. 3, where the stability regions for Class I
and II polytropes are shown. Because of the scaling property (16) of the TOV equation, the
stability results hold for a one parameter family of equilibrium configurations scaled by w,.

Apart from causality restrictions, one can have stable polytropic gas spheres with arbi-
trarily large central redshifts. This result supports the constructions of Bisnovatyi-Kogan &
Thome (1970). However, their conjecture that y> 4/3 is a necessary and sufficient condi-
tion for stability is shown to be false. For both polytropic classes here v, given in equation
(14), is seen to be greater than 4/3 in the instability region. Thus, y > 4/3 is not a sufficient
condition for stability.

Table 1 shows some of the parameter values used in this study. One can think of a ‘tube’
of (n, q) values surrounding each curve of marginal stability. Within the tube, w3 comes
arbitrarily close to zero. Far from the tube, for fixed n and small g, w2 asymptoticaly
approaches the Newtonian value of each model. This can be seen in Table 1. The asymptotic
value of wj describes an intrinsic ‘spring constant’ for each model. However, we cannot
compare wj with an approximate free-fall value Gw, since the average density w scales with
w,. Additional physical constraints beyond those considered in this work are needed to fix
either the total mass or (equivalently) the central density.

Table 1. Typical parameter values for Class II.

n q stable w3(10_4sec_2) B (vs/c)max
1 0.01 yes 42.6 0.98 ' 0.142
1 0.1 yes 45.4 0.85 0.469
1 1 yes 33.2 0.56 2.0
1 5.5 yes 23.1 0.48 8.46
1.5 0.01 yes 12.3 0.988 0.159
1.5 0.02 yes 12.4 0.986 0.226
1.5 0.4 yes 2.95 0.716 1.183
1.5 0.8 no -1.36 0.646 1.897
1.5 1.0 no -4.4 0.621 2.236
2.5 0.008 yes 1.46 0.99 0.168
2.5 0.02 yes 1.2 0.973 0.267
2.5 0.04 yes 0.79 0.950 0.381
2.5 0.1 no -0.37 0.902 0.621
2.5 0.3 no -3.14 0.812 1.168
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The one physical feature associated with stability that emerges from this study is that of
compactness. For fixed n, 0 < n < 3, Class II models are more stable than Class I models, and
the Class II models are more compact. For fixed g, smaller n gives more compact models in
both classes, ¢ measures the departure of a model from Newtonian values at the centre. For
fixed n, increasing g takes both classes toward instability.
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Appendix: Stability of Schwarzschild’s constant density solution

Schwarzschild’s solution for equilibrium metric (1) has two parameters:
o2 =r} 2M (A1)
B2 =1—2M]r,, (A2)

where M is the total mass and 7, is the boundary radius. The solution is given by

a=26- (P (A3)
b=(1-r*}a?y V2 (A4)
81w =3/a?, (A5)
87p =3 (B/a — 1)/, (A6)
m=rpe, (A7)
a=(1-PIGE-1), where - <p<l. (A8)

We take the adiabatic index ¥ to be constant in equation (20) and find the marginal stability
curve as a function of #n and g where ¥ =1+ 1/n. The system scales with a2 and the stability
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Figure 4. Marginal stability curve for the constant density Schwarzschild model. The adiabatic index is
vy =1+ 1/n. The stability region is to the left of the curve and the causality restriction is ¢ <n.

results are independent of its choice. The maximum speed of the adiabatic perturbations is
given by

ODmax =7 (p fw)c =y (1—35). (A9)

Demanding (vg)max < 1 implies g < n.
Fig. 4 shows the curve of marginal stability.
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