
On the stability of thermally stratified 

plane Poiseuille flow 

Summary 

The stability of thermally stratified plane Poiseuille flow 

is considered with respect to small disturbances. The interaction 

between the usual Tollmien Schlichting type of instability and the 

thermal type of (in)stability is analysed for various values of the 

Prandtl number. The problem is solved as an eigenvalue problem. 

The most important features from the results are that the critical 

Rayleigh number is found to be nearly linearly dependent of the 

Prandtl number, and that a critical Reynolds number always exists, 

no matter how great the fluid is stabilized by a linear temperature 

profile. 



1. Introduction. 

Great attention has for many years been paid to the stability 

of shear flow. The problem is basic in studying the transition 

from laminar to turbulent flow. Additionally, the equations involved 

define an interesting mathematical problem. 

The non-stratified problem was first successfully attached 

by Heisenberg [1]. His ideas are later applied and extended by 

several investigators. Most notably are the stability analysis 

by Tollmien [2] and Schlichting [3] for boundary layer flow and by 

Lin [4] for plane Poiseuille flow. 

Vertical density stratification further complicates the 

stability problem. Koppel (5] considered the thermally stratified 

problem and obtained asymptotic solutions of the perturbation 

equation. Utilizing Koppel'ssolutions Gage and Reid [6] analysed 

the stability of plane PoisemDe flow with the simplifying assumption 

of unit Prandtl number. Hughes and Reid (7] also considered Koppel's 

solutions in studying the stability of spiral flow between rotating 

cylinders. For this problem the governing equations turn out to be 

mathematically identical to those analysed in [6). However, in 

physical fluids the Prandtl number varies from about 0.02 (mercury) 

to 10~ (silicon oil), and this variation obviously affects the sta

bility problem. This has motivated the present work, in which we 

consider thermally stratified Poisemne flow with arbitrary Prandtl 

number. 

The so-called inviscid equation is solved by a two-parameter 

expansion after the horisontal wave number k and a certain stability 

parameter s defined by (3.3). This procedure leads to some 

simplification in the solution of the 
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eigenvalue problem compared to the more traditional approach, in 

which the solutions of the inviscid equation have been based on a 

power series expansion after the vertical coordinate. 

2. The governing equations. 

A thermally stratified steady shear flow is considered, which 

is bounded by two horisontal perfect conductive rigid boundaries. 

We choose a Cartesian coordinate system (x,y,z) with unit vectors 

(!,j,k), such that the x-axis is pointing downstream. The boundaries 

are at z = ±h. 

In deriving the linearized disturbance equations the usual 

Boussinesq approximation is used. The equation of fluid motion, 

the continuity equation, the heat equation and the equation of state 

may then be written 

+ 

= -V'p - pgk 

+ 
"i/•v = 0 (2.2) 

(2.3) 

P = p 0 (1- a(T- T 0 +e)) (2.4) 

Here U and T denote basic velocity and temperature. They are 

assumed to have the forms 

T = T 1 -S(z+h); 
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T1 and T2 are the temperatures of upper and lower boundary, 

respectively. T0 is a standard temperature, and e the departure 

from the basic temperature. Furthermore, 
+ + + + 
v = ui + vj + wk denotes 

the velocity of disturbance, p the density, p 0 a standard density, 

p the pressure, and g the acceleration of gravity. a,K and v 

are the coefficients of volume expansion, thermal conductivity and 

kinematic viscosity, respectively. 

It is convenient to non-dimensionalize the equations in terms 

of a characteristic length L* = h, a characteristic velocity U* 

and a characteristic temperature T* = ~IT 1 -T 2 l. The Reynolds and 

the Rayleigh number are defined in the usual way by 

R = --v 
and Ra = ag(2h) 3 (2T*) 

KV 

Applying Fouriers theorem the disturbances may be written in 

the form 

f(z)exp{ik(x-ct) + ily}, 

where f(z) is an amplitude function, c the complex phase velocity, 

and k and 1 the wave numbers. Elimination of u,v,e,p and p 

between (2.1) - (2.4) gives an equation for the amplitude w(z) of 

the vertical velocity component w(x,y,z,t) 

Here 

and P = v is the Prandtl number • 
K 
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The boundary conditions applying are 

w = Dw = ~ \v = 0 at z = ± 1 (2.6) 

In examining the stability of the flow we shall only consider 

two-dimensional perturbations (independent of y). From the solu-

tion of this two-dimensional problem it is possible to deduce the 

solution of the general three-dimensional problem by using a genera-

lization of Squire's transformations, given in [6]. These transfer-

mations propose that the present two-dimensional mode is the most 

undstable one for Ra less the critical Rayleigh number without 

shear (1708). Further, for Ra greater than 1708 the mode indepen

dent of x is the critical one, and the stability problem is solved 

by the ordinary Benard problem. Primarily, we take interest in the 

most critical mode, and the general three-dimensional solution will 

therefore not be obtained. 

3. Asymptotic solutions. 

It is well known for stable or weak unstable stratification, 

that instability first occur, as in the non-stratified case, for 

values of the combined parameter kR much greater than one. This 

fact is basic in finding asymptotic solutions of (2.5). One natural 

way to obtain such solutions is to write the solutions as the formal 

expansion 

+ ••••• 
' 

( 3 .1) 

so that the initial approximation w0 is a solution of the inviscid 

equation 
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(D2 U" 
- k 2w -

s 
(3.2) - -)w w- 0 

U-c (U-c) 2 -

Here 
1 

s = 
16Ra 

(3.3) 
R2P 

is an introduced stability parameter, closely connected with the 

Richardsons number. When c ~ u, the solutions of (3.2) may 

conveniently be written as uniformly convergent series of s and 

k 2 in the form 

Here 

\"}' 1 2. = 
' 

wl = 
0 ' 0 

w2 = 
0 ' 0 

00 00 

I I 
n=O m=O 

(U-c) 
z 

(U-c) J 
-1 

z 

1 ' 2 w 
n,m = (U-c) J 

-1 

(3.4) 

dz 
(U-c) 2 

z 

(Udz)2 Jdz(U-c){wl,12 + 
-c n- ,m 

1 wl'2 } 
(U-c)2 n,m-1 

-1 

This form of the solutions differ from that given previously in 

related problems. (3.4) is suitable for the purpose of finding the 

eigenvalue c. For z = -1 w1 2 are easily obtained. For z = 0 

' 
it will turn out that it is sufficient to take into account the four 

terms with (n,m) ~ (1,1). However, to assure the convergence the 

16 terms with (n,m) ~ (3,3) are used in the present calculations. 

To obtain the other solutions of (2.5) it is necessary to take 

into consideration the effect of viscosity and conductivity. We 

apply a transformation first proposed by Heisenberg [1]. Let 

1 

E = (kR)T , 
z-z 

c --
E 
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Furthermore, we write 

0 0 0 0 

Substituting this into (2.5) the first approximation ~ 0 

satisfies the equation 

( d 2 - i PU I z;; ) ( d 2 - i u I z;; ) d 2 tp + u I 2 p Ri (j) = 0 
c c c 

Here d 
d 

= 
dz.; 

Ri s 
= ---

u' 2 
c 

(3.5) 

(3.6) 

(3.7) 

is the Ricahrdson number at the level z = z • c 
zc is defined by 

U(z ) = U = c. 
c c 

(3.6) is the eq~ation considered by Koppel [5]. 

His solutions are given in the Appendix A. 

The solutions w1 and w2 need some remarks. Since almost 

every term of the series, which defines w1 and w2 , has loga-

ritmic singularity in z , neither of them can provide uniformly 
c 

valid asymptotic approximations to any solutions of equation (2.5) 

in a full complex neighbourhood of zc. However, by considering 

their corresponding "viscous and conductive" solutions, it is shown 

in the Appendix C that w1 and w2 do provide valid asymptotic 

solutions in the sector 

7'IT ( ) 'If - l5 < arg z-zc < 6 

of the complex z-plane. 
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4. The eigenvalue problem. 

The general solution of (2.5) is represented in the form 

( 4.1) 

where w4, ws and w 3' w 5 are given by Koppel's solutions 

q:l(1) and ~( 3 ), respectively. Since (2.5) and (2.6) are symme-

trical in z, the odd and the even part of ( 4 .1 ) can be applied 

separately. Only the even mode will be considered, because this 

mode is the most unstable one. For an even solution the conditions 

w' = w"' = w( 5 ) = 0 at z = 0 (4.2) 

must be satisfied. Thus the boundary conditions (2.6) for z = 1 

can be replaced by (4.2). 

Appendix B and D shows that W4 and Ws are eksponentially great for 

z=O. Consequently, these solutions must be rejected, be.cause we 

expect that viscous and conductive effects are negligible in the 

central part of the channel. Furthermore, w3 and w5 are 

exponentially small for z = o. Thus, if we let 

(4.3) 

then, since U(z) is an even function, W automatically satisfies 

the conditions (4.2). The boundary conditions (2.6) for z = - 1 

then give 

\,<!( -1) 

w' ( -1 ) 

,fw(-1) 

w 3 ( -1 ) 

w; ( -1 ) 

Jew 3 (-1) 

w 5 ( -1 ) 

vJ;(-1) = 0 (4.4) 
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From (3.2) 

£w(-1)= 1k:s W(-1)(1 + O(E)) 

and from (3.4) 

w1 (-1) = - c , w 2 ( -1 ) = 0 

w; ( -1 ) U I ( -1 ) = 2 w~(-1) = 
1 

= 
' --c 

Evaluation of the determinant, using the above expressions, gives 

w~'(O) = 
wrror 1 

(4.5) 

This is a complex relation between the eigenvalue c = cr + ic1 

and the parameters k, R, Ri , P and s. 
c 

Results from the numerical 

solution of (4.5)in the neutral case, c. = 0, are given in the 
1. 

figu~sand the table below. Points inside the neutral curves corre-

spond to unstable conditions. 

Figure 4.1 gives R = R(k), and c = c(k) is given in figure 

4.2. The results are very little depended on the Prandtl number. 

No effects of the Prandtl number is found when this is larger than 

0.1. A comparison shows that present results are in accordance with 

the results in [6] and [7]. Calculations of (4.5) with the Prandtl 

number less than 0.3 have not been done, because the computation-

time of Koppel's solutions increased rapidly with decreasing P. 
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TABLE 1. Critical values of Reynolds number, phase velocity 

and wave number for given Richardsons number and 

Prandtl number. 

p = 0.3 p = 0.7 p = 2.0 p = 10.0 

Rlfo k2 I c Rl/3 k2 I c Rl/3 k2 c Rl/3 I k2 

10·2 1•3 0·40 10·3 1·25 C,40 10·3 1·25 0·40 10·2 1·25 

14·4 1 ·15 0·31 14·9 1 ·1 0•30 15 ·1 1 ·1 o.:w -'14 •9 1 ·1 

20·2 1 • 0 0·23 21·5 0·95 0·22 21·8 0·95 0·22 21·4 0·95 

25·3 0·91 0·194 27·6 0·87 0·183 28 ·1 0·87 0·182 27·6 0·88 

34·0 0·85 0·152 38•9 0•78 0 ·136 39·6 0•78 0·135 38·7 0·79 

51 • 4 0•74 0 ·1 05 65·7 0•€6 0•085 67·3 0·66 0·084 64•8 0•67 

114 0 • 6 'I 0•050 210 0·51 0·028 219 0·51 0•026 193 0·53 

280 0·53 0·021 ClO o-::;s 0 QO 0·38 0 co 0•38 

(X) 0·44 0 

c 

0·40 

0·30 

0·23 

0·185 

0 ·139 

0·087 

0. 031 

0 

It may be of some interest to obtain the general nature of the 

neutral curves associated with the limit R + oo. From the definition of 

the parameter y in the Appendix D follows 

3 

R = (4.6) 

This relation shows that for R + oo, at least one of the three following 

limits must occur 

1 ) 2) k + 0 ' 3) c + 0 • 

Further, we observe that the right hand side of (4.~) tends toward 

zero as 1 

y ' 
when y + oo, and tends toward infinite as 1 , when 

c 
c + o. 
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The solution of (4.5) in the case of stable stratification 

indicates that c ~ 0 and y < oo, as R + oo along both branches 

of the neutral curves. Therefore, we suppose y < oo and c + 0 in 

trying to find the limits of k. 

We introduce the relation 

z 0 

I dz 
(U-c) 2 = I dz dz (4.7) 

(U-c) 2 (U-c) 2 

-1 -1 0 

Applying this to the first integration of all the terms involved 

in w2 , we obtain 

w~(O) = Aw;(o) + v (4.8) 

For small values of c we have 

1 
A a: -

c 
and v a: ln c • 

(4.8) introduced into (4.5) then gives 

cv 
w;(o) + const.,as c + 0 

which implies 

w;(o) + 0 
' 

as c + 0 

Since 
0 0 

w;(o) j::;;$ k2J U2 dz + s J dz 

-1 -1 

for small values of c, we get by (3.7) and integration of (4.9) 

k 2 15 RJ." j:::$2 

(4.9) 

(4.10) 

One may then expect that the two branches are joined as R increase 

to infinite. Consequently, each neutral curve forms a loop for 

stable stratification. 
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This is not the case for unstable stratification. As R ~ oo 

along the upper branch, the solution of (4.4) indicates that y ~ oo 

Hence 

gives the limits of k and c. As R ~ oo along the lower branch, 

we find that y < oo and c ~ 0. Therefore, by putting k = 0 in 

(4.4), the limits of c are given. The influence of P is 

found to be insignificant. 

TABLE 2. The limits of wave number and phase velocity as the 

Reynolds number tends toward infinite for given 

Richardsons number. 

~.b. = upper branch, l.b. = lower branch). 

Ri 
- 0. 04 - 0 ·01 0·01 0•02 0·03 0·04 0·05 

u.b. l.b. u.b. l.b. 

k2 0·283 0 0·074 0 0•075 0·15 0·225 0·30 0•375 

c 0 ·138 0·182 0·039 0·045 0 0 0 0 0 

5. Final remarks. 

According to the results presented, the stability of the flow 

evidently seems to be only slightly depended on the Prandtl number. 

The most important reason for this weak influence of P is due to 

the behaviour of the solution in the central part of the channel. 

Indeed, the "inner solution" is independent of P, because Ri (or s) 

is used as our stability parameter. If we had solved the characte

ristic equation (4.5) with Ra = const. instead of Ri = const., we 
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could have found a significant influence of P. This is seen 

by the relation 

Ra = 64 Ri(1-c)R P (5.1) 

which is given by (3.3) and (3.7). An almost linear dependence 

of P would occur in the neutral curves. 

In figure 5•1 the neutral curves in the (R,Ra)-plane are 

sketched. The figure indicates the linear dependence of P. From 

the figure we also see that each value of the Rayleigh number has 

a corresponding Reynolds number that makes the flow unstable. 

Therefore, it is impossible to make plane Poiseuil2 flow completely 

stable by a linear temperature gradient. 

Furthermore, from the figure 5•1,about R113 ~ (5400) 113 ~ 17•5 

the instability is of the usual Tollmien Schlichting type. For 

lesser and higher values of R the Tollmien Schlichting mode of 

instability is stabilized and instabilized, respectively, by the 

thermal stratification. However, when the stratification is unstable, 

the stability-question is reduced to the ordinary Benard problem 

(see section 2). Hence the instability is of the thermal type for 

R < 5400 and the critical Rayleigh number is in the reality 

Ra 116 ~ (1708) 1 / 6 ~ 3·5. 
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APPENDIX 

A. The solutions of (3.6). 

For solving (3.6) we follow Koppel [5], who gave the solution 

where 

Here 

~(i)(~) = J e~tv(t)dt 

r. 
]. 

M is the Whittaker-function [8,p.6] k,m 

1 
k = 

3 
and 

(A1) 

(A2) 

with 

For every choice of the path of integration ri we get two solu-

tions, and <.p(i) 
2. 

by using plus and minus in m, respectively. 

r's endpoints, a and b, must satisfy the equation 

(A3) 

In the present paper we have defined six different paths of 

integration (see the figure A1). At most three of them may give 

linearly independentsolutions. The linear expression 

(A4) 

obviously follows from the figure A1. In addition from (A4), 

applying Kummer's transformation [8,p.6] and the transformation 

±i 2rr 

~ = l;e 3 (A5) 

we get 
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and 

B. Asymptotic expansion of (A1). 

The definition of the Whittaker-function Wk m [8,p.6] and 

' 
Kummer's transformation give 

Mk (z) ,m 

(B1) 

+ 

and 

Mk (z) ,m 

(B2) 

+ 

n = 0 ' ±1 '• • • • 

It is known that 

z 
-"2" k 1 3Tr 

\-Jkm(z) = e z (1+0(z-));larg zl < 2 
' 

(B3) 

The above expression substituted into (B1) and (B2) gives asymptotic 

formulae for M valid for ( -~-2n) 'IT< argz < ( -23 - 2n) 'IT and k,m 

3 (-2-2n)Tr < argz < (~-2n)Tr, respectively. This asymptotic behaviour 

of M 
k,m 

implies that 
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(B4) 

where A1 and A2 depend on m and the choice of argument. 

The asymptotic expansion of 
(1) (2) 

<P ' <P 
can then 

be obtained by the usual method of steepest descent, and we get 

where B1 

1 

f3 = U'T 
c ' 
~ 'IT 

y = Ef"'i"', 

and B2 depend on 
1 

a = (U'P)T and y 
c 

m and the choice of argument, 
'IT • 5 'IT 

is equal to ei~ or e 1 ,.. When 

3'IT 'IT 'IT 7'IT 
arg r,; must be taken in the sectors <-2,-'b>, <-b'b>, 

<7'IT 157r 
b'-6-> f ( 1 , 2 , 3 ) ti 1 Th t t b t d or <.p , respec ve y. e sec ors mus e urne 

• 5 'IT 

an angle equal -27r for y = e 1 9F 

The same method will be used to obtain asymptotic expansion of 

<P(4)' !.P(5) and 

we get 

(B7) is valid for 

<-¥,-¥> for 

(6) 
<P • Utilizing 

(B6) 

(B7) 

'IT 'IT 5'IT 'IT 
arg r,; within the sectors <- 'b'2 >, <- b'-b> , 

<P( 4 ,5, 6 ), respectively. 

C. The asymptotic validity of w1 and w2 • 

By using the connection formulae we will show that (B7) is 

available in greater sectors than stated. Concerning <.p(5) we get 

from (A4) and (A7) 

<P(5) = <P(4) _ ( 1 +ei6mrr)~(3) (C 1 ) 



- 16 -

and from (A4) and (A6) 

(C2) 

(3) 
and 

( 1 ) exponentially decreasing for 
'IT < 'IT 

<P <P are - 2 < argt b 

and 
7TI 'IT 

respectively. The expansion of <P ( 5) in -b < arg r;; < 2 , 

(B7) is therefore valid in the sector 
7rr 7f 

Further,a - 0 < arg z; < 6 . 
Taylor expansion of (B7) about s = 0 directly shows conformity 

with w1 and w2 • Thus, from the above, w1 and w2 do provide 

valid asymptotic solutions of the disturbance equation for 

7Tr ) 'IT - 0 < arg(z-zc < b 

D. Some details. 

The connection formulae can also be applied to extend the 

asymptotic validity of (B5) for <P( 1 ) and <P( 3 ). From (A7) 

for 
'IT 'IT - o < arg < o 

and from (A8) 

for 7Tr 5'1T 
- b < ar g z; < - b 

(D1) 

(D2) 

The matter is that ~( 2 )(z;) is exponentially increasing for argr;; 

within the above two sectors. 

In view of the present characteristic problem it is convenient 

to introduce the transformation 

and (D3) 

Applying (D3) in (A1) will do the integral independent of c. 
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Figure 4.1. 

Figure 4.2. 

Figure 5.1. 

Figure A1. 
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Figure legends 

Neutral stability curves in the (k,R)-plane. 

Points inside each curve correspond to unstable 

conditions. 

Neutral stability curves in the (c,k)-plane. 

Points inside each curve correspond to unstable 

conditions. 

Neutral stability curves in the (Ra,R)-plane. 

Points below each curve correspond to stable 
1 1 

conditions for R3 < (5400) 3 ~ 17.5, and to 
1 

unstable conditions for R3 > 17.5. 

The paths of integration in the t-plane for 

Koppel's solutions. 
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