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The Stability of UWB Low-Frequency SAR Images
Renato Machado, Viet Thuy Vu, Mats I. Pettersson, Patrik Dammert, and Hans Hellsten

Abstract—This letter presents an analysis of prefiltered clutter
ultrawideband (UWB) very high frequency synthetic aperture
radar (SAR) images. The image data are reorganized into sub-
vectors based on the observation of the image-pair magnitude
samples. Based on this approach, we present a statistical de-
scription of the SAR clutter obtained by the subtraction between
two real SAR images. The statistical analysis based on bivariate
distribution data organized into different intervals of magnitude
can be an important tool to further understand the properties of
the backscattered signal for low-frequency SAR images. In this
letter, it is found that, for “good” image pairs, the subtracted image
has Gaussian distributed clutter backscattering and that the noise
mainly consists of the thermal noise and, therefore, speckle noise
does not have to be considered. This is a consequence of the stable
backscattering for a UWB low-frequency SAR system.

Index Terms—Bivariate distribution, CARABAS-II, clutter,
statistical modeling, very high frequency synthetic aperture radar
(VHF SAR).

I. INTRODUCTION

I T IS well known that low-frequency synthetic aperture radar

(SAR), operating on the very high frequency (VHF) and

ultrahigh frequency (UHF) band, is very efficient for change

detection (CD). This capability of detecting changes is mainly

related to high relative bandwidth and low frequency which give

the long-time stability, precise georeferenced measurements,

and small influences of weather [1]. Thus, by considering the

same flight geometry, it is possible to acquire multiple images

of a certain ground area at different times and still have high

correlated images [1].

The detection of targets that appear or disappear between

data acquisitions is a method that has been pioneered and well

established during the last 16 years in Sweden. The algorithm

must allow some small changes in the forest while highlighting

the changes of interest (e.g., human activities, trucks, small

huts, deforestation, etc.) [2], [3]. The research in this area

has been largely stimulated by large-scale experiments using

the Swedish airborne SAR system with the low-frequency

wavelength-resolution CARABAS [1], [2], [4], [5].

An important observation that we must highlight here is that

the ultrawideband (UWB) SAR has a different speckle process
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than the traditional SAR. In the traditional SAR, there are many

scatters in the resolution cell; however, in the UWB SAR, there

might only be one scatter in the resolution cell if the resolution

is high. This may be illustrated very simply as follows: Backscat-

tering in radar occurs basically on scatters that have the size

of the wavelength or bigger. For UWB SAR systems like

CARABAS, the wavelength is larger than the resolution cell.

Specifically, the resolution of CARABAS is 2.5 m while the

wavelength (at center frequency) is 5.5 m [3]. Hence, there is a

single scatter per resolution cell, and small objects are weakly

scattered, which means that it will not be sensitive to forest

floor roughness, forest canopy, shrubs, leaves, and smaller tree

branches, and speckle noise is therefore very low [6]. Addition-

ally, low-frequency UWB SAR adds even more stability to the

images, and for the CARABAS system, the scatters of size 5 m

or bigger do not change between illuminations even if the

separation in time is hours or days [3].

Along the last years, CD algorithms have been designed

based on testing statistics, such as amplitude ratio and gener-

alized likelihood ratio tests, which consider a pair of images by

using the one-look data statistics [2], i.e., the probability density

functions (pdfs) are based on the backscattering information

provided by each image, where several different approaches for

those amplitude clutter distributions have been proposed, such

as Rayleigh, K-distribution, Weibull, Nakagami–Rice, Fisher,

and lognormal [7]–[9].

In this letter, we present a statistical analysis of UWB VHF

SAR experimental data. The data are reorganized into subvec-

tors based on the observation of the image-pair magnitude sam-

ples. The results provide interesting insights about the change

statistics in UWB low-frequency SAR images. The important

finding is that, if the statistics are “stable” for the subvectors (for

the different image-pair magnitude ranges), we understand that

the noise is mainly caused by thermal noise and not scattering

caused by speckle processes between illuminations. Otherwise,

if the statistics are not “stable,” then it is most likely that the

noise has contribution from the common speckle process, orig-

inally from other sources, such as clutter decorrelation, flight

track, filtering process, and equalization.

The rest of this letter is organized as follows. Section II

describes the data considered in this letter. Section III addresses

the statistical analysis when a pair of images undergoes a

preprocessing. Section IV gives the numerical results, which are

used to feed the discussion presented at the end of this section.

Finally, Section V presents some conclusions.

II. DATA DESCRIPTION

The data considered in this letter have been provided by the

Swedish Defence Research Agency (FOI) [10] but can also be

found in[11]. The raw radar data provided by the CARABAS-II
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Fig. 1. From left to right, Images 1 and 2 were obtained from mission 2
pass 2 and mission 2 pass 4, respectively, using the Swedish VHF-band SAR
system CARABAS II during the flight campaign Vidsel 2002.

system were recorded to onboard hard drives, while all signal

processing such as image formation, radiometric calibration,

geocoding, and others was performed offline. Also, it is worth

mentioning that the images used in this letter have been equal-

ized. More information about the system parameters used by

airborne CARABAS-II can be found in [3], [4], and [10].

For this letter, we have used SAR images where the phase

information has been removed by taking the absolute value of

the data. Each image has been georeferenced to the Swedish

reference system RR92 [12] and covers an area of size 2 km ×
3 km. The images cover the same ground area, but they were

formed using the SAR data acquired during different flight

passes. The experiment was performed in a restricted military

zone, and no targets were added or removed from the scene

during the flights.

The pixel size is 1 m × 1 m; thereby, each image has

6 million pixels, which is displayed in an image of 3000 rows

by 2000 columns.

In Fig. 1, the bright objects are targets (vehicles), which can

be identified by the 5 × 5 array of bright dots in the upper left of

each image. Those vehicles were deployed under concealment of

the foliage in the forest. The other bright parts of those images

are the big structures, such as power lines, boulders, and fences.

In this letter, we used six image pairs, i.e., totally 12SAR images.

Since each image has 6 million samples, the statistical analysis

is based on 12 × 6 million samples.

III. STATISTICAL ANALYSIS

The images were obtained from different flights over the same

ground area. The images are geometrically and radiometrically

equalized in such a way that their similarity is maximized [3].

We perform statistical analysis of preprocessed images which

are the result of a subtraction between two SAR images, de-

noted by Images 1 and 2. The images are represented by two

3000 × 2000 real data matrices, namely, H1 and H2, respec-

tively. The deployments (targets) are removed from the images

before the statistical analysis is performed. When a pair of im-

ages with different deployments is considered, then the pixels

referred to those deployments are removed from both images.

Fig. 2. Sample observation of the bivariate distribution of a SAR image pair.
The samples are separated into three ranges of magnitude (mn), as indicated
by the red lines. The blue, green, and black regions contain 86.53%, 12.43%,
1.04% of the considered image pair pixels. On the lower right side, the
magnitude distribution for 0 ≤ mn < 0.30 is illustrated.

As mentioned earlier, in this letter, we are interested in the

stability behavior of the UWB SAR data, not in the changes that

can either appear or disappear in between the data acquisitions.

However, CD methods that have been developed on the results

of this letter can be found in [13].

The matrices Hi are transformed into the vectors Xi =
vec(Hi), where vec(·) is an operator that transforms an r ×
c matrix into a 1× r · c vector. The elements of vector Xi

are denoted by xi(1), xi(2), . . . , xi(6 · 106). A good way to

visualize the similarity between two images is through the

bivariate distribution, as presented in Fig. 2. Ideally, i.e., if the

images were exactly the same, the bivariate distribution would

correspond to a 45◦ inclination line. Clearly, it is impossible to

obtain such an ideal bivariate distribution from two different

images because of the presence of scattering and sources of

noise which changes randomly from one image acquisition to

another.

The magnitude vector of an image pair is defined as

Mp � [m1, . . . ,m6·106 ] (1)

in which

mn =
√

x1(n)2 + x2(n)2 (2)

where n = 1, . . . , 6 · 106. In Fig. 2, we can see that X1 and

X2 range from 0 to 4.8, approximately. Consequently, mn can

assume values between 0 and 6.8, roughly.

The statistics presented in this letter are estimated by using

the probabilistic approach, where X1 and X2 are assumed to

be random variables defined on the same probability space. In

order to proceed with this analysis,Xi, i=1, 2, can be written as

Xi = Si + ηti (3)
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where

Si = S + ηci . (4)

S is the desired SAR image, ηci denotes the clutter noise, and ηti
is the thermal noise at the receiver. At VHF, the thermal noise

is very high with noise temperatures 50–60 dB higher than at

microwaves [4].

Now, let us define XD as the resultant vector of the per-

formed subtraction operation, which is given by

XD = X1 −X2. (5)

By using (3) and (4), (5) can be rewritten as

XD = ηc + ηt (6)

where ηc = ηc1 − ηc2 and ηt = ηt1 − ηt2 .

The variance of Xj can be defined by [14]

σ2
j � E

[

(Xj − E[Xj ])
2
]

= E
[

X2
j

]

− μ2
j (7)

where E denotes the expectation operation and μj is the mean

of Xj , j = 1, 2, and D.

The mean of XD is given by

μD = μ1 − μ2 (8)

and assuming that the two noise sources are independent, it

follows that

σ2
D = σ2

c + σ2
t (9)

where σ2
c and σ2

t are the variance of ηc and ηt, respectively.

Additionally, we evaluate the cross-correlation coefficients

for the three magnitude ranges. The cross-correlation coeffi-

cient presented in this letter is estimated by using the traditional

probabilistic approach. Therefore, X1 and X2 are assumed to

be real random variables, and the centered normalized correla-

tion ρ can be defined as [14]

ρ �
cov(X1, X2)

σ1σ2

=
E (X1X2 −X2E(X1)−X1E(X2) + E(X1)E(X2))

σ1σ2

(10)

where μi and σi are respectively the mean and standard devia-

tion of Xi, i = 1, 2.

Since X1 and X2 are discrete random variables, ρ can be

computed as follows:

ρ̂ =
1
N

∑N
n=1 x1(n)x2(n)− μ̂1μ̂2

σ̂1σ̂2

(11)

where

μ̂i =
1

N

N
∑

n=1

xi(n) σ̂i =

√

√

√

√

1

N

N
∑

n=1

(xi(n)− μ̂i)
2
. (12)

We use(12)for estimating the mean and standard deviationofXD.

Fig. 3. Result of the subtraction between the image vectors.

Fig. 4. Histogram and theoretical pdf for XD . On the right side, one can see a
zoom of the right tail of the pdfs.

A. Preprocessed Analysis

Vector XD, defined in (5), is presented in Fig. 3. As one can

see, XD ranges from −0.55 to 0.55, roughly.

The histogram of XD is given in Fig. 4. The histogram

presents a symmetrical distribution around zero. Thus, in order

to verify which theoretical pdf demonstrates a good fit to the

histogram of XD, we considered some symmetrical pdfs, i.e.,

Gaussian, Laplace, and hyperbolic secant, all normalized to the

area presented by the histogram.

The theoretical pdfs considered in this letter are given by

pdfGaus =
1

σD

√
2π

. exp

{−(XD − μD)2

2σ2
D

}

(13)

pdfHip =
1

2σD

.sech

{

(XD − μD)
(

2σD

π

)

}

(14)

pdfLap =

√
2

2σD

. exp

⎧

⎨

⎩

−

⎛

⎝

|XD − μD|
(

σD√
2

)

⎞

⎠

⎫

⎬

⎭

(15)

where σD and μD are the standard deviation and the median

value, respectively.

Based on the mean and variance obtained from the assessed

data, we could, by inspection, verify that the Gaussian pdf is the

one that fits best for theXD data distribution. It is worth to men-

tion that the main region of the distribution which must be taken

into account is the tail of the distribution, which represents the

most import part of the pdf as a CD algorithm perspective.
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Fig. 5. Histogram and the pdf curves for 0 ≤ mn < 0.30. On the right side,
one can see a zoom of the right tail of the pdfs.

Fig. 6. Histogram and the pdf curves for 0.30 ≤ mn < 0.65. On the right
side, one can see a zoom of the right tail of the pdfs.

Fig. 7. Histogram and the pdf curves for 0.65 ≤ mn < 6.79. On the right
side, one can see a zoom of the right tail of the pdfs.

As mentioned before, we separated Mp in subvectors as a

function of intervals of magnitude. In Fig. 2, the plots represent

the sample observation of the bivariate distribution for the three

magnitude ranges considered in this letter.

Figs. 5–7 present the corresponding distribution for the mn

range presented in Fig. 2. Again, the Gaussian pdf is the one

that fits best for theXD data histograms associated with the mn

ranges.

TABLE I
STATISTICS FOR THE good IMAGE PAIRS

TABLE II
STATISTICS FOR THE bad IMAGE PAIRS

IV. NUMERICAL RESULTS

In Fig. 2, one can identify the three magnitude ranges

considered in this letter and note that the amplitude interval

with the lowest magnitude has the highest number of samples.

We could have divided the bivariate distribution into more

than three magnitude ranges; however, we understand that the

approach adopted here is good enough to perform the desired

investigation. For the statistical analysis, we separate the image

pairs into good and bad image pair groups. We considered

the following criterion. By using the data with high magnitude

for 0.65 < mn ≤ 6.8, we computed the correlation coefficient

between X1 and X2 (ρ). For this magnitude, if ρ is greater

than 0.60, then the image pair was considered as a good pair,

and if ρ is smaller than 0.20, then it was labeled as a bad pair.

Tables I and II present some results obtained from this investi-

gation. The statistical approach adopted for this analysis seems

to be adequate since μD calculated from XD and μD calculated

by (8) are approximately the same. We presented the statistics

for six image pairs only due to space constraints. The labels

used for the image pairs (♯1, . . . , ♯6) are not relevant, and they

simply were used to organize the data and the analysis results.

Observing the results presented in Table I, one can say that

Images 1 and 2 were obtained from two stable flights. More-

over, the standard deviation presents only a little difference for

the different ranges of magnitude, which represents a very simi-

lar variance for the entire image. Based on these observations, it

is possible to say that S1 and S2 are very similar and, therefore,
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σ2
D

∼= σ2
t is a good assumption. If this statement in regard to

σ2
D is true, then it means that the main contribution of the

change observed between those image pairs comes mainly from

the thermal noise. This result is unique because, for all other

radar systems, clutter speckle noise is the main contribution to

differences between images. It is a consequence of the high

resolution in comparison to the operational wavelength, and

that backscattering is very stable in time at VHF. Thus, there is

no much image equalization filter approach to do in order to im-

prove the quality of XD, except to increase the transmit power

of the system. On the other hand, in Table II, we observe that the

standard deviation increases as the mn range contains higher

values, which means that the signal variance is not the same

for the whole range of amplitudes anymore. Thus, we can infer

that the background signal has contribution from other sources,

i.e., filtering process, flight tracking, etc., which are indepen-

dent from the thermal noise. Therefore, based on the analysis

presented in the previous section, we can say that the variance

of the background signal for the bad image pairs can be repre-

sented by σ2
D = σ2

c + σ2
t . In that case, it is worth to apply some

additional signal processing technique in order to improve the

image quality, which is justified by the presence of additional

undesirable sources of noise.

V. CONCLUSION

In this letter, we have presented the statistical analysis of a

linear combination between two equalized images. By dividing

the images into different ranges of magnitude, we observed that,

for image pairs with high correlation, i.e., ρ > 0.60, the vari-

ance σD over all magnitude ranges is stable, and |μD| ≈ 0,

which can be associated to a signal with those statistical

characteristics, i.e., the thermal noise. This is a unique result

because, normally, speckle noise is the main contributor in high

clutter backscattering areas. Thus, it is possible to assume the

following approximation: σ2
D

∼= σ2
t . On the other hand, for the

image pairs with low correlation, i.e., ρ < 0.20, variance σD

is not stable (or constant) for the whole range of amplitudes

anymore, which means that there are some other sources of

signal distortion and, therefore, the approximation σ2
D

∼= σ2
t is

not possible to be applied anymore. In that case, we suggest

a more appropriate model for the difference image variance,

which is now given by σ2
D = σ2

c + σ2
t . With the right informa-

tion in hand, we can take a better decision on how to improve

the system performance, for example. The idea and approach to

analyze statistics based on bivariate distribution data organized

into different intervals of magnitude can be an important tool

to further understand the properties of the backscattered signal

from a scene and how it can vary in an image pair, which can

be a valuable premise for CD processing.
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