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The Stability Region of the Finite-User
Slotted ALOHA Protocol

Venkat Anantharam

Abstract —A version of the discrete time slotted ALOHA pro-
tocol operating with finitely many buffered terminals is consid-
ered. The stability region is defined to be the set of vectors of
arrival rates A =(A,," -+, A,,) for which there exists a vector of
transmission probabilities such that the system is stable. It is
assumed that arrivals are independent from slot to slot, and
assume the following model for the arrival distribution in a slot:
The total number of arrivals in any slot is geometrically dis-
tributed, with the probability that such an arrival is at node i
being A (T, A,)”!, independent of the others. With this arrival
model, it is proven that the closure of the stability region of the
protocol is the same as the closure of the Shannon capacity
region of the collision channel without feedback, as determined
by Massey and Mathys. At present, it is not clear if this result
depends on the choice of arrival distribution. The basic proba-
bilistic observation is that the stationary distribution and cer-
tain conditional distributions derived from it have positive cor-
relations for bounded increasing functions. Similar techniques
may be of use in studying other interacting systems of queues.

Index Terms —Interacting queues, multiple access, slotted
ALOHA.

1. INTRODUCTION

LOTTED ALOHA, [2], is a technique for multiple

access communication that is by now well known. An
extensive discussion of several versions of ALOHA and
other multiple access schemes is available in the recent
text of Bertsekas and Gallager, [6]. We also refer the
reader to the special issue, [1], of the IEEE TrANsAc-
TIONS ON INFORMATION THEORY, and in particular to [10]
and [28]. The study of such multi-access schemes is by
now almost two decades old, but the area continues to
attract considerable research activity, witness e.g., [4],
[11], [16], [17], [21], [23], [24], [25], [27], which have all
appeared in print in the last two years.

Most of the successful analyses of ALOHA and related
collision resolution protocols have relied on the infinite-
user assumption. Here each node regards itself as a
collection of virtual nodes, one for each arriving packet.
The effect of this assumption is that one can ignore
buffering effects at the individual nodes. It is well known
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that the original ALOHA protocol is theoretically inca-
pable of sustaining any arrival rate under the infinite
node assumption. A particularly simple proof follows from
the result of [15]. On the other hand, ingenious dis-
tributed control schemes are known which can achieve
positive throughput in the infinite user model, [13], {27].

Despite the existence of such control strategies, the
original slotted ALOHA protocol continues to be of in-
terest, mainly because of its extreme simplicity. A more
realistic analysis of this protocol would explicitly take into
account the effects of buffering at a finite set of nodes.
The stability region of the system, i.e., the set of vectors
of arrival rates that such a system can sustain, is of
particular interest. Starting with the original paper of
Abramson, [2], there has been a considerable amount of
work addressing the problem of determining this stability
region. We refer the reader to [16] for a discussion, and
for references to this work. This problem has turned out
to be more difficult than it might appear at first sight. For
the protocol with two users, the stability region was deter-
mined almost ten years ago, [26]. However, when there
are more than two users, as yet only inner and outer
bounds for the capacity region are known, [16], [23], [24].

In this paper we study the stability region of a version
of the finite user slotted ALOHA protocol. For this
version, we prove that the closure of the stability region is
precisely the closure of the capacity region of the collision
channel without feedback, as determined by Massey and
Mathys, [20]. The meaning of the result is that a vector of
arrival rates can be sustained if and only if it is also
possible to sustain the arrival rate at each node individu-
ally even when all the other buffers are always full. A
result of this sort has been widely expected for finite user
slotted ALOHA, [24].

The main trick that makes the analysis tractable is the
choice of arrival pattern. In the version we consider the
arrival statistics are chosen in such a way that the discrete
time Markov chain describing the slotted ALOHA proto-
col is the embedded chain of a certain continuous time
Markov process. Under our choice of arrival statistics the
arrival processes at the individual nodes are no longer
independent, thus violating a natural requirement for a
reasonable arrival model. However, it is natural to expect
that the stability region of the protocol will be the same
for different arrival statistics. Such a belief is supported
by experience with queueing systems with general statis-
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tics, see e.g., [5], [19], [30]. On the other hand, care is
needed in the problem at hand because of the interaction.

At present it is not clear to us if we can translate our
result to the usual arrival models, which assume that the
number of arrivals at the individual nodes in a slot are
independent.

Our proof uses some simple and powerful ideas that
are well known in the study of interacting particle sys-
tems, but do not appear to have been used previously in
the study of communication networks. It would be inter-
esting if it turns out that these ideas have wider applica-
bility in models of engineering interest.

II. SETUP

We consider the discrete time slotted ALOHA protocol
operating with M buffered terminals over the collision
channel. Thus, transmission attempts are made at discrete
times—at each time »n each terminal i attempts transmis-
sion with probability p;, if there is a packet in buffer i at
time n. If two or more packets attempt transmission at
the same time, all attempting terminals are unsuccessful.
Transmission attempts by a terminal are made according
to coin flips that are independent from time to time,
independent from terminal to terminal, and independent
of the arrival processes. We may assume that each node
makes a coin flip at each time whether or not it has a
packet, allowing us to define a Bernoulli process of virtual
attempts associated to each node. By convention we will
assume that arrivals at any time occur just prior to trans-
mission attempts.

For the arrival process we will assume the following:
The total number of packets arriving in a time slot is
geometrically distributed, and each packet is a packet at
node i with probability A; /¥, A,, independently of the
others. Note that the rate of arrival of packets into node i
is then A,, but the arrivals to the individual nodes during
a slot are no longer independent. This assumption has the
effect of allowing us to think of the discrete time Markov
chain describing the protocol as an embedded chain asso-
ciated to a certain continuous time Markov process. This
then allows us to work with some techniques suggested by
the literature on continuous time Markov processes with
partially ordered state space. In fact the arrival model was
chosen with these considerations in view, and in the belief
that it would later be possible to show that the stability
region does not depend on the choice of arrival pattern as
long as the rate of arrivals into the individual queues is
fixed. The usual arrival model takes the number of ar-
rivals at the individual nodes in each time slot to be
independent Poisson random variables of the appropriate
means.

Let A;=(A{n)),,, 1<i<M, and V;==((n)), .,
1<i< M, denote the arrival processes and the virtual
attempt processes respectively. Let Q,:=(Q/(n)),,, de-
note the state of buffer i immediately after the arrival of
the packet at time n, if any, and immediately before the
transmission attempt, if any. The evolution of Q; can be

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991

determined by defining

Vi(n) =Vi(n)1(Qi(n) >0),

F(n)=1(|{i: V(n) =1}|<1),
where 1(-) denotes the function that is 1 if the event
inside the brackets occurs, and is 0 otherwise, and K-}i
denotes the cardinality of the set {-}. Thus F(n) is the

indicator that there is no collision at time n. Then we
have

Q,(n,)=Qi(n)=V(n)F(n),
Qi("+1) =Qi(”+)+ Ai(”+1)-

Further, if D;:=(Dgn)),,, denotes the process of suc-
cessful transmissions from terminal i, we have

D{(n) =Vi(n)F(n).

0=(Q,,"'*,Qu) evolves according to a discrete-time
Markov process with state space Z¥. The system is said
to be stable if this Markov chain admits a stationary
probability distribution. A vector of arrival rates A=
(A7 + 7, Ay) is said to be in the stability region of the
system if there exists a vector of transmission attempt
probabilities p=(p,,"-*,pp), 0< p; <1, such that the
resulting system is stable.

Consider the subset of RY given by

C={vect(pin(l—pj)):()sp,-sl,1sisM}.

J#FI

It is elementary to see that C is a bounded region of RY,
which is “co-ordinate convex” in the sense that the closed
cube determined by the origin and a point of C is
contained in C. For the origin of this terminology, see [3]
and [9]. Such a set is sometimes called a “corner,” see [8].
It is also known that the complement of C is convex [22].

In [20], Massey and Mathys studied an information
theoretic model for multiple access communication that
shares some of the fundamental features of the slot-
ted ALOHA protocol. They were able to determine the
Shannon capacity region of this channel, which turns out
to be C.

Our main result is the following theorem.

Theorem 1: The closure of the stability region of the
slotted ALOHA protocol with the arrival model is C.

Proof: Tt is elementary to prove that C—A(C) is
contained in the stability region of the protocol, where
A(C) denotes the boundary of C as a subset of RY (its
outer boundary). Thus, to prove Theorem 1, it is enough
to show that the stability region is contained in C. Sup-
pose the system is stable, admitting stationary distribution
7. Since the system empties more easily if some of the
buffers are empty, it is natural to expect that 7 has
positive correlations, in the sense of [18]. As previously
mentioned, we can think of the discrete time process Q as
an embedded chain of a continuous time Markov process
Y. In Section I1II, we study Y. We observe that Y also has
stationary distribution 7. Further, we observe that it is
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monotone. We then prove a small generalization of the
Harris correlation inequality [7], [14], [18], by imitating the
main step in the proof of Cox [7]. This allows us to use the
fact that every jump of Y is up or down in the partial
order on Z¥ to conclude that 7 has positive correlations
for bounded monotone functions (7 is pcb). This proves
Theorem 1 for M =2, but unfortunately does not appear
to be enough to deal with general M. We are led to
examine certain conditional distributions associated with
7. In Section IV, we use a technique parallel to that of
Section III to conclude that these conditional distribu-
tions are pcb. This concludes the proof of Theorem 1 for
general M. [m]

To close this section, we state the following result from
[29].

Lemma I: Let A=(A;,* -, A, with A, >0, 1<i<M.
If there is x > 0 such that

M
M1z [T (2 +A), 2.1)

i=1

then A€ C.
Proof: Suppose (2.1) holds. Let
A
q=—", l<i<M.
x+A;

Then A; < ¢;[1;,,(1—g)). Since C is coordinate convex,
AEC.

II1. Positive CORRELATIONS

We begin with some definitions. Let (S, <) be a finite
or countably infinite discrete partially ordered set. Except
in the general statements below, S will be taken to be Z%
with the usual order given by

(xl’”"xM)S(YH'”’yM)’
if and only if x; < y;, foralll<i< M.

A function f: S — R is said to be increasing if f(x) < f(y)
for all x,y €S such that x <y. (Usually it is also re-
quired that f be continuous, but we will assume that §
has the discrete topology, so that all functions are contin-
uous). Let u be a probability distribution on S. For a
function f: § = R, we write u(f) for I, c qu(x)f(x). p is
said to have positive correlations if

f,g increasing = u(fg) = u(fHn(g).
If this is true for all bounded increasing functions f and
g, we will say that u has positive correlations for bounded
increasing functions. Next we abbreviate this to saying u
is pcb.

Let A be a vector of arrival rates that can be stabilized
by p, 0 < p; <1. Let = denote the stationary distribution
of the resulting Markov chain Q. We think of 7 as a
probability distribution on the partially ordered set
(Z¥, <). Our work in this section will be addressed at
proving the following lemma.

Lemma 2: m is pcb.

To prove Lemma 2, we first observe that 7 is also the
stationary distribution of the continuous time Markov

a
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process Y =(Y(¢), ¢t >0) with state space Z¥ and rate
matrix (1, given by

Q(x,x+e)=A, <i<M,

1
Qx,x—¢;) = pl(x,>0) [T (1- pj1(x,>0)),
j<i
1<i<M,

where e; denotes the unit vector along the ith coordinate.
To see this, observe that we may construct a version of ¥
as follows: We are given M +1 independent Poisson -
processes & = (1), t=>0), 1<i<M, of rates
Ay, o, Ay tespectively, and 2 =(2(t), ¢t = 0) of rate 1.
In addition, we have M i.i.d. families of Bernoulli pro-
cesses V;=(V{n), n20), 1<i< M, with P(V(n)=1)=
p;. All these processes are independent. Define ¥ by

a¥(1) = Tdsd(1) - dD (1),

where Z; =(2,(t), t = 0) are constructed by contention at
the points of Z, i.e., we let d,, n =0, denote the points
of Z, and let

Vi(n) =V(m)1(¥,(d,-)>0),
C(n) =1(|{i: Vi(n) =1} >1),

and

7(1)= L V(m(C(n)=0).

d, <t

With this construction of ¥ and because Poisson arrivals
see time averages, see €.g., [6] or [30], the time stationary
distribution of Y is identical to the stationary distribution
of the discrete time embedded Markov chain seen by the
points of 2. But this Markov chain is just the one
describing Q. To see this, it is enough to observe that the
total number of arrivals to the continuous time system
between successive points of & forms a sequence of
independent geometrically distributed random variables
of mean X, A, and that each arrival is an arrival to queue
i with probability A(Z,A,) 7"

Returning to generalities, let Y=(Y,, # > 0) be a con-
tinuous time Markov process on a countable discrete
partially ordered state space (S, <) with transition semi-
group (7,, t > 0) and rate matrix . Recall that  is
called uniform if there is a uniform bound on the ab-
solute values of its entries. Given f: S R, we let
T,f denote the function on S given by T7,f(x)=
X, csp(t,x,y)f(y). Y is called monotone if for every
t >0, T,f is increasing whenever f is increasing. We have
the following easy lemma.

Lemma 3: Let Y=(Y,, t>0) be a continuous time
Markov process. Suppose that, for every pair of initial
conditions x, y € S such that x <y, there exists an § X §
valued process ((Y*(1),Y*(¢)), t =0) such that (Y*(z),
t>0) is a version of Y with initial condition x, (Y?(2),
t>0) is a version of Y with initial condition y, and
Y*(t) <Y?(¢) for all ¢ >0. Then Y is monotone.
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Proof: Let f: S — R be increasing. For any x,y € S
such that x < y and any ¢ > 0, we have

Tf(x) = E(f(Y))) = Ef(Y*(1))
SEf(Y?(1)) = E,(f(Y)) =T.f(¥),

which proves that Y is monotone. O

Let Y=(Y,, t>0) be a continuous time Markov pro-
cess as above. Given a probability distribution g on S, we
write uT, for the probability distribution on § given by
uT (=X, cspu(x)p(t,x,y). Y is said to have positive
correlations if for every t >0, uT, has positive correla-
tions whenever u has positive correlations. We say that
every jump of Y is up or down if Y always jumps between
states that are comparable in the partial order. An impor-
tant tool in the theory of interacting particle systems is
the following, [7], [14], [18].

Harris Correlation Inequality: A monotone process on a
finite partially ordered set has positive correlations if and
only if every jump of the process is up or down.

For our purposes we need a small generalization of the
Harris correlation inequality, which we state as the fol-
lowing lemma.

Lemma 4: Let Y=(Y,, t>0) be a continuous time
Markov process on a countable discrete partially ordered
state space (S, <) with transition semigroup (7, ¢ > 0)
and rate matrix ). We say that Y has positive correla-
tions for bounded increasing functions if for all ¢ >0, uT,
is pcb whenever p is pcb. We abbreviate this to saying Y is
pcb. Suppose that Y is monotone, and Q is uniform.
Then Y is pcb if and only if every transition of Y is up or
down.

Proof: The proof of necessity is exactly like that in
[7]. Suppose x, y € S are such that Q(x,y)> 0 but x is
not comparable to y. Let §, denote the unit mass at x,
and note that 8, is pcb. Define the bounded increasing
functions i, and i, by
i(z)=1(z2x),
i(z)=1(z=y).
For ¢ > 0 we have
8,T(i)=P(Y,2x)2 P(Y,=x)>1 as
8,T,(i,)=P(Y,2y)
=tQ(x,y)+t Y,
zZz2y,z#y
8.T(ii,) = P(Y,2x,Y,2 )
Y Q(x,z)+o(1).
z2y,z2#y

It follows that, for sufficiently small ¢ > 0, §,7, is not pcb.
Hence Y is not pcb.

Sufficiency follows from imitating the proof in [7]. The
main step is showing that, for all bounded increasing
functions f and g, for all + > 0 and for all x € S, we have

T(fe)(x) 2T, f(x)T,g(x). 3.1
Indeed, suppose (3.1) is true, and let u be pcb. Then, for

t—0,

Q(x,z)+o(t),

<t

all bounded increasing functions f and g and for all
t > 0, we have

wT(fe) = n(T(f8)) 2 m(T. fT,8) = u(T,f)u(T,8)
=uT,(f)uT(g),

where we have used the fact that 7, f and T, g are bounded
increasing functions because Y is monotone. This proves
that Y is pcb.

To prove (3.1), we observe that, for any bounded
h:S—R,0<u<1and any x € S, we have

Th(x)=h(x)+u Y, Q(x,y)h(y)+6,cu?lhl,
yeS

where 6, is a function of u with 16,|<1, ¢, is a finite
constant independent of u, h, and x; and ||A|| denotes
max , . s|#(y)l. Let f and g be bounded increasing func-
tions on S. From the previous equation and the fact that
L, csMUx,y)=0, we get

Tu(fg)(x)_Tuf(x)Tug(x)
=u Y Q0,0 [f(x) = f(N][&(x) - g(»)]

yeES

+0,c,ullf Nl gll,

where 6, is a function of u with |6,| <1, and c, is a finite
constant independent of u, f, g, and x. Since all jumps of
Y are up or down, it follows that

T(fe)(x) 2T, f(x)T,g(x) — c,u®llflllgll.
For any 0 <t <1 and n> 0, we use the previous equa-
tion n times with u=t¢/n, using the fact that Y is
monotone. This gives

T,(fe)(x) 2 T,f(x)T,g(x) - c,n(t/n) llf gl
Letting n — « gives (3.1) ]

We now apply the preceding development to our con-
tinuous time Markov process Y which was introduced
following the statement of Lemma 2. First of all, Y is
monotone. This may be seen by an application of Lemma
3. Given x,y € ZM such that x <y, we construct the
coupling ((Y*(¢),Y?(¢)), t = 0) in a naive way. Namely, we
use the construction which was previously outlined for Y
in the proof of Lemma 2 and use the same underlying
Poisson processes to trace the evolution of (Y*(¢),t > 0)
and (Y*(#),t>0). It is easy to see that this coupling
preserves order for all time, which shows Y is monotone.

Secondly, it is obvious that all jumps of ¥ are up or
down. Clearly Y has uniform rate matrix. Hence Lemma
4 applies to show that Y is pcb. Start Y from the initial
condition §,, which is pcb, and note that §,7, - 7 as
t -, Since Y is pcb, it follows that 7 is pcb, proving
Lemma 2. ]

Let us now introduce some more notation. For each
1<i< M we define functions f,, g, h;: Z¥— R by

filx)=1(x;>0),
8i(x)=1(x;=0)+(1- p)1(x,;>0),
hi(x)=1(x;=0).
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Then we have
7( f;) = w(buffer i contains a packet),
7(g;) = w(terminal i does not attempt transmission).
Further, we note that
w(8;) =1-pm(f).
We therefore have for each 1 <i< M,
A; = p;w(buffer i has a packet, none of the nodes j,
1<j< M, j+i, attempts)
= DT (f i H 4 ,)
j#i

With this notation, we have the following proof.

Proof of Theorem 1 (for M = 2): Let A=(A;,1,) be
stabilized by p =(p,, p,). In Lemma 1, take x = m(g, g,).
Clearly, x> 0. Observe that g, and g, are bounded
decreasing functions on (Z¥, <). Since  is pcb, we have

x=1(818) 2m(g)m(g) =(x+A)(x+4;), (3.3)

where we have also used (3.2) to write (3.3). By Lemma 1,
this means A € C. m]

(3.2)

IV. A STRONGER CORRELATION INEQUALITY

In view of (3.3), one might formally hope that, for
general M,

M
I:I(""(gl gM)+)‘)

(m(g1 8™

,’:lz

1_177(31 “gm)s (4.1)

where the caret is used to indicate the element that is
missing (thus 7(g,§,8,)= 7(g,8;)). Clearly, this would
prove Theorem 1. Unfortunately, one cannot conclude
(4.1) purely on the basis of positive correlations.

Rather, one is led to examine the dynamics of the
process more closely. Intuitively speaking, it is clear that
the process is rather strongly positively correlated. A little
thought will suggest that if we are told that a certain
subfamily of the nodes are not attempting, then it should
be even more likely that node 1 is not attempting than if
we are given this information only for fewer nodes.
Namely, we hope that, for any k < M,

(81182 8x) 2 m(81l82 " 8k—1)- (42)
This turns out to be valid observation, and enough to
complete the proof. The purpose of this section is to
prove (4.2).
Let us now see how (4.2) leads to (4.1), and thus to
Theorem 1. From (4.2) and permuted versions of it with
k=M,we get,foreach 1 <i<M -1,

m(8 " 8m)

Rk C IR
Z’“’(g;"gl '”g’\i'”gM-l)
7"(31 “8m-1)
77'(31 “Em- 1)

Hence

M-1 w(glgM)

i1 m(8y i 8y)

>"T(g1"’gM ) M2 "7(81"'
(8 Bm—2) i—1 T(&

which proves (4.1) by induction on M.
Next, we observe that (4.2) is equivalent to

8k-1)
z7(8)l8: gr-1)m(8ilg2 8usy). (43)

Thus, in order to prove (4.2), it is enough to prove (4.3)
for all k < M —2. To show (4.3), it is enough to prove
that, for all kK <M —2, the conditional distribution
w(-lg, -+ g,) is pcb. Fix k, and let this conditional distri-
bution be denoted 7.

We now construct a continuous time Markov process
Y = (Y(¢), ¢t > 0) having stationary distribution #. Let (0
be defined by

8m-1)
“8M- 1)

(8,882

Q(x,y)
I cickl(1= D) fi(%) + Bi(x)]
_ Qx,y)
- ITicickg(x)”

We let ¥ be the continuous time Markov _process with
rate matrix €. Since 7€ = 0, we see that ¥ has station-
ary distribution 7. The intermediate expression in (4.4)
makes it clear that ¥ is just a time changed version of Y.
Indeed, let B(x)={1</<k: x,=0}. Then in state x the
rates of ¥ are (I, p,(1— p)) ' times as high as those
of Y.

Y is montone. We see this from Lemma 3 by construc-
ting versions of ¥ on a sample space supporting M +1
Poisson processes M (M (£),t>0), 1<i<M, of rates
AMIT, o, (A= p )~ ! respectively, and 2 =(2(1),t > 0)
of rate (IT,_,.,(1—p))', and M iid. families of
Bernoulli processes V;=(V{(n),n=0), 1<i<M, with
PV (n)=1=p; Al these processes are independent.
Given x <y, we construct the coupling @), Y(0),t =
0) as follows: Call the points of M 1<i< M, and 9 the
event times. Consider the nth event time, say ¢. Let
¥*(¢_),Y*(t_))=(z,w). Suppose ¢ is a point of . We
accept the arrival in the first (resp. second) coordinate
only if V)(n)=0 for all / € B(z) (resp. all / € B(w)). If ¢
is a point of 9, we again accept it as an attempt time in
the first (resp. second) coordinate if Vi (n)=0 for all
1 € B(z) (resp. all I € B(w)). We use the V(n), | ¢ B(z)
(resp. the V/(n), ! &€ B(w)) to give the attempt status of
the nodes not in B(z) (resp. not in B(w)) at this time.
Note that the attempt status of the nodes in B(z) (resp.
B(w)) is irrelevant. ; :

With this construction, Y* and Y* evolve as versions of
Y started at x and y, respectively. We also have Y*(¢) <
Y?(¢) for all ¢ > 0. This can be checked by induction on
the event times. Let the nth event time be ¢, let (Y*(¢_),

ﬁ(x,y)=

(4.4
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¥(¢_))=(z,w), and assume z < w, by inductive hypothe-
sis. Note that B(z)2 B(w). Suppose ¢ is a point of o,
By construction, if the arrival is accepted for the first
rparginal, it must be accepted for the second, so Y*(t) <
¥7(¢). Next, suppose ¢ is a point of Z. Now, it is possible
that the virtual attempt is accepted by the second
marginal, but not by the first. However, this can only
happen if there is some node / € B(z)— B(w) with V/(n)
=1. So, if there is a real departure from the second
marginal at this attempt time, it must be a departure from
node 1, which is all right since then we still have Y1) <
Y¥(¢). If the virtual attempt is accepted as a real attempt
time by both marginals, then the only nodes possibly
contending at this time are those of {1,---,M}— B(z2),
and they have the same contention status in both
marginals. Once again, Y*(£) <Y*(¢).

Clearly Y has uniform rate matrix, and all its jumps are
up or down in the partial order on Z M By Lemma 4, 1 is
peb, proving (4.3) and hence completing the proof that
the stability region is contained in C. [m]

5. CONCLUSION

It remains to be seen to what extent these results
depend on the arrival statistics. The usual model for the
arrival statistics has the number of arrivals at the individ-
ual terminals in each time slot independent, with the
arrival process at terminal i being i.i.d. having a general
distribution with mean A,. Most common is to take the
number of arrivals in a time slot to be Poisson random
variables. Let a, be the probability that the total number
of arrivals to the system in a time slot is n in our model
and b, be that for the Poisson arrivals model. Then
a,=p"(p+1"*)7, whereas b, = (n)~lp"e”", where
p="1LA. We see that b, <a, for n23, suggesting that
contention occurs less frequently in the Poisson arrivals
model. But does this translate into a larger stability re-
gion?
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