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This essay develops a joint theory of rational (all-or-nothing) belief and
degrees of belief. The theory is based on three assumptions: the logical
closure of rational belief; the axioms of probability for rational degrees of
belief; and the so-called Lockean thesis, in which the concepts of rational
belief and rational degree of belief figure simultaneously. In spite of what
is commonly believed, I will show that this combination of principles is
satisfiable (and indeed nontrivially so) and that the principles are jointly
satisfied if and only if rational belief is equivalent to the assignment of a
stably high rational degree of belief. Although the logical closure of belief
and the Lockean thesis are attractive postulates in themselves, initially
this may seem like a formal “curiosity”; however, as I am going to argue in
the rest of the essay, a very reasonable theory of rational belief can be built
around these principles that is not ad hoc but that has various philosoph-
ical features that are plausible independently.
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1. The Lockean Thesis and Closure of Belief under Conjunction

Each of the following three postulates on belief (Bel ) and degrees of
belief (P) for perfectly rational agents seems tempting, at least if taken
just by itself:

P1 The logic of belief, in particular, the logical closure of belief under

conjunction, that is: for all propositions A, B,

if BelðAÞ and BelðBÞ then BelðA ^ BÞ:

P2 The axioms of probability for the degree of belief function P.

P3 The Lockean thesis (see Foley 1993, 140–41) that governs both Bel

and P : there is a threshold r that is greater than 1
2 and at most 1,

such that for every proposition B, it holds that B is believed if and

only if the degree of belief in B is not less than r, or more briefly,

BelðBÞ if and only if P ðBÞ $ r :1

P1 is entailed by the doxastic version of any normal system of modal logic
for the operator ‘Bel ’, P2 is at the heart of Bayesianism, and P3 expresses
the natural thought that it is rational to believe a proposition if and only
if it is rational to have a sufficiently high degree of belief in it.

Yet this combination of rationality postulates is commonly rejec-
ted. And the standard reason for doing so is that, given P1–P2, there does
not seem to be any plausible value of ‘r ’ available that would justify the
existence claim in P3.

Here is why: The first possible option, r being equal to 1, seems
much too extreme; ‘Bel(B) if and only if P(B) $ r ’ would turn into the
trivializing ‘Bel(B) if and only if P(B) ¼ 1’ condition, by which all and
only propositions of which one is probabilistically certain are to be
believed. But this cannot be right, at least if it is taken as a requirement
on believed propositions that is meant to hold in each and every context.
For example: it is morning; I rationally believe that I am going to receive
an e-mail today. However, I would not regard it as rational to buy a bet in
which I would win one dollar if I am right, and in which I would lose a
million dollars if I am wrong. But according to the usual interpretation of

1. In many formulations of the Lockean thesis, a greater-than symbol is used instead
of a greater-than-or-equal-to symbol, but since I am going to assume the underlying set of
possible worlds to be finite, nothing will really hang on this choice of formulation. How-
ever, the “greater-than-equals” formulation will prove to be more convenient for my own
purposes.
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subjective probabilities in terms of betting quotients, I should be ratio-
nally disposed to accept such a bet if I believed the relevant proposition to
the maximal degree of 1. Hence, I rationally believe the proposition even
though I do not believe it with probability 1.

The remaining way to argue for the existence claim in P3 would be
to turn to some value of ‘r ’ that is less than 1; and as long as one considers
‘Bel(B) if and only if P(B) $ r ’ just by itself, this looks far more appealing
and realistic. But then again, if taken together with P1 and P2, this option
seems to run into the famous Lottery Paradox (see Kyburg 1961), to which
I will return later.2

Therefore, in spite of the prima facie attractiveness of each of P1–
P3, it just does not seem to be feasible to have all of them at the same time,
which is why a large part of the classical literature on belief (or accep-
tance) can be categorized according to which of the three postulates are
being preserved and which are dropped—as Levi (1967, 41) formulates
it, “either cogency [my P1] or the requirement of high probability as
necessary and sufficient for acceptance [my P3] must be abandoned.”
For instance, putting P2 to one side for now, Isaac Levi keeps P1 but
rejects P3, while Henry Kyburg keeps P3 and rejects P1. Hempel (1962)
still had included both P1 and P3 as plausible desiderata, although he was
already aware of the tension between them.

In the following, I want to show that this reaction of dropping any
one of P1–P3 is premature; it is in fact not clear that one could not have
all of P1–P3 at once and the existence claim in P3 being true in virtue of
some threshold r , 1.

The first step to seeing this is to note that P3, as formulated above,
is ambiguous with respect to the position of the ‘there is a threshold r ’
quantifier in relation to the implicit universal quantification over degree
of belief functions P. According to one possible disambiguation, there
is indeed no value of ‘r ’ less than 1 so that ‘for all B, Bel(B) if and only if
P(B) $ r ’ could be combined consistently with P1 and P2. But according
to a second kind of disambiguation, taking all of these assumptions
together will in fact be logically possible, and it will be this manner of
understanding P3 on which my stability theory of belief will be based.

Here is the essential point: we need to distinguish a claim of
the form ‘there is an r , 1 . . . for all P . . . ’ from one of the form ‘for all
P . . . there is an r , 1 . . . ’. As we are going to see, the difference is crucial:

2. A similar point can be made in terms of the equally well-known Preface Paradox;
see Makinson 1965.
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while it is not the case that

there is an r , 1; such that for all P ðon a finite space of worldsÞ;

the logical closure of Bel, the probability axioms for P, and for all B, Bel(B)
if and only if P(B) $ r, are jointly satisfied, it is the case that

for all P ðon a finite space of worldsÞ; there is an r , 1

such that the same conditions are jointly the case.
Let me explain why. I will start with what will be interpreted later

on in sections 3 and 4 as a typical lottery example:

Example 1 (1a) Assume that r ¼ 999;999
1;000;001. Consider W to be a set

{w1, . . . ,w1,000,000} of one million possible worlds, and let P be the unique-

ly determined probability measure that is given by P ð{w1}Þ ¼ P ð{w2}Þ ¼ . . .

¼ P ð{w1;000;000}Þ ¼ 1
1;000;000. A fortiori, the axioms of probability are satis-

fied by P, as demanded by P2 above. At the same time, by the Lockean

thesis (P3), it would follow that for every 1 # i # 1,000,000, it is rational

to believe the proposition W 2 {wi } (that is, W without {wi }), as

P ðW 2 {wi }Þ ¼
999;999

1;000;000 $ 999;999
1;000;001. Therefore, by P1, the conjunction

(that is, intersection) of all of these propositions would rationally have

to be believed as well; but this conjunction is nothing but the contradic-

tory proposition B, which has probability 0 by P2, and which for that

reason is not rationally believed according to P3. We end up with a con-

tradiction. For r as being chosen before, we can determine a probability

measure P , such that the logical closure of Bel , the probability axioms for

P , and for all B, BelðBÞ if and only if P ðBÞ $ r , do not hold jointly. By the

same token, for every 1
2 , r , 1, a uniform probability measure can be

constructed, such that these conditions are not satisfied simultaneously.

(1b) Let W be the set {w1; . . . ;w1;000;000} again, and assume the prob-

ability measure P to be again given by P ð{w1}Þ ¼ . . . ¼ P ð{w1;000;000}Þ

¼ 1
1;000;000. But now set r ¼ 1;000;000

1;000;001: in that case, the only proposition

that is to be believed according to the Lockean thesis is W itself, which

has probability 1. Trivially, then, the set of believed propositions is closed

under logic (including closure under conjunction), which is why the logi-

cal closure of Bel , the probability axioms for P, and for all B, BelðBÞ if and

only if P ðBÞ $ r , hold jointly. For P as being chosen before, we can deter-

mine a threshold r , such that all of our desiderata are satisfied.

It is evident that in case 1b, we were able to circumvent the con-
tradiction from 1a by another trivializing method ( just as opting for r ¼ 1
and ‘Bel ðBÞ if and only if P ðBÞ ¼ 1’ had been trivializing before): given a
P with a finite domain, we can push the threshold in the Lockean thesis
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sufficiently close to (though short of) 1 so that only those propositions
that have probability 1 end up believed.

While the same method enables us to determine for every prob-
ability measure (over a finite set of worlds) a suitable threshold r , 1 and
Bel such that P1, P2, and for all B, Bel ðBÞ if and only if P ðBÞ $ r , are jointly
the case, this is hardly satisfying; for once again, rational belief would be
restricted to propositions of which one is probabilistically certain. The
much more exciting observation is that in many cases one can do much
better: it is possible to achieve the same result without trivializing conse-
quences, in the sense that at least some proposition of probability less than

1 happens to be believed.
Here is an example (to which we will return also in subsequent

sections and which will be given a concrete interpretation in section 5):

Example 2 Let W ¼ {w1; . . . ;w8} be a set of eight possible worlds; one

might think of these eight possibilities as coinciding with the state descrip-

tions that can be built from three propositions A, B, C : w1 corresponds to

A ^ B ^ :C , w2 to A ^ :B ^ :C , w3 to:A ^ B ^ :C , w4 to:A ^ :B ^ :C ,

w5 to A ^ :B ^ C , w6 to :A ^ :B ^ C , w7 to :A ^ B ^ C , and w8 to

A ^ B ^ C . Let P be the unique probability measure that is defined by:

P ð{w1}Þ ¼ 0:54, P ð{w2}Þ ¼ 0:342, P ð{w3}Þ ¼ 0:058, P ð{w4}Þ ¼ 0:03994,

P ð{w5}Þ ¼ 0:018, P ð{w6}Þ ¼ 0:002, P ð{w7}Þ ¼ 0:00006, P ð{w8}Þ ¼ 0. Figure

1 depicts what this probability space looks like.

Now consider the following six propositions,

{w1}; {w1;w2}; {w1; . . . ;w4}; {w1; . . . ;w5}; {w1; . . . ;w6}; {w1; . . . ;w7}

only the last one of which has probability 1. Pick any of them, call it ‘BW ’,

and let Bel be determined uniquely by stipulating that BW is the least or

strongest proposition that is believed, so that a proposition is believed if

Figure 1. Example 2
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and only if it is entailed by (is a superset of) BW ; in other words: for all

propositions X # W ,

BelðX Þ if and only if BW # X :

Finally, take r ¼ P ðBW Þ to be the relevant threshold. One can show that

the so-determined Bel , P , and r satisfy the logical closure of Bel , the prob-

ability axioms for P, and for all B, BelðBÞ if and only if P ðBÞ $ r . Once

again, for our given P , there is a threshold r , such that all of our desiderata

hold simultaneously. But this time, as far as the first five choices of BW are

concerned, there is in fact a proposition of probability less than 1 that is

being believed. For example, if BW is {w1;w2}, then {w1;w2} is believed

even though it has a probability of 0:882 , 1.

What should we conclude from these examples? Maybe it is possible

to have one’s cake and eat it, too : to preserve the logic of belief and the axioms
of probability while at the same time assuming consistently that the beliefs
and degrees of belief of perfectly rational agents relate to each other as
expressed by the Lockean thesis even for a threshold of less than 1.

The price to be paid for this proposal will be that not any old
threshold in the Lockean thesis will do; instead the threshold must be
chosen suitably depending on what the agent’s beliefs and his or her
degree of belief function are like. Whether this price is affordable or
not, I will discuss later, but first I will turn to a different question: given
a degree of belief function P , what are the belief sets Bel and thresholds
r like that, together with P , satisfy all of our intended conditions? The
answer will be given in section 2, in which P1–P3 will be made formally
precise, and in which the intended belief sets and thresholds will be
characterized in terms of a probabilistic notion of stability or resiliency.
Based on this, I will formulate what will be called the “stability theory of
belief” in section 3, which will postulate that belief corresponds to resil-
iently high probability, which is going to entail P1–P3; afterward, in the
same section, I will outline the costs of accepting this theory: a strong
form of context sensitivity of belief, where the context in question
involves both the agent’s degree of belief function P and the partitioning
or individuation of the underlying possibilities. Section 4 explains what
the theory predicts concerning the Lottery Paradox; the observed con-
text sensitivity of belief will actually work to the theory’s advantage there.
In section 5, I will present an example of how the theory can be applied in
other areas, in this case, to a problem in formal epistemology. Section 6
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summarizes what has been achieved and, on these grounds, makes the
case for the theory.

2. P-Stability

I begin by stating P1–P3 in full detail.
Let us consider a perfectly rational cognitive agent and his or

her beliefs and degrees of belief at a fixed point of time. By ‘perfectly
rational’, I mean only ‘inferentially perfectly rational’—so that the usual
logical principles of doxastic closure and the principles of probability can
be taken for granted for any such agent—but of course I do not assume,
for example, that any such agent would be perfectly rational in the sense
of believing all and only truths, or the like.3

Let W be a (nonempty) set of possible worlds. Throughout the
essay, I will assume that W is finite ; the theory that I am going to develop
will work also in the infinite case, but I want to keep things as simple as
possible here.

Given W , by a proposition, I mean any subset of W ; so propositions
will be regarded as sets of possible worlds. I will apply the standard ter-
minology that is normally used for sentences also to propositions: when
I say that a proposition is consistent, I mean that it is nonempty, and
accordingly B is the unique contradictory proposition; when I say that
a proposition A is consistent with another proposition B, then this is:
A > B – B; when I say that A entails B, this amounts to A being a subset
of B; when I refer to the negation of A, I actually refer to its complement
W 2 A relative to W (which I will also denote by ‘:A’); the conjunction
A ^ B of A and B is their intersection; and their disjunction A _ B is
their union.

I represent the agent’s beliefs at the relevant time by means of a
set Bel of propositions: the set of propositions believed by the agent in
question at the time in question. Instead of ‘A [ Bel ’ I will usually write
BelðAÞ.

This being in place, P1 was really a shorthand for the standard laws
of doxastic logic adapted to the current propositional context (and dis-
regarding introspection, which will not play any role in this essay):

3. Ultimately, we should be concerned with real-world agents, but methodologically
it seems like a good strategy to sort out the tension between belief and degrees of belief
first for ideal agents—whom we strive to approximate—and only then for agents such as
ourselves.
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P1 For all propositions A;B # W :

. BelðW Þ;

. not BelðBÞ;

. if BelðAÞ and A # B, then BelðBÞ;

. if BelðAÞ and BelðBÞ, then BelðA ^ BÞ:

The first two clauses express that the agent believes that one of the worlds
within his or her total set W of worlds is the actual world, and he or she
does not believe the empty set to include the actual world. The other two
clauses express the closure of belief under logical consequence.

Since W is finite by assumption, there can be only finitely many
members of Bel ; by P1, the conjunction of all of them, say, BW , must also
be a member of Bel , BW must be consistent, and by the definition of BW

and by P1 again, the following must hold for every proposition B: BelðBÞ if
and only if BW # B.

Vice versa, assume there to be a consistent proposition BW in Bel ,
such that for every proposition B: BelðBÞ if and only if BW # B. Then it
follows that P1 above is satisfied.

In other words, we can reformulate P1 equivalently as follows:

P1 [Reformulated] There is a consistent proposition BW # W , such

that for all propositions B:

. BelðBÞ if and only if BW # B:

So P1 really amounts to a possible worlds model of belief: the agent
implicitly or explicitly divides the set W of possible worlds into those
that are serious possibilities for the agent at the time (see Levi 1984)—
that is, serious candidates for what the actual world might be like—and
those which are not. BW is that set of serious possibilities, and it is deter-
mined uniquely given the belief set Bel .

Now I turn to P2: At the relevant point of time, let P be the agent’s
degree of belief or credence function, which I take to be defined for all
subsets of W ; in probabilistic terms, W is the sample space for P. Indeed,
P2 assumes that P is a probability measure, and accordingly it states that:

P2 For all propositions A;B # W :

. P ðW Þ ¼ 1;

. if A is inconsistent with B, then P ðA _ BÞ ¼ P ðAÞ þ P ðBÞ;
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. additionally, conditional degrees of belief can be introduced by

P ðB jAÞ ¼
P ðB > AÞ

P ðAÞ

whenever P ðAÞ . 0.

Since W was assumed to be finite, we may think of probabilities this way:
they are assigned first to the singleton subsets of W —or, if one prefers, to
the worlds in W themselves—and then the probabilities of larger sets
are determined by adding up the probabilities of its singleton subsets.
Because W is finite, we do not need to deal at all with the probabilities of
infinite unions or intersections of propositions.

Finally, the Lockean thesis:

P3 There is an r with 1
2 , r # 1, such that for all propositions B # W :

BelðBÞ if and only if P ðBÞ $ r :

Now drop the existential quantifier ‘there is an r ’ for a moment so that ‘r ’
becomes a free variable and call the resulting open formula ‘P3½r �’ (read
this as ‘the Lockean thesis with threshold r ’): if the interpretations of ‘P ’
and ‘Bel ’ are fixed, then, depending on the value of ‘r ’, P3½r �might turn
out to be either true or false; and I will be interested in characterizing
those values of ‘r ’ for which it is true. I do allow for r ¼ 1, but I will be
particularly interested in choosing r so that propositions of probability
less than 1 will also be believed by the agent. For the moment, I will focus
especially on the right-to-left direction of the Lockean thesis (LT) with
threshold r :

LT
$r.1

2
ˆ : For all B;BelðBÞ if P ðBÞ $ r :

This is because, with the right background assumptions, LT
$r.1

2
ˆ will actu-

ally turn out to be equivalent to P3½r �, which is interesting in itself to
observe. Other than that, in what follows, I could have worked just with
P3½r � directly.

Now we are almost ready to spell out under what conditions P1,
P2, and LT

$r.1
2

ˆ (or P3½r �) are jointly satisfied. In order to formulate the
corresponding theorem, we will need one final probabilistic concept
that is closely related, though not identical, to the notions of resiliency
introduced by Skyrms (1977, 1980) within his theory of objective chance:

Definition 1 With P being a probability measure on the sample space W ,

we define for all A # W :
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A is P -stable if and only if for all B # W , such that B is consistent with A

and P ðBÞ . 0:

P ðA jBÞ .
1

2
:

Thus, a proposition is stable just in case it is sufficiently probable
given any proposition with which it is compatible.

In order to get a feel for this definition, consider a consistent
(nonempty) proposition A that is P -stable: one of the suitable values of
‘B’ above is the total set W of worlds—as W is consistent with A, and
P ðW Þ ¼ 1—which is why P -stability entails that P ðA jW Þ ¼ P ðAÞ . 1

2;
therefore, any consistent P -stable proposition A must have a probability
greater than that of its negation. What P -stability adds to this is that this is

going to remain so under the supposition of any proposition B that is con-
sistent with A and for which conditional probabilities are defined—the
high probability of A is resilient or robust.

It follows immediately from the axioms of probability that every
proposition of probability 1 must be P -stable. For trivial reasons also,
the empty proposition is P -stable. And it might seem that this will
actually exhaust the class of P -stable sets since P -stability might seem
pretty restrictive; but things will turn out to be quite different.

The relevance of P -stability is made transparent by the following
representation theorem (I omit its proof, but it is not difficult at all):4

Theorem 1 Let W be a finite nonempty set, let Bel be a set of subsets of

W , and let P assign to each subset of W a number in the interval ½0; 1�.

Then the following two statements are equivalent:

I. Bel satisfies P1, P satisfies P2, and P and Bel satisfy LT
$P ðBW Þ.

1
2

ˆ .

II. P satisfies P2, and there is a (uniquely determined) A # W , such

that

† A is a nonempty P -stable proposition,

† if P ðAÞ ¼ 1, then A is the least subset of W with probability 1; and

† for all B # W :

BelðBÞ if and only if A # B

(and hence, BW ¼ A).

4. See Leitgeb 2013a, n. 26 for the proof (‘P -stable’ in the present essay corresponds
to ‘P -stable

1
2’ in Leitgeb 2013a).
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This is a (universally quantified) equivalence statement: its left-hand side
(I) summarizes all of our desiderata if for the moment we restrict our-
selves just to one direction of the Lockean thesis and if we use P ðBW Þ as
the corresponding threshold; and the right hand-side (II) expresses that
BW is P -stable and if BW has probability 1, then it is the least proposition of
probability 1 (which must always exist for finite W ).

Summing up: If P and Bel are such that P1, P2, and the right-to-left
direction of the Lockean thesis with threshold P ðBW Þ are satisfied, where
BW is the least believed proposition that exists by P1, then BW must be
P -stable. And if given P and a P -stable proposition (which, if it has prob-
ability 1, is the least of that kind), then one can determine Bel from that
P -stable proposition, so that P and Bel satisfy all of the desiderata, and
the given P -stable proposition is the strongest believed proposition BW .
Or once again, in other terms: assuming that P and Bel make condition
(I) from above true carries exactly the same information as assuming that
P is a probability measure and the least believed proposition is P -stable
(and, if it has probability 1, is the least proposition of probability 1).

One can show even more: Either side of the equivalence statement
that is embedded in the theorem above actually implies the full Lockean
thesis with threshold P ðBW Þ, that is, for all propositions B: BelðBÞ if and

only if P ðBÞ $ P ðBW Þ . 1
2. Consequently, one can replace ‘LT

$P ðBW Þ.
1
2

ˆ ’ in
condition (I) by P3½P ðBW Þ� (the Lockean thesis with threshold P ðBW Þ)
and still the equivalence holds. This means that although one might have
thought that one could do just with the right-to-left half of the Lockean
thesis, once one throws in enough of the logic of belief, there is no such
halfway house—one always ends up with the full Lockean thesis.

The threshold term ‘P ðBW Þ’ as employed in the Lockean thesis
above is really the only choice given the logic of belief: For by P1 there
must be a least believed proposition BW ; therefore, if one also wants the
Lockean thesis with threshold r to be satisfied, the threshold r cannot
exceed P ðBW Þ; and while r may well be a bit smaller than P ðBW Þ, it cannot
be so small that some proposition ends up believed on grounds of the
Lockean thesis that is not at the same time a superset of BW , or otherwise
the definition of BW would be invalidated. Hence, in the present context,
if one wants an instance of P3½r � to be satisfied at all, one may just as well
use P3½P ðBW Þ� from the start—for given P1, any such P3½r � must deter-
mine the same beliefs as P3½P ðBW Þ� anyway.

The Stability Theory of Belief

141



By the theorem from above, in a context in which P1 and P2 have
already been presupposed, we can therefore reformulate postulate P3
from before as follows:

P3 [Reformulated] BW is P -stable, and if P ðBW Þ ¼ 1 then BW is the

least proposition A # W with P ðAÞ ¼ 1:

From the theorem above it also follows that if one has complete
information about what the P -stable sets for a given probability measure P

are like, then one knows exactly how to satisfy P1–P3 from above for this
very P : either one picks a P -stable set of probability less than 1—if there is
such—and uses it as BW ; or one uses the least proposition of probability 1
for that purpose.

Fortunately there is an algorithm that makes it very easy to com-
pute precisely those P -stable sets over which condition (II) in our theo-
rem quantifies. I will not go into the details,5 but the algorithm is based on
the simple fact that (for finite W )

A is P -stable if and only if either P ðAÞ ¼ 1 or for all w [ A;

P ð{w}Þ . P ðW 2 AÞ:6

If we apply the algorithm to example 1 from section 1, the only set BW

so constructed is W itself, which is at the same time the least proposition
of probability 1. The corresponding threshold P ðBW Þ is 1, but one might
just as well choose some number that is less than, but sufficiently close to,
1 instead.

5. Here is a sketch of the algorithm: Assume that W ¼ {w1; . . . ;wn }, and
P ð{w1}Þ $ P ð{w2}Þ $ . . . $ P ð{wn }Þ. If P ð{w1}Þ . P ð{w2}Þ þ . . . þ P ð{wn }Þ, then {w1} is
the first, and least, nonempty P -stable set, and one moves on to the list
P ð{w2}Þ; . . . ;P ð{wn }Þ. For example, if P ð{w2}Þ . P ð{w3}Þ þ . . . þ P ð{wn }Þ, then {w1;w2}
would be the next P -stable set. On the other hand, if P ð{w1}Þ # P ð{w2}Þ þ . . .þ

P ð{wn }Þ, then consider P ð{w2}Þ. If it is greater than P ð{w3}Þ þ . . . þ P ð{wn }Þ, then
{w1;w2} is the first P -stable set, and one moves on to the list P ð{w3}Þ; . . . ;P ð{wn }Þ; but if
P ð{w2}Þ is less than or equal to P ð{w3}Þ þ . . . þ P ð{wn }Þ, then consider P ð{w1}Þ;P ð{w2}Þ;
P ð{w3}Þ; and so forth. The procedure is terminated when the least subset of W of prob-
ability 1 is reached.

6. See Leitgeb 2013a, sec. 2.5, for the proof (‘P -stable’ in the present essay corre-
sponds to ‘P -stable

1
2’ in Leitgeb 2013a). In the computer science literature, a compatibility

condition on probability measures and strict total orders of worlds has been formulated
that is similar to this equivalent reformulation of P -stability: compare the “big-stepped
probabilities” of Benferhat, Dubois, and Prade (1997) and Snow’s (1998) “atomic bound
systems.”
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In the case of example 2, as promised, the algorithm determines
(starting at the bottom):

. {w1;w2;w3;w4;w5;w6;w7} ðr ¼ 1:0Þ

. {w1;w2;w3;w4;w5;w6} ðr ¼ 0:99994Þ

. {w1;w2;w3;w4;w5} ðr ¼ 0:99794Þ

. {w1;w2;w3;w4} ðr ¼ 0:97994Þ

. {w1;w2} ðr ¼ 0:882Þ

. {w1} ðr ¼ 0:54Þ

For instance, if {w1;w2} is taken to be the least believed proposition BW ,
then all of P1–P3 are satisfied, and the same holds for {w1;w2;w3;w4}; in
contrast, neither {w1;w2;w3} nor {w1;w2;w4} will do. To the right of the
list of P -stable sets above, I have stated the corresponding thresholds
r ¼ P ðBW Þ that are to be used in P3. The bravest option would be to
use r ¼ 0:54 as a threshold, in the sense that it yields the greatest number
of believed propositions: all the supersets of {w1}. The other extreme is
r ¼ 1 (or something just a bit below that), which is the most cautious
choice: the only propositions believed by the agent will then be {w1;w2;

w3;w4;w5;w6;w7} and W itself. All the other thresholds lie somewhere in
between these two extremes; for example, the Lockean threshold P ðBW Þ

for BW ¼ {w1;w2} is 0:882.
The six P -stable sets taken together look very much like one of

David Lewis’s “spheres systems” in his semantics for counterfactuals (see
Lewis 1973): for every two of them, one is a subset of the other or vice
versa. And indeed one can prove in general, including the infinite case,
that if there is a P -stable proposition A with P ðAÞ , 1 at all, then the set of
all such propositions A is well-ordered with respect to the subset relation,
and the least P -stable proposition of probability 1 is a proper superset of
all of them.7

One final example: figure 2 shows the equilateral triangle that
represents geometrically all probability measures on the set {w1;w2;w3}
of worlds. For example: the w1-corner represents the measure that assigns
1 to {w1} and 0 to the other two singletons; the center point represents
the uniform measure that assigns 1

3 to each singleton set; the closer one
moves from the center toward the w1-corner, the greater the probability
of {w1}; and so forth. The ordered numbers in the interior small triangles
encode the P -stable sets for the probability measures that are represented

7. See Leitgeb 2013a, theorem 4 ‘P -stable’ in the present essay corresponds to
‘P -stable

1
2’ in Leitgeb 2013a, and P is also assumed to be countably additive.

The Stability Theory of Belief

143



by points within the respective triangles: for example, all P that are rep-
resented by points in the lower of the two small triangles adjacent to the
w1-corner have {w1}, {w1;w2}, {w1;w2;w3} as P -stable sets; the ordered
numbers

3
2
1

are the indices of worlds that, in this order, generate the
P -stable sets if read from below—so worlds whose indices appear further
down in a numerical array carry more probabilistic weight than the worlds
whose indices appear higher up. Accordingly, every measure that is rep-
resented by a point in the upper of the two small triangles adjacent to the
w1-corner has {w1}, {w1;w3}, and {w1;w3;w2} as its P -stable sets. Intuitively,
all of this makes sense: in both of the small triangles, w1 counts as the most
plausible world because geometrically all of the corresponding measures
are close to the w1-corner; w2 is more plausible than w3 in the lower
triangle because, from the viewpoint of w1, this triangle belongs to the
w2-half of the whole equilateral triangle; things are just the other way
round in the upper of the two small triangles. If one moves closer to the
center again, the resulting systems of P -stable sets become more coarse
grained, that is, the number of P -stable sets decreases; for example, no
singleton set is P -stable anymore. Furthermore, probability measures that
are represented by points that are close to each other in the triangle have
similar sets of P -stable propositions.

The only points in the full equilateral triangle that represent prob-
ability measures for which there are no P -stable propositions of probability less

than 1 at all are: the vertices and all points on the bold line segments that

Figure 2. P-stable sets for W ¼ {w1;w2;w3}
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meet at the center of the triangle. In particular, the uniform probability
measure at the center allows only for W to be stable. This gives us: almost

all probability measures P have a least P -stable set of probability less
than 1.8 Hence, for almost all probability measures P , there exist an
r , 1 and a Bel , such that Bel is closed logically, for all B it holds that
BelðBÞ iff P ðBÞ $ r , and where there is a B, such that BelðBÞ and P ðBÞ , 1.
The same can be shown to be true if there are more than three, but still
finitely many, possible worlds.

Returning to our discussion in section 1 (but using the notation
for postulates that was used in the present section), we find that: for all P

(on a finite space of worlds), there is an r , 1 such that P1, P2, P3½r � are
jointly satisfied. And, additionally, almost always there is a nontrivializing
way of satisfying P1, P2, P3½r � with r , 1 so that at least some proposition
of probability less than 1 is believed.

3. The Theory and Its Costs

The results from the last section suggest a theory of belief and degrees
of belief for perfectly rational agents that consists of the following three
principles:

P1 There is a (uniquely determined) consistent proposition BW # W ,

such that for all propositions B: BelðBÞ if and only if BW # B.

P2 The axioms of probability hold for the degree of belief function P .

P3 BW is P -stable, and if P ðBW Þ ¼ 1 then BW is the least proposition

A # W with P ðAÞ ¼ 1:

In a nutshell: Belief is determined by a proposition of resiliently or stably high

subjective probability (in the sense of P -stability). As it were, the “grounds” (that
is, the set BW ) of a perfectly rational agent’s belief system must be charac-
terized by a probabilistic stability property. Call P1–P3 the stability theory

of belief.9

8. The term ‘almost all’ can be made precise by means of the so-called Lebesgue
measure that one finds defined in typical textbooks in measure theory.

9. This is not the place to delve into the history of stability conceptions of belief and
knowledge. Let me just point out that if Loeb (2002) is right, Hume held the view in his
Treatise of Human Nature that beliefs are stable dispositions to have ideas of a high degree of
vivacity. If we understand ‘degree of vivacity’ in terms of ‘degree of belief ’, the following
might thus be called the Humean thesis on belief: It is rational to believe a proposition just in case it

is rational to have a stably high degree of belief in it. The stability theory of belief in this essay
constitutes one possible way of making this Humean thesis formally precise.
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By what we have shown in the previous section, it follows from this
that rational belief is closed under logic, the rational degree of belief
function obeys the axioms of probability, and the Lockean thesis relates
belief and degrees of belief, which is what we started from in the first
section. In fact, if taken together, P1–P3 as stated in this section are
equivalent to the postulates stated in section 1. And we also found in
the last section that for almost all P it is possible to satisfy P1, P2, P3½r �
by means of a P -stable proposition BW for which r ¼ P ðBW Þ , 1. If
measured by these consequences, P1–P3 above seem to make for a very
nice normative theory of theoretical rationality as far as belief and
degrees of belief are concerned—normative, because the theory is con-
cerned with the beliefs and degrees of beliefs of perfectly rational agents.

By calling P1–P3 a ‘theory’, I do not mean anything like a complete

theory of theoretical rationality for belief, let alone of the rationality of
belief in general:

For a start, one would have to supplement P1–P3, which are
synchronic in nature, with diachronic principles. It is quite clear how this
would go: P1–P3 are meant to hold for all Bel and P at arbitrary times t. In
order to add an account of how to proceed from one time t to another
time t 0 between which all that the agent learns is some piece of evidence
E for which P ðEÞ . 0, one would extend P2 by maintaining that P ought
to be updated by conditionalizing it on E : for all B, P newðBÞ ¼ P ðB jEÞ.
Accordingly, as recommended by belief revision theory (see AGM 1985
and Gärdenfors 1988), one would add to P1 the principle that, given
some piece of evidence E that is consistent with BW and that is therefore
also consistent with every proposition believed by the agent, Bel ought to
be updated so that Belnew is the set of supersets of the new strongest
believed proposition Bnew

W ¼ BW > E . All of that would be consistent
with P1–P3, in the sense that if Bel and P satisfy P1–P3, then Belnew and
P new also satisfy the corresponding conditions that are imposed by P1–P3
on them: for Bnew can be shown to be P new -stable again.10 Over and above
that, one would also have to add principles of update on pieces of evi-
dence E that have probability 0 or that contradict some of the agent’s
present beliefs (I will return to the latter case briefly in section 5).11

10. Note that it is not the case for all P that if BW is the least P -stable set, then Bnew
W is

the least P new -stable set again. This is very easy to see directly, but it can also be derived from
a much more general result proven by Lin and Kelly (2012b); see their corollary 1.

11. The formal details of such joint diachronic principles for belief and subjective
probability are worked out in Leitgeb 2013a.

H A N N E S L E I T G E B

146



If, finally, the resulting theory were also extended by adequate
principles of practical rationality—a belief-desire model of action on
the one hand, Bayesian decision theory on the other—the resulting pack-
age might well be suitable as a theory of rationality for belief and degrees
of belief more generally. But I will restrict our discussion to P1–P3 again
for the rest of the essay.

Before I turn to the potential downsides of the theory, let me make
clear that it leaves a lot of room for interpretation, even substantially
diverging interpretation. In particular, because of the centrality of the
probabilistic notion of P -stability, one might think that the stability theory
necessarily amounts to a reductive account of belief in terms of probability;
however, such a view would be misguided.

First of all, while P3 above demands that the strongest believed
proposition BW is P -stable, it does not determine with which P -stable set
the proposition BW ought to be identified, and as we know already, there
might be more than one choice.12 Only if P3 were strengthened appro-
priately—for example, by postulating BW to be the least P -stable set
(which must always exist for finite W )—would one be able to explicitly
define ‘BW ’ and hence ‘Bel ’ in terms of ‘P ’, and thus be able to reduce
belief to degrees of belief.13 But we did not presuppose any such strength-
ening of P3 above.

Second, although the Lockean thesis is very often understood
such that Bel can be determined from P by applying the thesis from
right to left, and therefore P is prior to Bel , the latter ‘therefore’ part is not
actually contained in the thesis itself. After all, the Lockean thesis with
threshold r is merely a universally quantified material equivalence state-
ment that says for all B, either Bel ðBÞ and P ðBÞ $ r , or not BelðBÞ and
P ðBÞ , r . This does allow for probability being prior to belief, but it does
not necessitate it.

For instance, one might want to defend the Lockean thesis in
conjunction with the view that belief is prior to probability; then the thesis
is a constraint on P of the form that, given Bel and r , the measure P ought
to be such that all and only the believed propositions are to be assigned a
probability greater than or equal to r .

12. If the sample space W is infinite, then one can prove that there are even prob-
ability measures P for which there exist infinitely many P -stable propositions of prob-
ability less than 1.

13. That is precisely the route that I follow in Leitgeb 2013a.
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More plausibly, neither side of the Lockean thesis might be taken as prior

to the other. In that case, the thesis is a simultaneous constraint on Bel , P ,
and r , which might be regarded as a normative principle of coherence or
harmony between two ontologically and conceptually distinct systems of
belief, that is, the system of all-or-nothing belief and the system of quan-
titative belief. In order for an agent to be rational, the two systems must
cohere with each other as expressed by the Lockean thesis.

I will leave open which of these interpretations is the most plau-
sible one.14 But all of these interpretations are consistent with P1–P3.
And in all of these interpretations, belief ends up as some kind of coarse
graining of probability, for, by the Lockean thesis, believing a proposition
is always equivalent to abstracting away from all the different degrees of
belief that a proposition might have as long as it is not less than r . For the
same reason, all of the uncountably many probability measures rep-
resented by points within one and the same little triangle in figure 2
yield one and the same system of finitely many P -stable sets. In other
words, in the transition from P to Bel , information is being lost, which
was to be expected, as ‘P ’ expresses a quantitative concept, while ‘Bel ’
expresses a qualitative one. But none of this entails that belief is reducible
to subjective probability.

The stability theory of belief and degrees of belief looks almost too
good to be true. Where have the paradoxes gone? Why is it that, all of a
sudden, closure of belief under conjunction does not work against the
Lockean thesis anymore? There must be a catch.

And there is. For the rest of the present section, I will discuss the
two kinds of costs that follow from the principles of stability theory. These
are, on the one hand, (C1) the sensitivity of the threshold in the Lockean
thesis to P , and on the other, (C2) the sensitivity of Bel to partitionings of
the set W of worlds, where, additionally, thresholds that are not particu-
larly close to 1 demand there to be a small number of worlds or partition
cells in BW . Or to sum up these costs: there is a serious sensitivity of belief to the

context. In the next section, I will then deal specifically with the Lottery

14. This said, I prefer the last option according to which neither belief nor subjective
probability is prior to the other. I should add that in those interpretations in which one
type of belief is said to be prior to the other, one would also need to specify the kind of
priority that one has in mind; and of course it is perfectly possible, for example, that
probability is claimed to be ontologically prior to belief, while at the same time belief is
regarded as epistemologically prior to probability (since beliefs seem more easily accessible
than subjective probabilities). Hence, much more would have to be said about the kind
of priority in question.
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Paradox. Ultimately the goal will be to evaluate whether the benefits of
the theory outweigh its costs.

First, according to the stability theory, only particular thresholds
r ½¼P ðBW Þ� are permissible to be used in the Lockean thesis, as follows
from the results in the last section. Which thresholds one is permitted to
choose depend on what ‘P ’ and ‘BW ’ in ‘P ðBW Þ’ refer to, that is, the
probability measure P and the belief set Bel . Furthermore, BW is itself
constrained to be P -stable. So overall, if one grants the stability theory,
one must learn to live at least with the fact that

C1 The range of permissible choices of threshold in the Lockean thesis

codepends on the agent’s degree of belief function P .15

Let us take a step back, for a moment. What determines the choice
of threshold in the Lockean thesis more generally? The usual answer is:
the context. Compare:

The level of confidence an agent must have in order for a statement to

qualify as believed may depend on various features of the context, such as

the subject matter and the associated doxastic standards relevant to a

given topic, situation, or conversation. ( James Hawthorne 2009, 73)

What this means exactly depends on whether the Lockean thesis is
meant to govern the ascription of belief or the belief states themselves.
In the first case, it is possible that the agent, say, x, who ascribes beliefs
to an agent, y, is distinct from y. In the second case, only one agent, y, is
relevant, that is, the agent whose belief states are in question. Either way,
the respective threshold r in the Lockean thesis functions as a “level of
cautiousness” since demanding a greater lower boundary of the prob-
abilities of believed propositions is more restrictive than demanding a
smaller lower boundary. But in the first interpretation in terms of belief
ascription, with P being fixed, the greater r becomes, the more demanding
the resulting contextually determined concept of belief and hence the
more cautiously x must ascribe beliefs to y. Whereas in the second
interpretation, the greater r becomes, the more restrictive the constraint
on y’s belief set becomes in the sense that y aims to be more cautious about
his or her beliefs: the context in question is then what might be called y’s

15. Once again, this does not mean that degrees of belief must be determined prior
to the choice of any such threshold r . For instance, for given r , a measure P might be
determined so that r is the probability of some P -stable set.
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own context of reasoning, and it comprises everything that determines y’s
own doxastic standards at a time.

While the stability theory is open to both interpretations, in what
follows I will go for the second one. In the terms of the corresponding
debate on knowledge, I aim at something like a sensitive moderate invar-
iantism for belief rather than a proper contextualist understanding.
Indeed, if in the following quotation, ‘knowledge’ is replaced by ‘belief ’,
then I subscribe to the resulting statement:

The kinds of factors that the contextualist adverts to as making for

ascriber-dependence—attention, interests, stakes, and so on—[have]

bearing on the truth value of knowledge claims only insofar as they

[are] the attention, interests, stakes, and so on of the subject. ( John

Hawthorne 2004, 157)

Even if the agent’s degree of belief function is kept fixed, if what is
salient to an agent changes, then his or her beliefs might change; the
more that is at stake for the agent, the more it might take him or her to
believe, and so on. The question is really: how much risk is the agent
willing to take whose beliefs are in question? And according to the sta-
bility theory, the subject’s degree of belief function P must be counted
among the factors that codetermine the answer at the relevant time; it is
the subject’s attention, interest, stakes, . . . , and his or her degree of belief

function that are relevant here.
This should not be too surprising. Why should the choice of

threshold in the Lockean thesis be allowed to depend on the agent’s
attention and interests but not on the agent’s degree of belief function?
After all, all of them are salient components of the agent’s state of mind.
Or from the viewpoint of decision theory: Assume that the Lockean thesis
is taken for granted but only the choice of the corresponding threshold
is left unresolved. How would a good Bayesian determine the right thresh-
old in the corresponding context? He or she would view the whole situ-
ation as a decision problem: Should I choose the threshold in the
Lockean thesis to be r 1, or should I choose it to be r 2, or . . . ? The outcome
of each such choice of threshold would be a particular set of beliefs, which
would be determined by plugging in that threshold in the Lockean thesis.
These possible outcomes would be evaluated in terms of their utilities,
and ultimately, by the tenets of standard decision theory; a threshold
ought to be chosen that maximizes the expected utility of these out-
comes. Hence, given the relevant utility measure and his or her subjective

probability measure, he or she would choose a threshold so that the expec-
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ted utility of the choice is maximal. In this way, obviously, P would code-
termine the threshold r in the Lockean thesis simply because the expec-
ted utility of choosing one threshold rather than another codepends on
P : with the utility measure being fixed, different probability measures P

might well determine different ranges of permissible thresholds that all
maximize expected utility relative to P . This is just like in the stability
theory, in which different probability measures P may determine differ-
ent ranges of permissible thresholds that all correspond to the probabil-
ities of sets that are stable relative to P . So the dependency of r on P

should not be particularly problematic in itself.
Still one might wonder: in the case of example 2 as discussed

in the first two sections, why is one allowed to choose r ¼ 0:882 or
r ¼ 0:97994 as a threshold—corresponding to BW being either of the
P -stable sets {w1;w2} and {w1;w2;w3;w4}, respectively—but not, say,
r ¼ 0:94, which is the probability of the P -unstable set {w1;w2;w3}?

An analogy might help here. It is well known that for some pur-
poses, we conceive of properties so that every set of individuals whatsoever
is guaranteed to be the extension of some property; but then again, for
other purposes, we may want to restrict properties just to “natural” ones,
so that not every set of individuals may count as an extension of a property
in this restricted sense—a standard move in semantics, metaphysics, phi-
losophy of science, and other areas (see, e.g., Lewis 1983). What ‘natural’
means exactly may differ from one area to the next, but in each case,
natural properties ought to “cut nature at its joints,” in some sense.

Now let us apply the same thought in the present context. For
some purposes, for which the logic of belief is not relevant, we may
conceive of the threshold in the Lockean thesis in the way that every
threshold whatsoever can be combined with every probability measure
whatsoever. But then again, for other purposes for which the logic of
belief is an issue, we may want to restrict thresholds just to “natural”
ones, so that not every threshold can be combined with every probability
measure. Natural thresholds ought to “cut probabilities at their joints,”
and

r is natural with respect to P if and only if

there exists an A; such that r ¼ P ðAÞ and for all w [ A;

P ð{w}Þ . P ðW 2 AÞ

may be just the kind of “probability cutting” that is appropriate here. As
pointed out in the previous section, if P ðAÞ , 1, then the condition that
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for all w [ A, P ð{w}Þ . P ðW 2 AÞ, is equivalent to A being P -stable. And if
A is the least set of probability 1 (and W is finite), then it also holds that
for all w [ A, P({w}) . P(W 2 A).

Or analogously: if one is interested only in the logic of belief, then
every consistent proposition whatsoever may be a candidate for the stron-
gest believed proposition BW . However, in a context in which both belief
and degrees of belief are of interest, only “probabilistically natural” prop-
ositions may count as candidates for BW , and P -stability may be just the
right notion of naturalness since it belongs to the same ballpark as other
“natural” notions of stability or resiliency or robustness in statistics (see
Skyrms 1977, 1980), economics (see Woodward 2006), metaphysics (see
Lange 2005), and beyond. Hence, the fact that P1–P3 impose more con-
straints on r than P3 would do just by itself and that P1–P3 impose more
constraints on BW than P1 would do just by itself should not be thought to
speak against the theory.

Now for the second, and more substantial, worry: according to the
stability theory of belief, it turns out that

C2(i) belief is partition dependent, and

C2(ii) generally, the smaller the partition cells are in terms of probability,

the greater the probabilities of believed propositions must be in

order for P1–P3 to be satisfied.

Let me explain this in detail (still presupposing W to be finite).
It is quite common in applications of probability theory that even when
initially P had been defined for all subsets of W , there might be a context
in which not all subsets of W are actually being required for the purposes
in question. For example, if one is interested only in the possible out-
comes of a lottery, then only the propositions of the form ticket 1 wins,
ticket 2 wins, . . . together with their logical combinations will be relevant;
accordingly only the probabilities of such propositions will count. For-
mally, this can be achieved by introducing a partition P on W : a set of
pairwise disjoint nonempty subsets ui of W, such that the union of these
sets ui is just W again. For example, in the lottery case, initially W might
have been the set of all metaphysically possible worlds, but then a set of
partition cells ui might have been introduced, such that any such set ui

would be the set of all worlds in which ticket i wins.16 Such partition cells
ui might then be viewed themselves as “coarse-grained” possible worlds in

16. Let me disregard the question of whether such a class ui would actually be a set
or rather a proper class of worlds.
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which all differences between two distinct metaphysically possible worlds
within one and the same cell would be ignored; the probabilities of these
“pseudo-worlds” would be given by P ðuiÞ, and only unions of such sets ui

would be considered propositions in the relevant context.
If one wants to make all of that completely precise, one needs to

build up a new probability space that has the set P of all partition cells as
its sample space, where propositions are now subsets of P, and in which
a whole new probability measurePP is being defined in terms of P . The
probability space in example 1 from section 1 could be seen as arising
from precisely that procedure, with each “coarse-grained world” in W

corresponding to a particular ticket winning in a fair lottery of one
million tickets.

If the context changes again, and one needs to draw finer distinc-
tions than before—for example, it is not just relevant which ticket wins
but also who bought the ticket—one may refine the partition according-
ly, so that what had been one partition cell ui before is being broken up
into several new and smaller partition cells. Or one can afford to draw
coarser distinctions—for example, it is not relevant anymore which ticket
wins but only whether ticket 1 wins or not—and hence the partition is
made coarser, so that what had been several partition cells before are now
being fused into just one large partition cell.

In each case, the probabilities of the partition cells and of their
unions are determined from the original probability measure P that is
defined for all subsets of W , or equivalently: where the original prob-
ability measure is given with respect to the maximally fine-grained par-
tition whose partition cells are just the singleton sets {w} for w [ W . For it
does not really matter whether W equals {w1; . . . ;wn} or whether the set
of “worlds” is considered equal to the maximally fine-grained partition
P ¼ {{w1}; . . . ; {wn }} of W ; whether the probability measure is P or wheth-
er it is the measure PP that assigns to the singleton set {{wi }} the same
number that P assigns to the singleton set {wi }; more generally, it does not
matter whether PP assigns to X # P the number that P assigns to <X ,
that is, to the set of members of members of X ; and in terms of the
intended interpretation of propositions, it does not matter whether the
proposition that ticket 1 is drawn is {w1} or {{w1}}, and so forth. According-
ly, in the following, I will move back and forth between such numerically
distinct but formally equivalent constructions of worlds, propositions,
and probability measures, without much additional comment.

Since operating with partitions is a natural and useful doxastic
procedure, it is important to determine what happens to an agent’s

The Stability Theory of Belief

153



beliefs when partitions are introduced and changed. If P1–P3 are taken
for granted, the answer is: C2(i) refining a partition may lead to a change
of beliefs, in particular, to a loss of beliefs; and C2(ii) whatever
the partition is like, in order for P1–P3 and P ðBW Þ , 1 to be satisfied,
the probability of every singleton subset of BW must be greater than the
probability of W 2 BW , whether the members of BW are some “maximally
fine-grained worlds” in W or some more or less coarse-grained partition
cells on W . I will illustrate finding C2(i) in terms of an example, and I will
demonstrate C2(ii) and its consequences by means of a little calculation:

Example 1–Reconsidered

Let W ¼ {w1; . . . ;w1;000;000} be a set of 1,000,000 possible worlds again,

where each world wi corresponds to ticket i being drawn in a fair lottery.

Accordingly, let P be the uniform probability measure that is given by

P ð{w1}Þ ¼ . . . ¼ P ð{w1;000;000}Þ ¼ 1
1;000;000 again.

Now introduce the partition

P ¼ {{w1}; {w2; . . . ;w1;000;000}};

of W , or in other words: the agent is interested only in whether ticket 1

wins or not. Consider the partitions cells {w1} and {w2; . . . ;w1;000;000} as new

coarse-grained worlds andP as the resulting new set of such worlds. Based

on our original P , we can then define a new probability measure PP, for

which P serves as its sample space, and where PP assigns probabilities to

subsets of P as expected: PPð{{w1}}Þ ¼ 1
1;000;000, PPð{{w2; . . . ;w1;000;000}}Þ ¼

999;999
1;000;000, PPð{{w1}; {w2; . . . ;w1;000;000}}Þ ¼ 1, PPðBÞ ¼ 0. The new prob-

ability for a set X results from applying the original probability measure

P to <X (the set of members of W that are members of the partition cells

in X ); in particular, PPð{{w1}}Þ ¼ P ð{w1}Þ and PPð{{w2; . . . ; w1;000;000}}Þ ¼

P ð{w2; . . . ;w1;000;000}Þ.

The algorithm from section 2 (as sketched in note 6) tells us then that

the corresponding PP-stable sets are

{{w2; . . . ;w1;000;000}} and {{w1}; {w2; . . . ;w1;000;000}};

the first one of which has a probability slightly less than 1, while the second

one has a probability of exactly 1.

Finally, let BP
W ¼ {{w2; . . . ;w1;000;000}} and r ¼ PPð{{w2; . . . ; w1;000;000}}Þ:

then all of P1–P3 are satisfied, and since {{w2; . . . ;w1;000;000}} is nothing

but the negation of the proposition {{w1}}, this means that the agent

believes that ticket 1 will not win (relative to P).

In order to drive the point home, let us now maximally refine P to P 0

again so that one is interested again in which ticket will be drawn; or

equivalently, simply use the original W and P again. Then, as observed
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already in section 2, W is the only P -stable set, and our theory demands

that BW ¼ W . Consequently, the agent does not believe that ticket 1 will

not win (relative to the most fine-grained available partition). That is,

refining a partition can lead to a change of beliefs.

In section 4, I will return to this example, when I will evaluate its
consequences for the Lottery Paradox. So much concerning C2(i), for
the moment.

And about C2(ii) from above: this is just the alternative character-
ization of P -stable sets again that we had observed in section 2, but we will
see that it makes better sense to address its consequences in a context in
which one discusses the workings of partitions.

As stated in section 2, a set A is P -stable if and only if either P ðAÞ ¼

1 or for all w [ A, P ð{w}Þ . P ðW 2 AÞ. So, by P1–P3, if we are dealing
with the “nontrivial” case P ðBW Þ , 1, every singleton subset of BW must
have a probability greater than :BW , whether the worlds in question are
the “given” worlds in W or some more or less coarse-grained “pseudo-
worlds” as determined from some partition P of W . Either way, conse-
quently, for all w [ BW , P ð{w}Þ . 1 2 P ðBW Þ, and hence, for all w [ BW ,
P ðBW Þ . 1 2 P ð{w}Þ. In words, if the probability of some serious candi-
date for the actual world is really small, then P ðBW Þ, and hence the
probability of every believed proposition, must be really high, or otherwise
P1–P3 could not hold jointly. Or contrapositively: if P ðBW Þ, or for that
matter the probability of some believed proposition, is not particularly
high, then the probabilities of all worlds or partition cells in BW cannot
be particularly low either. For instance, if one wants P1–P3 to hold, and
the agent ought to believe some proposition of probability 0:91, then all
worlds or partition cells in BW need to have a probability of more than
0:09. That is, BW cannot contain more than ten worlds or partition cells.
Or if P1–P3 are meant to be satisfied, and the agent ought to believe some
proposition of probability 0:98, then all worlds or partition cells in BW

must have a probability of more than 0:02. Therefore, BW cannot contain
more than forty-eight worlds or partition cells. And if we let the number of
members of BW go to infinity, then the probability of BW , and thus of
every believed proposition, must tend to 1 in the limit.

Observations C2(i) and C2(ii) should make the limitations of the
stability theory of belief quite clear. How serious are they, and what, if
anything, can I say in defense of the theory?

C2(i) suggests that P1–P3 taken together make belief dependent
on, or relativized to, partitions. If, as is plausible, we count the agent’s
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choice of partition as belonging to the context of reasoning in which the
agent’s beliefs “take place,” or if the partition is at least determined from
such a context, then we might say that belief ends up relativized to con-
texts. But this should not take us by surprise anymore: We have already
seen that, according to P1–P3, the threshold in the Lockean thesis—and
thus what the agent believes—depends on the context (comprising the
agent’s attention, interests, stakes, degrees of belief, and so forth). We
have also made clear already that this does not entail any kind of priority
of probability over belief.

What we have established now is that the agent’s manner of parti-
tioning W ought to be also included in the context on which the agent’s
beliefs depend. But in view of the general impact that the context has on
belief according to the stability theory, this is hardly a big deal at this point
of argumentation.

Furthermore, there are quite a few well-known and successful
theories around that presuppose probabilities of some sort and for which
the same relativization to partitions can be observed—take Levi’s (1967)
theory of acceptance, in which partition cells are regarded as the “rel-
evant answers” to a question posed by the agent, or Skyrms’s (1984) the-
ory of objective chance, in which partition cells are “natural hypotheses”
that derive from the causal-statistical analysis of a subject matter. In the
former theory, what an agent accepts at a time depends on what he or she
regards as relevant answers, and in the latter theory, the chance of an event
depends on what hypotheses the agent regards as natural candidates and
how the agent distributes his or her subjective probabilities over them.

Third, C2(i) does not just affect the stability theory but really a
much wider class of theories of belief/acceptance and probability, as
proven by Lin and Kelly (2012a, secs. 13–14). Stability theory’s partition
dependence of belief is just a special case of the general phenomenon
that Lin and Kelly refer to as lack of “question-invariance” of acceptance.

Fourth, there are even some empirical findings on the so-called
Alternative-Outcomes Effect that seem to support the view that belief is
partition sensitive (see, e.g., Windschitl and Wells 1998): if possible scen-
ario outcomes are presented to people in terms of different partitions
(e.g., you hold three raffle tickets and seven other people each hold one
vs. you hold three and another person holds seven), then the partici-
pants’ numerical probability estimates of the focal outcomes remained
unaffected, while their corresponding nonnumerical or qualitative cer-
tainty estimates turned out to be sensitive to the partitions. I do not
claim that I could rationally reconstruct these experimental results on
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the basis of the stability account; and, as always, it is not so clear what kind
of bearing empirical results like these should have on a normative theory
of rational belief; but at least such findings indicate that actual beliefs of
actual people are indeed partition dependent.

Finally, while the stability theory has it that an agent’s beliefs may
change from one partition to another, there are also some invariances:
the same logical closure conditions apply to believed propositions rel-
ative to every partition whatsoever; relative to every partition, the prob-
ability of every believed proposition must exceed that of its negation (by
the Lockean thesis); and one can also derive a couple of cross-partition
laws. For example, take a partition to be given. A set BW has been deter-
mined to be the strongest believed proposition. Now coarsen the par-
tition inside of BW (or do not change anything there) and repartition
anyway you want outside of BW . However, do not repartition so that any
partition cells from inside of BW and from outside of BW end up in the
same cell in the new partition. If you abide by these constraints on repar-
titioning, then the original BW still determines a set that is also P -stable
on the new partition. Only if a partition is altered on BW without making it
coarser there, previously P -stable sets may no longer have stable counter-
parts after repartitioning. So it is not as if the theory entailed that chang-
ing partitions would always affect an agent’s beliefs in some erratic and
unpredictable manner.17

My overall diagnosis is that while belief certainly becomes more
strongly dependent on contexts than one might have hoped for, no deci-
sive argument against P1–P3 emerges from C2(i).

Now for C2(ii) from above, that is, if P ðBW Þ , 1, then the prob-
ability of every world or partition cell in BW must be greater than the
probability of W 2 BW . Given P1–P3, this leaves agents with the following
options: (A) Either they believe some proposition with a probability that
is not particularly close to 1, in which case they can make only very few
distinctions in terms of serious possibilities in BW ; or (B) they believe only
propositions that have probabilities very close to, or identical with, 1, in
which case they are flexible about drawing fine-grained distinctions
within BW ; or (C) they opt for a position in between the two extremes.
Let us assume that W itself is very fine grained in the sense of containing
a lot of worlds. Then, by means of partitioning, the obvious manner of
realizing (A) is to introduce a partition that is very coarse grained on BW ;

17. I am grateful to an anonymous referee whose comments on this part were
invaluable.
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for (B) a very fine-grained partition on BW will be the right choice; and
(C) will be the case if agents opt for a partition that lies somewhere in
between.

Option (B) should be appealing to all those who defend a view
according to which believed propositions ought to have a degree of
belief of 1 in general, for option (B) approximates that kind of position.
Examples in the relevant literature would be Levi (1980), van Fraassen
(1995), Arló-Costa (2001), Arló-Costa and Parikh (2005); and a closely
related position is held by Williamson (1998) if ‘belief ’ is replaced by
‘knowledge’ and ‘subjective probability’ by ‘epistemic probability’. All
of these proposals also share with the present theory the assumption
that ideal belief (or, in Williamson’s case, ideal knowledge) is closed
under logic. By invoking further resources—for instance, by starting
from a primitive conditional probability measure (Popper function) P ,
as van Fraassen (1998), Arló-Costa (2001), and Arló-Costa and Parikh
(2005) have done—one might even finesse P1–P3 so that option (B)
would get even closer to some of these proposals, for example, by singling
out only particular sets of probability 1 or only particular sets of very high
probability as believed propositions. Consequently, P1–P3 cannot be
much worse off than these proposals, as P1–P3 allow for them, or for
something close to them, to be realized. But P1–P3 are also less restrictive
than these proposals by not turning option (B) into a general require-
ment in all contexts.

Option (A) ought to be attractive to anyone who favors the Lock-
ean thesis with a “realistic” threshold that is not particularly close to 1;
examples include Kyburg (1961, 1970), or more recently, Kyburg and
Teng (2001), Foley (1993), Hawthorne and Bovens (1999), and Haw-
thorne and Makinson (2007). Of course, in contrast with the current
theory, these proposals do not include the closure of belief under con-
junction, but that might be because they think one could not have it in the
presence of the Lockean thesis anyway, which is not right given what we
found in the first two sections. The downside of P1–P3 if compared to
these other Lockean proposals is the additional constraint that in order
to realize (A), one needs to reason relative to sufficiently likely serious
possibilities only.

But how severe is this constraint? Is it really plausible to assume
that when we have beliefs and when we reason on their basis, we always
take into account every maximally fine-grained possibility whatsoever ? Instead,
in typical everyday contexts, we might reason relative to some contextu-
ally determined partition of salient and sufficiently likely alternatives. Say,
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for some reason in some context, we are interested only in whether the
three propositions A, B, C are the case or not. Hence, the possible worlds
or partition cells on which we concentrate are precisely all of the logical
combinations of these three propositions,

A ^ B ^ C ;A ^ B ^ :C ;A ^ :B ^ C ; . . . ;:A ^ :B ^ :C ;

and we take into account only the propositions that can be built from
them. For instance, in formal epistemology, when one studies confir-
mation or coherence or learning, one typically does so by means of
“small” probability spaces that may well correspond to what is required
by option (A). Indeed, when I turn to a concrete application of my theory
in section 6, I will deal with precisely such a situation in which only the
logical combinations of three propositions happen to be relevant. More
generally, when we represent an argument from natural language in
logical terms, we usually follow Quine’s (1960, 160) maxim of shallow anal-

ysis and end up with a formalization in terms of, say, just a couple of
propositional letters.18 When people draw inferences in everyday situ-
ations, then, according to what is perhaps the empirically most successful
theory of reasoning in cognitive psychology—Johnson-Laird’s theory of
mental models—they do not do so by representing infinitely many super-
fine-grained possibilities but rather by representing the, usually very few,
distinctions that are required in order to build a model of the situation.
And so on. In all of these cases, it seems that satisfying P1–P3 along the
lines of option (A) should be perfectly viable. It is only when one’s atten-
tion gets directed toward a great number of case distinctions that belief
ever gets closer to having a probability of 1. Adapting the title of Lewis
1996, rational belief also turns out to be elusive then.

Finally, the stability theory of belief allows for continuous
transitions between options (A) and (B) and hence for the compromise
option (C). All of these options are still governed by the same set of
general principles, that is, P1–P3.

Let us take stock. If P1–P3 are satisfied, and thus their conse-
quences C1, C2(i), and C2(ii) are true as well, the following picture of
our perfectly rational agent emerges: The agent must hold his or her
beliefs, and reason upon them, always relative to a context that involves
the agent’s attention, interests, stakes, the degrees of belief function P ,
and more. The context must include or determine a partition of the

18. “A maxim of shallow analysis prevails: expose no more logical structure than seems useful

for the deduction or other inquiry at hand.” Quine 1960, 160.
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underlying set of presumably very fine-grained worlds into more or less
coarse-grained partition cells that figure as “pseudo-worlds” in the sub-
sequent reasoning processes. Additionally, the context restricts the per-
missible thresholds in the Lockean thesis to a range of natural candidates
that are given by the probabilities of P -stable sets. From these thresholds,
whether implicitly or explicitly, the agent needs to choose the one that is
to be used for the Lockean thesis: the greater the threshold, the more
cautious the agent will be about his or her beliefs; but the greater the
threshold, the greater also the number of serious possibilities that the
agent is potentially able to distinguish.

In this way, the agent is able to maintain the logic of belief, the
axioms of probability, and the Lockean thesis simultaneously. The price
to be paid is this very dependency of belief on contexts. Accordingly,
while the logic of beliefs does hold locally within every context, logical
inferences across contexts are not licensed unrestrictedly. But P1–P3 also
guarantee some doxastic invariances across contexts. Moreover, in a lot of
everyday and scientific contexts, agents may restrict themselves to coarse-
grained possibilities without loss, and the fallback position of reasoning
in terms of the most fine-grained partition is available to them too, in
which case P1–P3 amount to a more conservative “probability 1” account
of belief (or something close to it).

While it is always hard to weigh the benefits of a theory against
its limitations, so far, the logic of belief, the axioms of probability, and
the Lockean thesis seem to do quite well against the drawbacks of
contextualization.

In the next section, I will put the theory to the test again by con-
sidering how well it does in the face of paradox.

4. Application to the Lottery Paradox

“Solving” a paradox by a theory usually involves the following ingredients:
the theory should avoid the absurd conclusion of the paradox; it should
preserve some, or many, of the original premises of the paradox; the
theory should explain why some of the premises need to be given up;
and it should explain why those premises that are given up appeared to be
true initially, by explaining—and maybe explaining away—the intuitions
that seemed to warrant these premises.

I want to argue that the theory from the last section does solve the
Lottery Paradox. (I will not deal with the Preface Paradox; to the extent to
which the Preface Paradox resembles the Lottery Paradox, similar con-

H A N N E S L E I T G E B

160



siderations apply, but the Preface story involves additional complications
that I do not want to get into here.) My main task will be to interpret and
evaluate two of the formal examples that we had already encountered
before: example 1 from section 1 and example 1–reconsidered in the last
section.

A fair lottery of one million tickets will be played. By the Lockean
thesis, a rational agent ought to believe of each ticket that it will not win
because each ticket is very likely to lose. But it is also plausible that belief is
closed under conjunction and that the agent’s degrees of belief should
reflect the fairness of the lottery. Taking these together leads to contra-
diction, along the lines of what was pointed out in (1a) of example 1 in
section 1.

What does the joint stability theory of belief and degrees of belief
predict concerning this paradox? First, for W ¼ {w1; . . . ;w1;000;000} and P

being uniform over W again, it suggests that a partition of the underlying
set of worlds needs to be determined. The salient options are:

. In a context in which the agent is interested in whether ticket i will

be drawn; for example, for i ¼ 1: Let P be the corresponding
partition {{w1}; {w2; . . . ;w1;000;000}}. The resulting probability
measure PP is given by P so that:

PPð{{w1}}Þ ¼
1

1; 000; 000
;PPð{{w2; . . . ;w1;000;000}}Þ ¼

999; 999

1; 000; 000

As determined in example 1–reconsidered, there are two
PP-stable sets, and one of the two possible choices for the stron-
gest believed proposition BP

W is {{w2; . . . ;w1;000;000}}. If BP
W is

chosen as such, our perfectly rational agent believes of ticket
i ¼ 1 that it will not be drawn, and of course P1–P3 are satisfied.

For example, this might be a context in which a single ticket
holder—the person holding ticket 1—would be inclined to say
of his or her ticket: “I believe it won’t win.”

. In a context in which the agent is interested in which ticket will be

drawn:
Let P 0 be the corresponding partition that consists of all

singleton subsets of W , or equivalently: keep W as it is. Conse-
quently, the probability measure PP 0 can be identified with
P again, and it is distributed uniformly over the one million
alternatives.
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As mentioned in example 1–reconsidered, the only P -stable
set—and hence the only choice for the strongest believed prop-
osition BW —is W itself: our perfectly rational agent believes
that some ticket will be drawn, but he or she does not believe of
any ticket that it will not win.19 Of course, P1–P3 are satisfied
again.

For example, this might be a context in which a salesperson
of tickets in a lottery would be inclined to say of each ticket: “It
might win” (that is, it is not the case that I believe that it won’t
win).

The same relativization to partitions had been exploited already by Levi
(1967, 40), in order to analyze Lottery-Paradox-like situations.

In either of the two contexts from before, the theory avoids the
absurd conclusion of the Lottery Paradox; in each context, it preserves
the closure of belief under conjunction; and in each context, it preserves
the Lockean thesis for some threshold (r ¼ 999;999

1;000;000 in the first case, r 0 ¼ 1
in the second case)—all of this follows from P -stability and the theorem
from section 2. In the first P-context, the intuition is preserved that, in
some sense, one believes of ticket i that it will lose since it is so likely to
lose. In the second P 0-context, the intuition is preserved that, in a differ-
ent sense, one should not believe of any ticket that it will lose since the
situation is symmetric with respect to tickets, as expressed by the uniform
probability measure, and of course some ticket must win. Finally, by dis-
regarding or mixing the contexts, it becomes apparent why one might
have regarded all of the premises of the Lottery Paradox as true. But
according to the present theory, contexts should not be disregarded or
mixed: partitions P and P 0 differ from each other, and different par-
titions may lead to different beliefs, as observed in the last section and
as exemplified in the Lottery Paradox. Accordingly, the thresholds in the
Lockean thesis may have to be chosen differently in different contexts,
and once again, this is what happens in the Lottery Paradox—which
makes good sense: in the second P 0- context, by uniformity, the agent’s
degrees of belief do not give him or her much of a hint of what to believe.
That is why the agent ought to be supercautious about her beliefs in that

19. Douven and Williamson (2006) prove on very general grounds that if a prob-
ability space is “quasi-equiprobable” (their term)—a generalization of uniform or equi-
probable probability measures—the corresponding belief set must either consist only
of propositions of probability 1 or it must include a proposition of probability 0. BW

coinciding with W falls under the first disjunct, of course.
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context; hence the maximally high threshold. In contrast, in the first
P-context, the agent’s degrees of belief are strongly biased against ticket
i being drawn. That is why the agent may afford to be brave in terms of his
or her beliefs about i not winning in that context. No contradictory con-
clusion follows from this since, according to the stability theory, it is not
permissible to apply the conjunction rule for beliefs across different
contexts.

This seems to be a plausible rational reconstruction and solution
(in the sense specified before) of the Lottery Paradox, based on the
theory from the last section.

I conclude that the stability theory handles the Lottery Paradox
quite successfully. The context sensitivity of belief that was observed in the
previous section actually works to the theory’s advantage here since one
can analyze the different reasons for assuming the various premises in the
paradox in terms of different contexts, without running into contradic-
tions. And the contexts in question arise naturally—from the interest in a
particular ticket winning or not, or the interest in which ticket will be
winning.

In the next section, I will turn to an application of the theory apart
from such paradoxical circumstances.

5. An Application in Formal Epistemology

Sometimes, when we analyze a concept, problem, or question on the basis
of subjective probabilities, we still want to be able to express our findings
also in terms of beliefs. Or the other way round. Or we want to refer both
to belief and probability right from the start. In all of these cases, a joint
theory of belief and degrees of belief is required.

In this section, I will present an example of the first kind by apply-
ing the stability theory of belief in the context of Bayesian formal
epistemology.

By the secular acceleration of the moon, one refers to the phenomenon
that the movement of the moon around the earth appears to accelerate
slowly. Astronomers had been aware of this for a long time, and in the
nineteenth century, they wanted to explain the phenomenon by means
of the physics at the time, that is, Newtonian mechanics, which turned out
to be a nontrivial problem.

In logical terms, when T is the relevant part of Newtonian me-
chanics, H is a conjunction of auxiliary hypotheses including the assum-
ption that tidal friction does not matter, and E is the observational
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evidence for the moon’s secular acceleration, then T and H together
logically imply :E. In other words: T , H , and E are not jointly satisfiable.
So given E , either T or H needs to be given up, and it is not clear which—
a classical Duhem-Quine case of underdetermination of theories by
evidence, or so it seems.

That is where the Bayesian story begins: Dorling (1979) argues
that this apparent instance of underdetermination vanishes as soon as
one takes into account subjective probabilities. For that purpose, he
reconstructs what might be called the “ideal” astrophysicist’s degrees of
belief at the time. Obviously, this is all fictional, but that is how it goes with
rational reconstructions, and Dorling does a sophisticated job of deriving
the probability measure on systematic grounds. He ends up with precisely
the probability measure from example 2 as discussed in the first two
sections, with ‘T ’ replacing ‘A’, ‘H ’ replacing ‘B’, and ‘E ’ replacing ‘C ’;
compare figure 1 from section 1. Hence, T ¼ {w1;w2;w5;w8}, H ¼ {w1;

w3;w7;w8}, and E ¼ {w5;w6;w7;w8}. Since ‘T ’, ‘H ’, and ‘E ’ are treated
like propositional letters here, the probability of T ^ H ^ E needs to be
set to 0 “by hand,” for the logically omniscient ideal astrophysicist at the
time already knew that this conjunction could be ruled out. Accordingly,
in example 2, the probability of {w8} had been set to 0. The probability
space as a whole is a typical case of a Bayesian philosopher of science
abstracting away from all further complications, such as the precise prop-
ositional contents of the single axioms of T , the various conjuncts of
H , and the various data that are summarized by E. In terms of coarse
graining, when I introduce beliefs into this Bayesian model further below,
I will thus be heading for option (A) from section 3.

Now what is the Bayesian response to the Duhem-Quine case? The
prior probability measure P assigns a high degree of belief to Newtonian
mechanics, it assigns a degree of belief to the conjunction of the auxiliary
hypotheses that is greater than what it assigns to its negation, and it
assigns initially a tiny probability to E :

P ðT Þ ¼ 0:54 þ 0:342 þ 0:018 ¼ 0:9; P ðH Þ ¼ 0:54þ 0:058

þ 0:00006 ¼ 0:59806; and P ðEÞ ¼ 0:002 þ 0:00006 ¼ 0:02006:

A perfectly rational Bayesian agent would then update his or her degrees
of belief by the relevant evidence E : the resulting new degrees of belief are

Pnew ðT Þ ¼ P ðT jEÞ ¼ 0:8976;P new ðH Þ ¼ P ðH jEÞ ¼ 0:003;

P new ðEÞ ¼ P ðE jEÞ ¼ 1:

H A N N E S L E I T G E B

164



This means that, after taking into account the observational data, the
ideal astrophysicist at the time still ought to have assigned a high degree
of belief to Newtonian mechanics. Moreover, she had become certain
about the evidence, but she should have assigned only a tiny degree of
belief to the conjunction of the auxiliary hypotheses. And that is pretty
much what happened in actual history: physicists gave up some of the
auxiliary assumptions, including the one of tidal friction being negli-
gible, but of course they continued to support Newtonian mechanics.
No Duhem-Quine problem emerges: a success story of Bayesianism.

This said, Dorling (1979, 179) mentions that “while I will insert
definite numbers so as to simplify the mathematical working, nothing in
my final qualitative interpretation will depend on the precise numbers”;
and that better be right—because of the fictional character of P , it would
be ridiculous if any of Dorling’s findings depended on his precise choice
of numbers. Dorling (1979, 180) also states that “scientists always con-
ducted their serious scientific debates in terms of finite qualitative subjec-
tive probability assignments to scientific hypotheses,” the idea being that
scientists never put forward numerical degrees of belief in their academic
debates. Instead, they argue that some hypothesis is highly plausible, that
given some hypothesis some other hypothesis is not very plausible at all,
or the like.20

However, Dorling does not seem to have the resources available to
derive the intended qualitative interpretation of his probabilistic results
in any systematic matter, or to prove the robustness of his interpretation
under slight modifications of numbers, or to offer any precise account of
qualitative subjective probability assignments.21

But there is an obvious way of filling this gap: by expressing Dor-
ling’s findings by means of the qualitative concept of belief, based on a
joint theory of belief and subjective probability. And the stability theory

20. In Dorling’s (1979, 180) own terms: scientists use expressions such as “more
probable than not,” “very probable,” “almost certainly correct,” “so probable as to be
almost necessary,” and so on.

21. Sometimes by ‘qualitative probability’ one means comparative probability: prob-
ability theory based on the primitive predicate ‘is at least as likely as’. And that is certainly
available to Dorling. But at the same time, that is not how Dorling (1979, 179) understands
‘qualitative probability’. As he points out, in order for his example to work, “H should
have been regarded at the time as more probable than not and T should have been
regarded as substantially more probable than H .” In order to make these locutions pre-
cise, he concludes, “something semi-quantitative is necessary” for which comparative
probability is not sufficient.
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of belief seems to be the obvious choice for this purpose, for the following
reasons:

First, Dorling’s argument seems to rely, if only tacitly, on the
following inference step: he determines that, after taking account of
evidence, the probability of T is high and the probability of H is tiny,
from which he concludes that T ought to be maintained, but H ought to be aban-

doned. After all, he wants to justify why scientists gave up on H but not
on T , and giving up is still a binary act. It is hard to see anything else to be
in operation here than a version of the Lockean thesis, which is what
P3 offers.

Second, according to the stability theory, and as I argued in section
3, belief turns out to be a coarse-grained version of subjective probability,
again due to the presence of the Lockean thesis. So when we translate
facts about P into facts about Bel by means of the Lockean thesis, we know
that a lot of information is being abstracted away—infinitely many prob-
ability measures will correspond to one and the same belief set. What is
more, we have seen in figure 2 that probability measures whose geometric
representations are close to each other also yield similar P -stable sets and
hence similar candidates for BW . Therefore, if we can confirm Dorling’s
diagnosis about underdetermination in terms of the ideal astrophysicist’s
beliefs as determined by the stability theory, we can be quite certain that
he was right when he claimed that his interpretation did not “depend on
the precise numbers.”

Third, scientists do seem to express their own beliefs and criticize
the beliefs of others when they conduct “their serious scientific debates,”
and they also apply the standard logical rules, including closure under
conjunction, when they do so: picture a scientist writing A on a black-
board and then later B, arguing that both are satisfied, and then imagine
another scientist stopping his colleague from writing A ^ B further down
below—this would certainly seem at odds with scientific practice. Which
gives us P1.

So the all-or-nothing concept of belief, with P1 and P3 from sec-
tion 3 in the background, seems to be precisely what is required to supply
Dorling with the lacking theoretical resources. Since P2 is a given anyway
by Bayesian lights, the stability theory of belief is what emerges.

In sections 1 and 2, we already determined the six P -stable sets that
result from Dorling’s choice of numerical values. According to the sta-
bility theory, a perfectly rational agent’s beliefs at the time need to be
given by one of these P -stable sets. We settle for the bravest possible
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choice in light of the fact that the probability of H is not particularly high;
this gives us:

BW ¼ {w1} ðr ¼ 0:54Þ

At this point, the agent believes Newtonian mechanics, the conjunction
of the auxiliary hypotheses, and the negation of E —that is: BelðT Þ,
BelðH Þ, Bel ð:EÞ—as well as all of their logical consequences, for example,
BelðT ^ H^ :EÞ. Bel and P taken together satisfy the Lockean thesis with
r ¼ 0:54 as a threshold. We also know from the previous sections that
if that Lockean threshold had not been given by the probability of a
P -stable set, then belief would not have been closed under conjunction.
For example, it might have been the case then that BelðT Þ, BelðH Þ, and
Belð:EÞ without BelðT ^ H ^ :EÞ being the case at the same time.

Just as in the probabilistic story from before, the next step for the
agent is to update his or her beliefs by means of E ¼ {w5;w6;w7;w8}. Since
E contradicts BW , that is, since the agent had expected :E to be true
beforehand, this is a case of proper belief revision in the sense of AGM
(1985) and Gärdenfors (1988). The standard method of revision in such
a case (see Grove 1988 for the details), given a sphere system of doxastic
fallback positions, is for the agent to move to the least sphere that is
consistent with the evidence, to intersect it with the evidence, and to
use the resulting set Bnew

W of worlds as the new strongest believed prop-
osition. Formally this is just like a Lewis-Stalnaker semantics for condi-
tionals, where one considers the least sphere that is consistent with the
antecedent proposition, one intersects the two, and then one determines
which consequent propositions are supersets of that intersection.22

If we use the total set of P -stable propositions as the obvious choice
of sphere system (recall section 2), then the least P -stable set that is
consistent with E is

{w1; . . . ;w5}:

Intersecting it with E yields

Bnew
W ¼ {w5}:

Therefore, the propositions that the agent believes after the update are
precisely the supersets of {w5}.23

22. I take what David Lewis called the “Limit Assumption” for granted here (1973).
23. More on the corresponding stability account of belief revision (or conditional

belief ) can be found in Leitgeb 2013a.
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This means that after taking into account the observational data,
the ideal astrophysicist at the time still ought to have believed Newtonian
mechanics. Moreover, she should have taken on board the evidence but
also believed the negation of the conjunction of the auxiliary hypotheses.
In short:

BelnewðT Þ;Belnewð:H Þ;BelnewðEÞ;

and, accordingly,

BelnewðT^ :H ^ EÞ:

Once again, this is exactly what happened in actual history. And all of this
is consistent with stability theory and with the previous purely probabi-
listic considerations since Bnew

W turns out to be Pnew -stable again (where
Pnew ð:Þ ¼ P ð: jEÞ).24 We can thus confirm Dorling’s intended qualitative
conclusions by applying the stability theory of belief to what would oth-
erwise be a purely Bayesian, and hence quantitative, theory.

6. Summary

I have presented a theory of belief and degrees of belief that combines
three parts, P1–P3, that are usually thought to lead jointly to trivialization
or inconsistency; in particular, the theory includes the closure of rational
belief under conjunction and the Lockean thesis on rational belief. In the
first two sections, I made it clear that, actually, neither trivialization nor
inconsistency follows from these assumption. In section 3, I gave the
official formulation of the theory, which I called the “stability theory”
because of the central notion of P -stability that figures in it and that
indeed entails the closure of belief under conjunction and the Lockean
thesis. But I also discussed the main cost of the theory: a strong form of
sensitivity of belief to context. In particular, the theory entails that what an
agent believes rationally will depend crucially on how the underlying
space of possibilities is partitioned. However, I argued that the benefits
of the theory seemed to outweigh its limitations. In section 4, I showed
that the theory is able to handle the Lottery Paradox. Finally, section 5
dealt with a concrete application of the theory to a problem in formal
epistemology, which demonstrated that this joint theory of belief and

24. This is not just a random coincidence. From the principles of stability theory,
one can derive such correspondence results for conditionalization and belief revision in

general; see Leitgeb 2013a.
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degrees of belief is more than just the sum of doxastic logic and subjective
probability theory taken together. All of this speaks in favor of the theory,
which I thus offer as an alternative to existing theories of belief or
acceptance.25
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