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Abstract

Previous research includes frequent admonitions regarding the importance of estab-
lishing connectivity in data collection designs prior to the application of Rasch models.
However, details regarding the influence of characteristics of the linking sets used to
establish connections among facets, such as locations on the latent variable, model–
data fit, and sample size, have not been thoroughly explored. These considerations
are particularly important in assessment systems that involve large proportions of
missing data (i.e., sparse designs) and are associated with high-stakes decisions, such
as teacher evaluations based on teaching observations. The purpose of this study is to
explore the influence of characteristics of linking sets in sparsely connected rating
designs on examinee, rater, and task estimates. A simulation design whose character-
istics were intended to reflect practical large-scale assessment networks with sparse
connections were used to consider the influence of locations on the latent variable,
model–data fit, and sample size within linking sets on the stability and model–data fit
of estimates. Results suggested that parameter estimates for examinee and task facets
are quite robust to modifications in the size, model–data fit, and latent-variable
location of the link. Parameter estimates for the rater, while still quite robust, are
more sensitive to reductions in link size. The implications are discussed as they relate
to research, theory, and practice.
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Performance assessments that involve rater judgments (i.e., rater-mediated assess-

ments) are used across a variety of disciplines and settings, including in education to

evaluate both student and teacher performance. A key feature of such assessments is

their reliance on raters to provide estimates of the examinees’ ability as measured by

the performance task. This particular feature is of note because of the impact that

individual rater characteristics may have on the scores that an examinee receives. The

act of rating is a complex process that is inherently error-prone (Cronbach, 1990).

Guilford (1954) noted that

the use of ratings rests on the assumption that the human observer is a good instrument of

quantitative observation, that he is capable of some degree of precision and some degree of

objectivity. . . . While forced to have much confidence in quantitative human judgments, we

must be ever alert to the weaknesses involved and to the many sources of personal biases in

those judgments. (p. 278)

In light of these concerns, scoring procedures often include multiple raters for

each performance to mediate the effect of differences in rater interpretations for indi-

vidual examinees. In particular, methods based on Rasch measurement theory

(Rasch, 1960) are often employed in performance assessments because they can

be used to obtain estimates of examinee achievement that are adjusted for differ-

ences in rater severity (Eckes, 2015; Engelhard, 1994; Wind & Peterson, 2018).

Rasch models are useful in the context of performance assessments because they

do not require each rater to score each examinee performance so long as there are

overlapping components in the assessment network, such as raters scoring com-

mon performances with other raters (i.e., connectivity; Eckes, 2015; Engelhard,

1997; Schumacker, 1999). Although approaches besides Rasch measurement mod-

els can also be used to adjust examinee estimates for differences in rater severity,

such as the generalizability theory (e.g., Longford, 1994), as well as approaches

based on analysis of variance (e.g., Braun, 1988) and regression (Lance, LaPointe,

& Stewart, 1994; Raymond & Viswesvaran, 1993; Raymond, Webb, & Houston,

1991; Wilson, 1988), the current study focuses on issues associated with this pro-

cedure in the context of Rasch measurement theory.

Researchers have emphasized the need for connectivity in data collection designs

to arrive at interpretable estimates when Rasch models are applied (Eckes, 2015;

Engelhard, 1997; Myford & Wolfe, 2000; Schumacker, 1999; Wind, Engelhard, &

Wesolowski, 2016). However, research related to the influence of the composition of

links within incomplete assessment networks remains relatively inconclusive. In par-

ticular, characteristics of these linking sets, including sample size, judged proficiency,

and the quality of ratings, have received limited attention in empirical analyses.

Connections among facets in operational assessment systems are often sparse,
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meaning that connectivity is shared between a limited number of facets (Myford &

Wolfe, 2000; Sykes, Ito, & Wang, 2008), which may lead to reduced precision in

parameter estimates. In extreme cases of sparseness, large numbers of examinees

may be rated by only a single rater, with raters sharing only a handful of ratings

between them. Accordingly, it is essential to understand the influence of these charac-

teristics, particularly in high-stakes assessment systems.

Sparse rating designs are prevalent across performance assessment contexts,

including assessments of students (e.g., essay-based writing assessments), and

teacher evaluation systems based on principal observations. In particular, teacher

evaluations by principals reflect a growing area of concern in educational research

and policy as these assessments are receiving increased weight in teacher evaluation

procedures while lacking empirical support for their psychometric quality (e.g.,

Cohen & Goldhaber, 2016). Within the context of rater-mediated teacher evaluation

systems based on principal observations, the current investigation seeks to provide

additional insight into the effects of various characteristics of linking sets used to

establish connectivity in sparse rating designs.

Purpose

The purpose of this study was to explore the influence of characteristics of linking

sets in sparsely connected rating designs on examinee, rater, and task estimates within

the context of rater-mediated teacher evaluation systems. Specifically, this study

explored the influence of three characteristics of a linking set in terms of the degree

to which manipulations of these characteristics resulted in changes in estimates of

examinees, raters, and tasks: (1) the size of the link, (2) judged proficiency levels

within the link, and (3) model–data fit within the link. Simulated data that reflect the

characteristics of a large-scale teacher evaluation system based on principal observa-

tions were used to consider the following research questions:

1. What effect does the size of a linking set of complete ratings have on rater,

examinee, and task parameter estimates in terms of location, model–data fit,

and stability in sparse assessment networks?

2. What effect does the model–data fit within a linking set of complete ratings

have on rater, examinee, and task parameter estimates in terms of location,

model–data fit, and stability in sparse assessment networks?

3. What effect does the judged proficiency level within a linking set of complete

ratings have on rater, examinee, and task parameter estimates in terms of

location, model–data fit, and stability in sparse assessment networks?

In this study, we use the term sparse assessment networks to refer to rater-mediated

assessment networks that are disconnected except for a relatively small linking set of

examinees whose responses are scored by all of the raters.
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Implications of Data Collection Designs in Rater-Mediated
Assessments

Due to practical constraints, scoring procedures in operational rater-mediated assess-

ments often involve incomplete designs. Accordingly, many researchers have

explored the consequences of incomplete data collection designs on a variety of

aspects of rater-mediated assessments. For example, within the framework of the

generalizability theory, several scholars have described procedures for estimating

rater reliability based on small subsets of complete ratings within incomplete assess-

ment networks (Brennan, 2001; Chiu & Wolfe, 2002; DeMars, 2015). Essentially,

these procedures are intended to provide estimates of rater reliability within the com-

plete data set based on estimates of variance components within smaller subsets of

complete ratings.

As noted above, Rasch models can also be applied in the context of incomplete

ratings, as long as the data collection design includes connectivity among facets. A

connected design is one in which every element is either directly or indirectly linked

to all other elements (Eckes, 2015; Engelhard, 1997). When Rasch models are applied

to connected designs, all of the facets (i.e., variables) in a rating system can be cali-

brated on a common scale (Eckes, 2015; Linacre & Wright, 2002); this result allows

practitioners to make judgments about examinees’ and raters’ performance in relation

to other examinees or raters. Although it is possible to obtain estimates based on the

Rasch model in the presence of incomplete rating designs, it is important to note that

large proportions of missing data within a rating design will result in large standard

errors, which imply that the precision of these estimates may be reduced (Eckes,

2015).

Engelhard (1997) described a variety of rating designs based on incomplete data

that result in data suitable for analysis with Rasch models. The key feature of these

incomplete assessment networks is the presence of links, or common components

between each facet in the assessment system. For example, in assessment systems

that include raters and examinees, raters can score common examinee performances

to provide direct and indirect links to other raters in the assessment network.

Furthermore, when assessments include more than two facets, such as raters, exami-

nees, and tasks, links can be established using common examinee performances on

common tasks. In contrast, when systematic links are not included in rating designs,

estimates of rater severity, examinee achievement, task difficulty, and other facet

calibrations cannot be compared on a single linear continuum.

Myford and Wolfe (2000) explored the effects of various sample sizes, achieve-

ment levels, and rater consistency within linking sets of ratings in a large-scale rater-

mediated speaking assessment and found that the stability of student achievement

and rater severity estimates appeared to be related to the distribution of scores and

rater consistency within linking sets. More recently, Wind et al. (2016) explored the

consequences of differences in model–data fit for raters on student achievement esti-

mates across rating designs with various levels of connectivity and found that the

interpretation of these estimates depends on the degree to which raters demonstrate
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acceptable fit to the Rasch model. Although results from these studies suggest that

the characteristics of common ratings used as links influence estimates based on

incomplete ratings, the effects of these characteristics have not been explored sys-

tematically using a simulation study. Furthermore, the influence of linking set char-

acteristics has not been explored previously in the context of rater-mediated teacher

evaluation systems.

Method

This study uses simulated data to explore the influence of various characteristics of

linking sets within sparse rating designs that reflect large-scale teacher evaluation

systems based on principal observations. First, polytomous ratings were generated

that were deliberately modified to reflect a sparse rating design, with only one rater

scoring each examinee. The simulated data sets also contain a relatively small link of

shared ratings common to all raters. Using a Monte Carlo simulation design, linking

set characteristics are manipulated to explore the degree to which these characteris-

tics correspond to changes in estimates of examinee achievement, rater severity, and

task difficulty based on the Many-Facet Rasch (MFR) model.

To align the language of teacher evaluation systems with the language typically

used in MFR model research—the following terms will be used to describe the vari-

ables in this study. Specifically, the examinee facet is made up of the teachers whose

teaching performance is evaluated, the rater facet is made up of the principals who

observe and evaluate teachers, and the task facet is made up of the aspects of teach-

ing that are evaluated.

Simulation Design

A simulation study was conducted to systematically explore the consequences asso-

ciated with manipulating linking set characteristics in sparsely connected rater-

mediated assessment networks. In large-scale rater-mediated performance assessment

systems based on sparse designs, such as teacher evaluation systems that involve

principal observations, complete data (i.e., all raters score all examinees on all

assessment components) do not exist. Accordingly, to provide insight into the influ-

ence of linking set characteristics in a manner that could be used to inform practice,

the simulation was designed to match the characteristics of operational teacher eva-

luation systems based on principal observations.

First, it was necessary to generate complete sets of ratings from which ratings

could be removed to create sparse designs that reflect practical constraints in opera-

tional large-scale rater-mediated assessment networks for teacher evaluation.

Consequently, although the data generation procedure produced complete data, these

fully crossed data sets were essentially an artifact of the simulation procedure that

does not reflect practice. To reflect practical constraints in large-scale rater-mediated

assessment procedures, ratings were removed from the complete data sets such that
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the raters were fully disconnected with the exception of the linking set prior to any

analyses. The resulting sparse data sets more closely reflect operational assessments

in which fully crossed ratings do not exist.

Following the design specifications in Table 1, polytomous ratings were simulated

based on a rating scale with five categories (0 = low; 4 = high) and the rating scale

model (Andrich, 1978). The generating rater severity parameters were randomly

selected from a uniform distribution between 24 and + 4 logits, and generating

examinee location parameters were simulated based on a standard normal distribu-

tion [u ~ N(0,1)]. The simulated data included four tasks with generating difficulty

parameters of 0.00, 20.50, 0.50, and 1.00 logits, respectively. After the complete rat-

ings were simulated, missingness was introduced by removing observations, such

that each data set only included the selected number of examinees for each rater, and

eliminating all common examinees between raters except for the linking sets. As a

result, each simulated data set included two subsets: (1) fully disconnected opera-

tional ratings, in which each examinee was rated by only one rater with no connec-

tions among raters and (2) fully crossed linking set ratings.

Simulating Operational Ratings

First, operational ratings were generated that reflected two rater sample sizes (N = 50

or N = 250). Using the simulated data sets, observations were systematically removed

to reflect fully disconnected rating designs. This systematic removal of observations

was used to construct data sets that reflect operational settings in which complete

data do not exist. First, the number of examinees that each rater scored was deter-

mined by randomly selecting a value between 4 and 40 from a uniform distribution.

As a result, the number of examinees that each rater scored varied across raters

within replications, as well as across replications. The range of possible values of

examinees assigned to each rater was selected based on typical conditions observed

within teacher evaluation systems, in which teacher observations are conducted

across numerous schools with varying numbers of teachers and principals. Based on

Table 1. Simulation Design

Design factors Levels

Operational ratings Rater sample size 50, 250

Linking sets
Size of linka 3, 6, 8
Model–data fit within linkb Acceptable fit, noisy fit
Average examinee measures within linkc Low, average, high

aRatings were generated based on a linking set with n = 8 and modified to reflect the smaller linking set

sample sizes (n = 6 and n = 3). bAcceptable fit was defined based on mean square error and standardized

Rasch Outfit statistics following Smith, Schumacker, and Busch (1998):

1� (6=
ffiffiffiffi
N
p

) � OutfitMSE � 1 + (6=
ffiffiffiffi
N
p

);�2 � OutfitZ\+ 2. cAverage examinee measures were

characterized as follows: Mu \ 22 = Low; 21 \ Mu \ + 1 = Average; Mu . + 2 = High.

684 Educational and Psychological Measurement 78(4)



this specification, the range of examinee sample sizes for the conditions based on 50

raters could range from 200, if each rater scored 4 examinees, to 2,000, if each rater

scored 40 examinees. Similarly, the range of examinee sample sizes for the condi-

tions based on 250 raters could range from 1,000, if each rater scored 4 examinees,

to 10,000 if each rater scored 40 examinees. Across conditions, only one rater scored

each of the examinees in the operational rating sets. For each examinee, the rater pro-

vided scores on all four tasks.

Simulating Linking Set Ratings

Next, ratings were simulated to reflect linking sets that varied in terms of the size of

the link (i.e., number of linked examinees; 3, 6, or 8), model–data fit for examinees

within the link (acceptable fit or noisy fit), and logit-scale measures of the examinees

within the links (low measures [Mu = 22]; average measures [Mu = 0], or high mea-

sures [Mu = 2]). All the raters scored all the examinees in the linking set, such that the

ratings within the linking set were fully crossed.

The linking set sample sizes were selected based on the range of linking set sample

sizes that are commonly observed in assessments based on observations of perfor-

mance, including teacher evaluation systems (J. M. Linacre, personal communication,

September 22, 2016). The simulation procedure resulted in acceptable model–data fit

for each of the facets in the linking set; as a result, systemtatic manipulation was only

needed to create the experimental conditions in which model–data fit was not accep-

table. Because the misfit occurred at the examinee level, the misfit included in the

linking set can be conceptualized as person misfit. In the context of item respose the-

ory, person fit is most frequently examined in the context of selected-response assess-

ments, where unexpected correct and incorrect responses for individual persons (e.g.,

as a result of guessing or testwiseness) contribute to response patterns described as

person misfit. Although researchers have explored person fit less frequently in perfor-

mance assessments compared with selected-response assessments (Cui & Mousavi,

2015; Meijer, Egberink, Emons, & Sijtsma, 2008; Rupp, 2013), unexpected responses

at the examinee level can also occur in these assessments that result in person misfit.

In the context of rater-mediated performance assessments, unexpected responses may

occur as a result of inconsistent achievement across tasks for a particular examinee,

or characteristics of an examinee’s performance that result in inconsistent rater inte-

pretations. Essentially, person misfit within the context of a rater-mediated perfor-

mance assessment reflects a pattern of unexpected ratings associated with a particular

performance.

A three-step procedure was used to incorporate person misfit into the linking set;

this procedure is illustrated in the appendix and summarized breifly here. First, rat-

ings were simulated such that data fit the model, with sample sizes and acheivement

levels determined by the experimental condition (see Table 1). The data were struc-

tured such that each row reflected a unique examinee and each column reflected a

unique rater within each task. Second, person misfit was introduced by creating
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discrepancies in rater severity ordering within the linking set. Specifically, within

each task, the raters (columns) were reordered such that the relative severity ordering

of each of the raters within the linking set was different from the relative severity

ordering observed within the operational ratings. The new sequence for the raters

within the linking set was determined using random sampling without replacement.

Finally, the column labels for the Rater ID numbers were replaced to reflect the orig-

inal rater ordering, while retaining the contents of the rearranged columns. The rater

reordering within the linking set resulted in a different relative rater severity ordering

between the operational and linking set ratings when the operational and linking set

ratings were analyzed together. These discrepancies resulted in higher-than-expected

values of model–data fit statistics within the linking set. Because high values of the

Rasch Outfit statistic, which indicate extreme residuals or unexpected responses, are

generally described as more cause for concern than low values, which indicate less

variation than expected by the probabilistic model (Wolfe & Smith, 2007), the simu-

lation procedures for introducing misfit were limited to higher-than-expected values

of Outfit statistics (i.e., ‘‘noisy’’ fit).

After they were generated, the linking set ratings were appended to the operational

ratings to create sparse rating designs in the simulated data. One hundred replications

were completed within each cell of the simulation design.

Data Analysis

The simulated data were analyzed using a two-step procedure. First, the rating scale

formulation of the MFR model (Andrich, 1978; Linacre, 1989) was applied to each

data set using the Facets computer program (Linacre, 2015). The rating scale formu-

lation of the MFR model was selected to match previous research on data collection

systems for rater-mediated assessments (Myford & Wolfe, 2000; Wind et al., 2016).

Stated mathematically, the model is as follows:

ln
Pnij(x = k)

Pnij(x = k�1)

� �
= un � li � dj � tk ; ð1Þ

where un represents the judged achievement level of examinee n on the logit scale;

li represents the severity level of rater i on the logit scale; dj represents the judged

difficulty of task j on the logit scale, and tk is the location on the logit scale where

the probability for a rating in category k and a rating in category k 2 1 are equal.

After estimates for each facet were obtained for the simulated data sets, three

major dependent variables were of interest: (1) logit-scale locations for elements

within facets and their corresponding standard errors, (2) estimates of model–data fit

for elements within facets, and (3) correlations between examinee location estimates

based on the complete linking set conditions and the estimates based on the modified

linking set conditions. These dependent variables are elaborated below.
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Logit-Scale Locations and Standard Errors

First, logit-scale locations and their corresponding standard errors were examined for

the examinee, rater, and task facets across each of the simulated data sets. In particu-

lar, the average location and spread of estimates (i.e., standard deviation) of these

estimates were examined in order to consider differences in the overall calibrations

and variation in facet locations across conditions. Standard errors for each facet were

also examined as an indicator of the precision of the logit-scale estimates.

Model–Data Fit

Second, estimates of model–data fit were examined for the examinee, rater, and task

facets across each of the simulated data sets. Specifically, values of the unstandar-

dized (mean square error [MSE]) and standardized infit and outfit statistics were

examined for each of the facets across each of the conditions to consider differences

in the overall alignment between model expectations and observed response patterns

related to differences in connectivity.

Correlations Across Linking Set Conditions

Finally, the stability of examinee estimates across data collection designs was exam-

ined using correlations between each of the original linking set conditions (NLink = 8)

and the corresponding conditions based on modified linking set sample sizes.

Specifically, these correlations were calculated between examinee estimates from

each replication of the simulation conditions based on linking sets with eight common

examinees and the corresponding estimates based on modifications of these data sets

that included six or three common examinees in the linking sets. This correlation pro-

cedure reflects the use of the simulation conditions based on linking sets with eight

common examinees (NLink = 8) as the frame of reference for considering the influence

of different acheivement levels and model–data fit across linking sets with smaller

sample sizes. Accordingly, it should be noted that the correspondence between the

original linking set conditions (NLink = 8) and the two modified sample sizes (NLink =

6 and NLink = 3) was more meaningful than the correspondence between the observed

estimates and the original generating parameters for the complete ratings. Because we

were interested in the changes in examinee, rater, and task estimates across sample

sizes in the presence of different achievement levels and model–data fit, the degree to

which the estimation procedure recovered the original parameters for the complete

ratings (i.e., bias in the initial parameter estimates for NLink = 8) was beyond the scope

of the study. This point is discussed further at the end of the article.

Results

In this section, the results are organized as follows. First, descriptive statistics for the

conditions based on the original linking set sample size (NLink = 8) are presented to
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verify that the simulation procedure resulted in ratings with the intended characteris-

tics and to establish the characteristics of the conditions that serve as a frame of ref-

erence for the modified linking set sample sizes. Then, results are summarized

according to the three linking set characteristics that correspond to the guiding

research questions for this study: (1) size of the linking set, (2) model–data fit within

the linking set, and (3) judged proficiency level within the linking set. Conclusions

and a discussion of the results in terms of the research questions follow.

Calibration of the Linking Sets

To verify that the simulated ratings matched the intended design specifications, sum-

mary statistics were examined within the linking sets and operational ratings across

replications for all of the simulation conditions based on the original linking set sam-

ple size (NLink = 8). Within the linking sets, the characteristics of the examinee facet

were of particular interest because this facet was manipulated in the simulation con-

ditions. Table 2 includes summary statistics for the examinee facet within the linking

sets based on eight common examinees. The results in Table 2 support the hypothesis

that the simulated ratings reflect the intended characteristics. Specifically, values of

the location estimates were lowest in the conditions in which the generating para-

meters were specified as low, followed by the conditions in which the generating

parameters were specified as average, and highest in the conditions in which the gen-

erating parameters were specified as high. The standard errors associated with the

logit-scale locations suggest that the estimates of examinee locations within the link-

ing set were more precise (i.e., smaller standard errors [SE]) in the conditions based

on the larger rater sample size (NRaters = 250: 0.04 � SE� 0.06) compared with the

conditions based on the smaller rater sample size (NRaters = 50: 0.10 � SE� 0.14).

Furthermore, the average standard errors suggested slightly less precise estimates for

linking set examinees within the conditions based on acceptable model–data fit com-

pared with the conditions based on noisy model–data fit. Finally, values of the

model–data fit statistics were higher and exceeded the critical values in the condi-

tions in which the linking set was specified as noisy than in the conditions in which

the linking set was specified to have acceptable model–data fit.

Calibration of the Operational Ratings

Next, summary statistics were examined within the operational ratings for the condi-

tions in which the original linking set sample size was used (NLink = 8). These results

are summarized in Tables 3, 4, and 5 for the examinee, rater, and task facets, respec-

tively. Across the three facets, the results suggested that the overall calibration of

examinees, raters, and tasks matched the specifications of the simulation design, with

average estimated logit-scale locations around zero for each facet.

In terms of standard errors, the results suggested notable differences related to the

precision of logit-scale locations between the operational ratings and the linking set
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ratings, as well as across the three facets. Specifically, the average standard errors for

the examinee facet were substantially larger within the operational ratings compared

with those observed within the linking set (see Table 2)—suggesting less precision in

operational examinee estimates based on the sparse rating design. However, the stan-

dard errors for the examinee facet were comparable across the two rater sample sizes,

with slightly larger standard errors (i.e., slightly less precision) observed within the

conditions based on acceptable model–data fit within the linking set compared with

the conditions based on noisy model–data fit. Compared with the examinee facet, the

standard errors were smaller for the rater and task facets—indicating more precise

logit-scale location estimates for individual raters and tasks. The standard errors for

the rater facets also showed the pattern that the estimates obtained from the condi-

tions with acceptable model–data fit within the linking set were more precise than

those obtained from the conditions based on noisy model–data fit. However, for the

task facet, average values of the standard errors were equivalent across conditions.

Finally, average values of all four model–data fit statistics reflect adequate overall

fit for the examinee, rater, and task facets. However, within the rater and task facets,

slightly more variation was observed among values of the standardized Infit and

Outfit statistics within the conditions based on linking sets with noisy fit.

Size of the Linking Set

The first research question focuses on the influence of the sample size within the

linking set on parameter estimates, model–data fit, and the stability of estimate in

sparse rating designs. Because the conditions based on a linking set with eight com-

mon examinees served as the frame of reference, the results in this section focus on

the conditions in which the size of the linking set was modified from eight common

examinees to six or three common examinees.

Parameter Estimates. First, logit-scale locations and corresponding standard errors

were examined for each facet across the conditions based on the two modified linking

set sample sizes. For examinees, the average estimated proficiency levels were fairly

stable across conditions with linking sets based on six and three common examinees

(20.36 �Mu�20.22). Although these estimates reveal a slight downward bias

between the observed average examinee locations and the generating parameters,

which were specified with a mean of zero logits, the finding of generally consistent

average estimates between the average estimates within the conditions based on the

original linking set sample size (see Table 3) and the two modified sample sizes sug-

gests that the examinee location estimates were generally robust across modifications

to the linking sets. Furthermore, the average standard errors for the examinee facet

based on the two modified linking sample sizes were comparable with the average

values observed within the conditions based on the original linking set sample size

(see Table 3). Specifically, for both modified linking set sample size conditions, the

Wind and Jones 693



average standard errors for examinees were comparable across the two rater sample

sizes (NRaters = 50: 0.92 �MSE,u� 0.99; NRaters = 250: 0.93 �MSE,u� 0.98).

For raters, the average severity calibrations were stable across conditions with

linking sets based on six and three common examinees (Ml = 0.00 across conditions).

The average standard errors for the rater facet based on the two modified linking

sample sizes were also comparable to the average values observed within the condi-

tions based on the original linking set sample size (see Table 4) and across the two

rater sample sizes (NRaters = 50: 0.16 �MSE,l� 0.18; NRaters = 250: 0.16 �MSE,l�
0.18).

Similar to raters, the average task difficulty calibrations were comparable across

conditions with linking sets based on six and three common examinees (Md = 0.00

across conditions). The average standard errors for the task facet based on the two

modified linking sample sizes were also comparable to the values observed based on

the original linking set sample size. Across both modified linking set sample sizes,

the average values of the standard error for the task estimates were comparable across

the two rater sample sizes (NRaters = 50: 0.04 �MSE,d� 0.05; NRaters = 250: MSE,d =

0.02).

Model–Data Fit. Next, values of Rasch model–data fit statistics were examined for

the examinee, rater, and task facets across the conditions in which the size of the link-

ing set was modified from eight common examinees to six or three common exami-

nees. For all three facets, acceptable overall average values of unstandardized and

standardized fit statistics were observed based on all the conditions in which the link-

ing sets were modified to include either six or three common examinees. These val-

ues were quite stable across the modified linking set sizes for examinees (DInfit MSE�
0.08; DStd. Infit� 0.08; DOutfit MSE� 0.12; DStd. Outfit� 0.11) and raters (DInfit MSE�
0.02; DStd. Infit� 0.06; DOutfit MSE� 0.03; DStd. Outfit� 0.09). However, slightly more

variation was observed among the model–data fit statistics for the task facet between

linking set sizes, particularly with regard to the standardized fit statistics (DInfit MSE�
0.01; DStd. Infit� 0.35; DOutfit MSE� 0.02; DStd. Outfit� 0.65), where noisier fit statis-

tics (higher values of fit statistics) were observed within the conditions based on

NLink = 3.

Stability of Estimates. Next, bivariate correlations were calculated between the logit-

scale locations of examinees, raters, and tasks based on the conditions that included

eight common examinees and the estimates based on the modified sample sizes

(NLink = 6 and NLink = 3). Specifically, within each condition, estimates of examinee

proficiency within the operational ratings based on NLink = 6 or NLink = 3 were corre-

lated with estimates of examinee proficiency obtained from corresponding conditions

based on NLink = 8. Average values of the correlation coefficients and standard devia-

tions across the replications of each condition are presented in Table 6.

For the examinee facet, results from the correlation analysis suggest very high

correspondence (r� 0.96) between estimates based on the original linking set
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sample size (NLink = 8) and the two modified sample sizes, with average correlations

between the original sample size and the conditions based on six common examinees

slightly higher and less variable than the correlations between the original sample

size and the conditions based on three common examinees. For the rater facet, high

correlations (r� 0.89) were also observed between estimates based on the original

linking set sample size and the conditions based on six common examinees for both

rater sample sizes. Values of the correlation coefficient were slightly lower for the

conditions based on three common examinees (0.80 � r� 0.98). Correlations

between task estimates based on the original linking set sample size and the condi-

tions based on six and three common examinees reflect the general pattern observed

for the examinee and rater facets. Specifically, very high correlations (r� 0.99) were

observed between estimates based on the original linking set sample size and the

conditions based on six and three common examinees for both rater sample sizes.

Model–Data Fit Within the Linking Set

The second research question focuses on the influence of differences in model–data

fit within the linking set on parameter estimates, model–data fit, and the stability of

estimates.

Parameter Estimates. Although the overall calibration of the three facets was compa-

rable across model–data fit conditions, some differences were observed with regard

to the spread of logit-scale locations. For examinees, slightly higher values of stan-

dard deviations were observed within the conditions based on NLink = 6 when the

linking sets included acceptable model–data fit (1.45 � SDu� 1.58) compared with

the conditions based on linking sets with noisy model–data fit (NLink = 6: 1.28

� SDu� 1.39). However, for the conditions based on NLink = 3, the examinee esti-

mates were more variable, particularly in the conditions based on 250 raters. Whereas

the standard deviations of examinee estimates when NRaters = 50 reflected the general

pattern of higher standard deviations for the conditions based on acceptable model–

data fit (1.55 � SDu� 1.69) than the conditions based on noisy model–data fit (1.41

� SDu� 1.52), the opposite pattern was observed when NRaters = 250: (acceptable

model–data fit: 1.50 � SDu� 1.65; noisy model–data fit: 2.77 � SDu� 2.78). In

terms of standard errors, slightly higher average standard errors, which suggest less

precise estimates, were observed for the examinee estimates within conditions based

on acceptable model–data fit (0.92 �MSE,u� 0.95) compared with the conditions

based on noisy model–data fit (0.97 �MSE,u� 0.99).

For the rater facet, slightly larger standard deviations in rater severity calibrations

were observed based on linking sets with acceptable model–data fit (2.10 � SDl�
2.37) compared with the conditions in which the linking sets included noisy model–

data fit (1.91 � SDl� 2.05). Similar to examinees, slightly higher average standard

errors for rater severity calibrations were observed for the conditions based on accep-

table model–data fit (0.17 �MSE,l� 0.18) compared with the conditions based on
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noisy model–data fit (0.16 �MSE,l� 0.17). For tasks, slightly larger standard devia-

tions among task difficulty calibrations were observed based on linking sets with

acceptable model–data fit (NLink = 6: 0.69 � SDd� 0.72; NLink = 3: 0.71 � SDd�
0.74) compared with the conditions in which the linking sets included noisy model–

data fit (NLink = 6: 0.34 � SDd� 0.42; NLink = 3: 0.53 � SDd� 0.70). Furthermore,

slightly higher average standard errors for the task estimates were observed for the

conditions based on acceptable model–data fit (0.02 �MSE,d� 0.05) compared with

the conditions based on noisy model–data fit (0.02 �MSE,d� 0.04).

Model–Data Fit. For examinees, acceptable average values across replications of

unstandardized and standardized fit statistics were observed across conditions based

on linking sets with acceptable and noisy model–data fit, where the maximum abso-

lute difference in Infit MSE or Outfit MSE across conditions based on linking sets

with acceptable and noisy model–data fit was 0.12 and the maximum change in stan-

dard deviations for Infit and Outfit MSE was 0.20. With regard to standardized fit

statistics, the maximum absolute difference in average standardized Infit or Outfit

across conditions based on linking sets with acceptable and noisy model–data fit was

0.13, and the maximum change in standard deviations for standardized Infit and

Outfit was 0.07.

For the rater facet, model–data fit statistics were slightly more variable when the

linking sets included noisy model–data fit based on both modified linking set condi-

tions, particularly with regard to standardized fit. Specifically, the maximum absolute

difference in rater Infit MSE or Outfit MSE across conditions based on linking sets

with acceptable and noisy model–data fit was 0.05 and the maximum change in stan-

dard deviations for Infit and Outfit MSE was 0.09, where higher values of model–data

fit statistics and higher standard deviations were observed within the conditions based

on noisy model–data fit. In terms of standardized fit statistics, the maximum absolute

difference in Infit or Outfit across conditions based on linking sets with acceptable

and noisy model–data fit was 0.15, and the maximum change in standard deviations

for standardized Infit and Outfit was 0.34; similar to the unstandardized rater fit sta-

tistics, higher values of model–data fit statistics and higher standard deviations were

observed within the conditions based on noisy model–data fit.

For the task facet, average values of each of the fit statistics were generally within

the range of expected values when data fit the Rasch model across both modified

linking set conditions. However, several large standard deviations appeared for the

standardized Infit and Outfit statistics within conditions based on linking sets with

noisy model–data fit. Specifically, the maximum absolute difference in task Infit

MSE or Outfit MSE across conditions based on linking sets with acceptable and noisy

model–data fit was 0.02, and the maximum change in standard deviations for Infit

and Outfit MSE was 0.10, where higher values of model–data fit statistics and higher

standard deviations were observed within the conditions based on noisy model–data

fit. The maximum absolute difference in standardized Infit or Outfit across conditions

based on linking sets with acceptable and noisy model–data fit was 2.22, and the
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maximum change in standard deviations for standardized Infit and Outfit was 4.36,

where higher values of model–data fit statistics and higher standard deviations were

observed within the conditions based on noisy model–data fit.

Stability of the Estimates. For examinees, correlations based on conditions in which

the linking set was noisy were slightly higher (0.99 �Mr� 1.00) than the correla-

tions based on conditions in which the linking set included acceptable model–data fit

(0.96 �Mr� 0.99). Although the overall average correlations were lower for the

rater facet, a similar pattern was observed with regard to the model–data fit condi-

tions. Specifically, average correlations between rater severity calibrations were

higher in the conditions in which the linking sets displayed adequate model–data fit

(0.80 �Mr� 0.96) compared with those with noisy fit (0.93 �Mr� 1.00); this pat-

tern persisted across rater sample size conditions. For tasks, the correlations were

equivalent across model–data fit conditions (Mr = 1.00, SD = 0.00).

Judged Proficiency Level Within the Linking Set

The third research question focuses on the influence of the judged achievement level

within the linking set on parameter estimates, model–data fit, and the stability of esti-

mate in sparse rating designs. The results from the simulation study revealed that the

values of parameter estimates and corresponding standard errors, model–data fit sta-

tistics, and stability of the estimates were comparable across the simulation condi-

tions in which the linking set was manipulated to reflect low, average, and high

achievement levels.

Summary and Conclusions

The purpose of this study was to explore the influence of characteristics of linking

sets in sparse rating designs on examinee, rater, and task estimates. Simulated data

that reflect the characteristics of large-scale teacher evaluation systems based on

principal observations were used to consider the effects of embedding linking sets

with varying characteristics within sparsely connected assessment networks.

Specifically, differences in sample size, judged proficiency level, and model–data

fit within linking sets were considered in terms of their influence on estimates of

examinee (teacher) proficiency, rater (principal) severity, and task difficulty.

Overall, the results suggested that embedding linking sets of complete ratings

within disconnected assessment networks facilitated the calibration of examinees,

raters, and tasks on a common scale and that estimates of examinee proficiency,

rater severity, and task difficulty were relatively stable across linking sets with

different characteristics. In this section, tentative conclusions are presented as they

relate to the research questions.
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What effect does the size of a linking set of complete ratings have on
estimates of examinee proficiency, rater severity, and task difficulty in
terms of location, model–data fit, and stability in sparse assessment
networks?
Parameter Estimates. In terms of parameter estimates for examinees, raters, and tasks,

results from the simulation study suggested that parameter estimates were not sub-

stantially affected by changes in the size of the link. Changes in average parameter

estimates across all conditions were marginal (0.01 �DM� 0.06). Furthermore, the

overall spread of rater and task calibrations on the logit scale was comparable across

linking set sizes.

With regard to standard errors for the parameter estimates, we observed a large

difference in the precision of the logit-scale location estimates for examinees between

the linking set and operational ratings, where the estimates of examinees within the

linking set were more precise (smaller standard errors) compared with those in the

operational set. However, this result was to be expected based on previous research

on sparse rating designs. Furthermore, the values of standard errors were comparable

across modifications of the linking set sample size.

Model–Data Fit. Results suggested that model–data fit for examinees remained accep-

table across varying sizes of the linking set. However, slightly more variation was

observed in model–data fit for the task facet when the sample size within the linking

set was reduced. These results suggest that model–data fit may be more variable

when a smaller link size is used.

Stability of Estimates. Results suggested a high degree of stability in estimated exami-

nee proficiency measures and task difficulty measures between the original linking

set sample sizes and the two modified linking set sample sizes. Only slightly more

variability was observed when the linking set included three common examinees.

Similarly, strong positive correlations for rater calibrations between the original

linking set sample sizes and the two modified linking set sample sizes indicate that

rater severity measures also had a high level of stability. However, these correlations

were markedly lower than those of the other two facets and also exhibited more

variability. This finding suggests that the relative ordering of raters changed slightly

when the size of the linking set was reduced. Furthermore, the rater calibrations were

slightly less consistent when the linking set included three common examinees than

when the linking set included six common examinees.

What effect does model–data fit within a linking set of complete ratings
have on rater, examinee, and task parameter estimates in terms of location,
model–data fit, and stability in sparse assessment networks?
Parameter Estimates. The results suggest that the linking sets with additional noise

tended to provide more consistent and precise estimates of facet parameters than
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linking sets with more acceptable fit levels, where smaller standard deviations in

logit-scale locations and smaller standard errors were observed when the linking set

included noisy model–data fit than when the linking set included acceptable fit. These

results suggest that more noise in the ratings of the common examinees that are

included in the link may result in more information about facets in the rating design.

Model–Data Fit. Overall model–data fit for the examinees and raters remained accep-

table for both noisy and acceptable linking set conditions. However, slightly more

variation was observed in model–data fit for the task facet when noisy linking sets

were embedded in the disconnected assessment networks. The increase in variation

suggests that reduction in sample size may provide slightly less consistent estimates

of task difficulty.

Stability of Estimates. The correlations between parameter estimates obtained from

both acceptable and noisy linking sets suggested slightly more stable parameter esti-

mates for examinees when the linking set included noisy model–data fit. For the rater

facet, conditions based on noisy fit within the linking set resulted in slightly less sta-

ble parameter estimates. For the task facet, the results did not suggest any noticeable

impact on the stability of parameter estimates for the task facet.

What effect does the judged proficiency level within a linking set of
complete ratings have on rater, examinee, and task parameter estimates in
terms of location, model–data fit, and stability in sparse assessment
networks?

The results did not indicate that judged proficiency level within the link had a mean-

ingful effect on any of the estimated facet parameters. This result was true for loca-

tion and variability of parameter estimates, model–data fit, and stability, suggesting

that judged proficiency level may not noticeably contribute to the quality of the link.

Discussion

The results from this study support the idea that disconnected rating designs can be

successfully connected using a block of shared ratings (Eckes, 2015; Engelhard,

1997; Myford & Wolfe, 2000). Connecting a disconnected data set with a block of

shared ratings can result in stable estimates of examinee ability and task difficulty

and provide useful information regarding rater severity. This finding is important

because sparsely connected rating designs are frequently used in operational assess-

ment situations, including teacher evaluation systems based on principal observa-

tions. Practitioners and researchers can obtain quality estimates of examinee ability

by using small subsets of fully crossed ratings within sparsely connected assessment

systems. However, estimates for principal severity and other characteristics may be

slightly less precise.
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When considering the results from this study in terms of previous research, it is

interesting to note that the sample size within the linking set appeared to have a more

notable impact on the calibration and stability of the parameter estimates compared

with the other manipulated characteristics. In particular, the finding that logit-scale

locations within the linking set did not have a notable impact stands somewhat in

contrast to the results reported by Myford and Wolfe (2000), who reported that higher

logit-scale locations within linking sets appeared to result in higher quality connec-

tions within incomplete rating designs. On the other hand, our results were similar to

those reported by Myford and Wolfe (2000) related to model–data fit within linking

sets. Specifically, these authors reported that linking sets made up of less-consistent

(i.e., more misfitting) benchmark performances resulted in higher levels of stability

across rating designs than did linking sets made up of more-consistent performances.

Implications for Practice

The findings from this study highlight several important considerations for practi-

tioners and researchers when designing data collection systems for rater-mediated

performance assessments. First, these findings suggest that even small links may pro-

vide relatively stable measures of examinee ability and task difficulty and, to a lesser

extent, rater severity. This finding has important implications for practice because

using a shared block of ratings in situations where a fully, or even moderately, con-

nected design is too expensive or impractical can provide a feasible way to facilitate

the interpretation of examinee achievement measures and task difficulty estimates on

a common scale across raters.

Second, the results from this study suggest that increasing the size of the link can

improve the overall stability of rater severity estimates. This finding is important

because one benefit of using MFR analysis is the ability to simultaneously evaluate

rater performance along with examinee proficiency and task difficulty. Although the

results from this study do not indicate a minimum number of common examinees that

must be included in the linking set, and although prior research suggests that even

one rating may be sufficient for linking purposes (Myford & Wolfe, 2000), increasing

the number of shared ratings may provide a more precise and stable measure of rater

severity. Along the same lines, larger sample sizes within the link have the potential

to reduce the impact of idiosyncrasies in individual examinees within the link on the

stability of rater severity estimates.

Finally, when using a block of shared ratings, care should be taken to include some

examinees who are likely to elicit less consistent ratings. Somewhat counterintui-

tively, the results from this study and those reported by Myford and Wolfe (2000)

suggested that selecting common performances with higher levels of misfit may result

in higher levels of precision of parameter estimates. In operational settings, this could

be accomplished by including some common examinees in the linking set who are

known to be difficult for raters to rate consistently. This result can potentially be

interpreted as somewhat akin to the effects of including a more discriminating item
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on a selected-response test. While these results do not suggest a specific ratio of noisy

and acceptable fit within a linking set, we observed that adding only two such exami-

nees to the link markedly improved the precision of the parameter estimates.

Limitations

When considering the results from this study, several limitations are important to

note. First, we did not explore issues related to parameter recovery between the gen-

erating parameters for the simulation conditions and the estimated logit-scale loca-

tions that were obtained after introducing sparseness into the simulated data sets.

Rather, we used the largest linking set sample size (NLink = 8) as a frame of reference

from which to consider the stability of the estimates across modified linking set con-

ditions. This analytic procedure reflects the nature of sparse rating designs in opera-

tional performance assessment settings, including teacher evaluation.

Sparse rating designs have the inherent limitation that the precision of the obtained

parameter estimates will decrease as the sparseness of the rating design increases. In

other words, the missingness in the data structure leads to inflated standard errors,

which in turn lead to imprecision in parameter estimates (Eckes, 2015). While this

study suggests that parameter estimates tend to be stable across changes in the num-

ber, model–data fit, and ability of the linked examinees, the results do not imply that

increasing the size of a block of shared ratings in a sparsely connected design will

increase the precision in any measurable way.

That being said, the purpose of this study was not to explore the parameter recov-

ery of sparse rating designs. This topic is of importance, considering the prevalence

of sparse designs in the field of education; however, little research has been conducted

on how best to improve the precision of parameter estimates in such cases. More

research should be undertaken to explore how the precision of parameter estimates

can be improved when sparse rating designs are unavoidable. Such research may wish

to empirically test the effect of various improvements to sparse rating designs, or

compare the benefits of other forms of analysis besides Rasch, such as the generaliz-

ability theory, that may be appropriate (Sudweeks, Reeve, & Bradshaw, 2004).

Second, we did not manipulate or examine rater effects (e.g., leniency/severity,

central tendency, or other types of range restriction, biases, etc.) in the simulated

data. Accordingly, it was not possible to systematically explore the influence of these

effects in the context of sparsely connected assessment systems. Particularly in

assessment situations with only one rater per examinee, information regarding exam-

inee proficiency may be inaccurate if the rater exhibits rating errors or systematic

biases. Although raters who do show extreme rater effects can be identified through

MFR analysis, linking the disconnected subsets in these situations would do little to

circumvent the fact that ratings from these raters might be questionable. If possible,

practitioners and researchers should weigh the feasibility of strengthening the design

by including additional shared ratings between raters or use a rating design where all

examinees are rated by multiple raters.
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Another important limitation is related to the representativeness of the simulation

design. Although the characteristics of the simulated data were intended to reflect a

wide range of operational assessment contexts, other assessment contexts may differ

in important ways from the simulated data explored in the current study; in some

cases, these differences may limit the generalizability of the current results. In particu-

lar, the simulation design did not include systematic manipulation of the number of

rating scale categories or tasks included in the analytic rubric. Furthermore, we did not

manipulate characteristics related to examinee, rater, or task fit within the operational

ratings, and we did not manipulate the ratio of examinees, raters, and tasks with accep-

table and noisy fit within the operational or linking set ratings. Similarly, we did not

systematically introduce or model dependencies that may result from nested assess-

ment systems, such as teacher evaluation systems in which several teachers from the

same school are evaluated by their own principal. Accordingly, it is not possible to

draw conclusions about the generalizability of these findings to assessment contexts in

which these characteristics are different from the simulation design or the real ratings.

Finally, although the results from this study appear promising with regard to the use

of small linking sets to establish a common metric for calibrating examinees, raters, and

tasks in sparsely connected teacher evaluation systems, the minimum sample size within

the linking set needed to establish a psychometrically sound assessment system was not

identified. As with all assessment procedures, the unique context of the assessment sys-

tem, including the stakes associated with assessment-based decisions, should inform

decisions regarding data collection designs and analytic approaches.

Directions for Future Research

The results from this study suggest several directions for future research. The first

clear direction for future research is related to the stability of rater severity estimates

across characteristics of the linking set. As noted above, the correlations between

rater severity estimates were less stable across modified linking set sample sizes com-

pared with the examinee and task facets. This result highlights the potential role of

rater effects on the stability of rater severity estimates across data collection designs.

Specifically, these results suggest that additional research is needed in which the

influence of rater effects, such as severity/leniency and central tendency/extremism,

within linking sets and operational ratings on estimates of examinee, rater, and tasks

is systematically examined.

Similarly, additional research is needed in which the influence of examinee demo-

graphic characteristics within the linking set is explored, including the influence of

the match between the demographic characteristics of examinees within the linking

set and the operational ratings, as well as the match between the demographic charac-

teristics of examinees and raters. Furthermore, additional simulation studies and real

data analyses are needed to examine the influence of additional characteristics that

were not included in the current study, including systematic explorations of different
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numbers of rating scale categories and tasks, varying levels of model–data fit within

operational ratings, and nesting structures within operational ratings.

As noted above, the correlation analyses in this study were based on the corre-

spondence between estimates obtained from the conditions in which the linking set

included eight common examinees and the conditions with modified linking set sam-

ple sizes. This analytic approach reflects the operational teacher evaluation context

that provided the substantive motivation for this study. Specifically, in large-scale

teacher evaluation systems based on principal observations, fully crossed ratings are

not available. Accordingly, the correspondence between the estimates based on con-

ditions with the two modified linking set sample sizes and the original linking set

sample size was more meaningful in the context of the current study than the corre-

spondence between the observed parameter estimates and the generating parameters.

However, examination of the estimates for the simulation conditions based on the

original linking set sample size reveals a downward (negative) bias in examinee esti-

mates, which were generated based on a normal distribution with a mean of zero

logits (see Table 3). This result suggests that the removal of large proportions of rat-

ings to arrive at the fully disconnected operational ratings resulted in some estimation

bias when the ratings were analyzed using the Facets software. Additional research

should include detailed examination of the influence of missing data on parameter

recovery using simulation studies.

Appendix

This appendix illlustrates the procedure for introducing person misfit into the linking

set in the simulated data using a small example based on a linking set with 5 raters,

10 examinees, and 1 task.

Step 1: Simulate linking set ratings following the design specifications.

The generating rater parameters (l) should match those used to simulate the

operational ratings.

Examinees

Task 1

Rater 1 Rater 2 Rater 3 Rater 4 Rater 5

1 X1,1 X1,2 X1,3 X1,4 X1,5

2 X2,1 X2,2 X2,3 X2,4 X2,5

3 X3,1 X3,2 X3,3 X3,4 X3,5

4 X4,1 X4,2 X4,3 X4,4 X4,5

5 X5,1 X5,2 X5,3 X5,4 X5,5

6 X6,1 X6,2 X6,3 X6,4 X6,5

7 X7,1 X7,2 X7,3 X7,4 X7,5

8 X8,1 X8,2 X8,3 X8,4 X8,5

9 X9,1 X9,2 X9,3 X9,4 X9,5

10 X10,1 X10,2 X10,3 X10,4 X10,5

Note. The cell entries (Xi,j) reflect the rating (X) assigned to Examinee i by Rater j.
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Step 2: Within each task, reorder the columns using random sampling without

replacement to determine the new sequence of raters.

Step 3: Change the column labels to the order within the operational ratings, such

that the contents of each column reflect discrepancies between the operational

and linking sets.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship,

and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of

this article.

Examinees

Task 1

Rater 5 Rater 2 Rater 4 Rater 1 Rater 3

1 X1,5 X1,2 X1,4 X1,1 X1,3

2 X2,5 X2,2 X2,4 X2,1 X2,3

3 X3,5 X3,2 X3,4 X3,1 X3,3

4 X4,5 X4,2 X4,4 X4,1 X4,3

5 X5,5 X5,2 X5,4 X5,1 X5,3

6 X6,5 X6,2 X6,4 X6,1 X6,3

7 X7,5 X7,2 X7,4 X7,1 X7,3

8 X8,5 X8,2 X8,4 X8,1 X8,3

9 X9,5 X9,2 X9,4 X9,1 X9,3

10 X10,5 X10,2 X10,4 X10,1 X10,3

Examinees

Task 1

Rater 1 Rater 2 Rater 3 Rater 4 Rater 5

1 X1,5 X1,2 X1,4 X1,1 X1,3

2 X2,5 X2,2 X2,4 X2,1 X2,3

3 X3,5 X3,2 X3,4 X3,1 X3,3

4 X4,5 X4,2 X4,4 X4,1 X4,3

5 X5,5 X5,2 X5,4 X5,1 X5,3

6 X6,5 X6,2 X6,4 X6,1 X6,3

7 X7,5 X7,2 X7,4 X7,1 X7,3

8 X8,5 X8,2 X8,4 X8,1 X8,3

9 X9,5 X9,2 X9,4 X9,1 X9,3

10 X10,5 X10,2 X10,4 X10,1 X10,3
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