THE STABLE BERNSTEIN CENTER AND
TEST FUNCTIONS FOR SHIMURA VARIETIES

THOMAS J. HAINES

ABsTrAaCT. We elaborate the theory of the stable Bernstein center of a p-adic group G,
and apply it to state a general conjecture on test functions for Shimura varieties due to
the author and R. Kottwitz. This conjecture provides a framework by which one might
pursue the Langlands-Kottwitz method in a very general situation: not necessarily PEL
Shimura varieties with arbitrary level structure at p. We give a concrete reinterpretation
of the test function conjecture in the context of parahoric level structure. We also use the
stable Bernstein center to formulate some of the transfer conjectures (the “fundamental
lemmas”) that would be needed if one attempts to use the test function conjecture to
express the local Hasse-Weil zeta function of a Shimura variety in terms of automorphic
L-functions.
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The main purpose of this chapter is to give precise statements of some conjectures on test functions

for Shimura varieties with bad reduction.

In the Langlands-Kottwitz approach to studying the cohomology of a Shimura variety, one of

the main steps is to identify a suitable test function that is “plugged into” the counting points

formula that resembles the geometric side of the Arthur-Selberg trace formula. To be more precise,
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2 T. Haines

let (G,h™ ', KPK,) denote Shimura data where p is a fixed rational prime such that the level-
structure group factorizes as K?K, C G(AIJZ)G(QP). This data gives rise to a quasi-projective
variety Shy, := Sh(G,h™*, KPK,) over a number field E C C. Let ®, € Gal(Q,/Q,) denote
a geometric Frobenius element. Then one seeks to prove a formula for the semi-simple Lefschetz
number Lef**(®7, Sh,)

(1.0.1) (@), H (Shi, @6 Q,, Qr) = D c(70:7,6) O4(1k») TOs0(oy),
(7037,9)
(see for more details).

The test function ¢, appearing here is the most interesting part of the formula. Experience
has shown that we may often find a test function belonging to the center Z(G(Q,r), K,r) of the
Hecke algebra H(G(Qpr), Kpr), in a way that is explicitly determined by the E-rational conjugacy
class {u} of 1-parameter subgroups of G associated to the Shimura data. In most PEL cases with
good reduction, where K, C G(Q,) is a hyperspecial maximal compact subgroup, this was done by
Kottwitz (cf. e.g. [Ko92a]). When K, is a parahoric subgroup of G(Q,) and when Gg, is unramified,
the Kottwitz conjecture predicts that we can take ¢, to be a power of p times the Bernstein function
zi{;’ ; arising from the Bernstein isomorphism for the center Z(G(Q,r), Kpr) of the parahoric Hecke
algebra H(G(Qpr), Kpr) (see Conjecture and .

In fact Kottwitz formulated (again, for unramified groups coming from Shimura data) a closely
related conjecture concerning nearby cycles on Rapoport-Zink local models of Shimura varieties,
which subsequently played an important role in the study of local models (Conjecture . It also
inspired important developments in the geometric Langlands program, e.g. [Ga]. Both versions of
Kottwitz’ conjectures were later proved in several parahoric cases attached to linear or symplectic
groups (see [HN02a, [HO5]). In a recent breakthrough, Pappas and Zhu [PZ] defined group-theoretic
versions of Rapoport-Zink local models for quite general groups, and proved in the unramified
situations the analogue of Kottwitz’ nearby cycles conjecture for them. These matters are discussed
in more detail in §7] and

Until around 2009 it was still not clear how one could describe the test functions ¢, in all deeper
level situations. In the spring of 2009 the author and Kottwitz formulated a conjecture predicting
test functions ¢, for general level structure K. This is the test function conjecture, Conjecture
It postulates that we may express ¢, in terms of a distribution Zij(J in the Bernstein center

— K7

3(G(Qpr)) associated to a certain representation VE® (defined in (16.1.2))) of the Langlands L-group
P

2%

L(Gq,+). Let d = dim(Shg,). Then Conjecture asserts that we may take

Or = prd/z (ZVEjOv * 1KPT) S Z(G(Qpr)var)

—H,]
the convolution of the distribution ZVEJ.0 with the characteristic function 1 . of the subgroup K.

As shown in this specializes to the ,kottwitz conjecture for parahoric subgroups in unramified
groups. Conjecture was subsequently proved for Drinfeld case Shimura varieties with I'y (p)-
level structure by the author and Rapoport [HRa], and for modular curves and for Drinfeld case
Shimura varieties with arbitrary level structure by Scholze [Schil [Sch2].

The distributions in Conjecture are best seen as examples of a construction V' ~» Zy which
attaches to any algebraic representation V of the Langlands dual group “G (for G any connected
reductive group over any p-adic field F'), an element Zy in the stable Bernstein center of G/F.
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This chapter elaborates the theory of the stable Bernstein center, following the lead of Vogan [Vol.
The set of all infinitesimal characters, i.e. the set of all é—conjugacy classes of admissible homomor-
phisms A : Wr — LG (where W is the Weil group of the local field F), is given the structure of an
affine algebraic variety over C, and the stable Bernstein center 3%*(G/F) is defined to be the ring of
regular functions on this Varietyﬂ

In order to describe the precise conjectural relation between the Bernstein and stable Bernstein
centers of a p-adic group, it was necessary to formulate an enhancement LLC+ of the usual con-
jectural local Langlands correspondence LLC for that group. Having this relation in hand, the
construction V' ~» Zy provides a supply of elements in the usual Bernstein center of G/F, which we
call the geometric Bernstein center.

It is for such distributions that one can formulate natural candidates for (Frobenius-twisted)
endoscopic transfer, which we illustrate for standard endoscopy in Conjecture and for stable
base change in Conjecture [6.2.3] These form part of the cadre of “fundamental lemmas” that one
would need to pursue the “pseudostabilization” of and thereby express the cohomology of
Shg, in terms of automorphic representations along the lines envisioned by Kottwitz [Ko90] but
for places with arbitrary bad reduction. In the compact and non-endoscopic situations, we prove in
Theorem[6.3.2) that the various Conjectures we have made yield an expression of the semi-simple local
Hasse-Weil zeta function in terms of semi-simple automorphic L-functions. Earlier unconditional
results in this direction, for nice PEL situations, were established in [H05], [HRa], [Schll [Sch2]. We
stress that the framework here should not be limited to PEL Shimura varieties, but should work
more generally.

In recent work of Scholze and Shin [SS], the connection of the stable Bernstein center with
Shimura varieties helped them to give nearly complete descriptions of the cohomology of many
compact unitary Shimura varieties with bad reduction at p; they consider the “EL cases” where
G, is a product of Weil restrictions of general linear groups . It would be interesting to extend the
connection to further examples.

Returning to the original Kottwitz conjecture for parahoric level structure, Conjecture in
some sense subsumes it, since it makes sense for arbitrary level structure and without the hypothesis
that GQpT' be unramified. However, Conjecture has the drawback that it assumes LLC+ for
Gg,-. Further, it is still of interest to formulate the Kottwitz conjecture in the parahoric cases
for arbitrary groups in a concrete way that can be checked (for example) by explicit comparison of
test functions with nearby cycles. In §7] we formulate the Kottwitz conjecture for general groups,
making use of the transfer homomorphisms of the Appendix to determine test functions on
arbitrary groups from test functions on their quasi-split inner forms. The definition of transfer
homomorphisms requires a theory of Bernstein isomorphisms more general than what was heretofore
available. Therefore, in the Appendix we establish these isomorphisms in complete generality in a
nearly self-contained way, and also provide some related structure theory results that should be of
independent interest.

Here is an outline of the contents of this chapter. In §3| we review the Bernstein center of a p-adic
group, including the algebraic structure on the Bernstein variety of all supercuspidal supports. In §4]
we recall the conjectural local Langlands correspondence (LLC), and discuss additional desiderata

IThe difference between our treatment and Vogan’s is in the definition of the variety structure on the set of

infinitesimal characters.
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we need in our elaboration of the stable Bernstein center in In particular in §5.2[ we describe
the enhancement (LLC+) which plays a significant role throughout the chapter, and explain why it
holds for general linear groups in Remark [5.2.3]and Corollary[5.2.6] The distributions Zy are defined
in and are used to formulate the test function conjecture, Conjecture in §6.1] In the
rest of §6] we describe the nearby cycles variant Conjecture [6.1.2) along with some of the endoscopic
transfer conjectures needed for the “pseudostabilization”, and assuming these conjectures we prove in
Theorem [6.3.2] the expected form of the semi-simple local Hasse-Weil zeta functions, in the compact
and non-endoscopic cases. In 7] we give a concrete reformulation of the test function conjecture
in parahoric cases, recovering the Kottwitz conjecture and generalizing it to all groups using the
material from the Appendix. The purpose of §8 and §9|is to list some of the available evidence for
Conjectures and In certain test functions are described very explicitly. Finally, the
Appendix gives the treatment of Bernstein isomorphisms and the transfer homomorphisms, alluded
to above.

Acknowledgments. I am very grateful to Guy Henniart for supplying the proof of Proposition
and for allowing me to include his proof in this chapter. I warmly thank Timo Richarz for
sending me his unpublished article [Ri] and for letting me quote a few of his results in Lemma
I am indebted to Brooks Roberts for proving Conjecture for GSp(4) (see Remark
. I thank my colleagues Jeffrey Adams and Niranjan Ramachandran for useful conversations.
I also thank Robert Kottwitz for his influence on the ideas in this chapter and for his comments
on a preliminary version. I thank Michael Rapoport for many stimulating conversations about test
functions over the years. I am grateful to the referee for helpful suggestions and remarks.

2. NOTATION

If G is a connected reductive group over a p-adic field F', then JR(G) will denote the category of
smooth representations of G(F') on C-vector spaces. We will write 7 € R(G)ipreq or 7 € II(G/F) if
7 is an irreducible object in R(G).

If G as above contains an F-rational parabolic subgroup P with F-Levi factor M and unipotent
radical N, define the modulus function dp : M(F) — Rs¢ by

op(m) = |det(Ad(m); Lie(N(F)))|r

where | - |p is the normalized absolute value on F. By 5113/ *(m) we mean the positive square-root
of the positive real number ép(m). For o € R(M), we frequently consider the normalized induced
representation

. G(F
i%(0) = IndPEFi(éépo).

We let 1g denote the characteristic function of a subset S of some ambient space. If S C G, let
98 = gSg~1. If f is a function on S, define the function 9f on 95 by 9f(-) = f(g~! - g).
Throughout the chapter we use the Weil form of the local or global Langlands L-group “G.

3. REVIEW OF THE BERNSTEIN CENTER

We shall give a brief synopsis of [BD] that is suitable for our purposes. Other useful references
are [Be92|, [Ren)], and [Rod].

The Bernstein center 3(G) of a p-adic group G is defined as the ring of endomorphisms of the
identity functor on the category of smooth representations R(G). It can also be realized as an algebra
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of certain distributions, as the projective limit of the centers of the finite-level Hecke algebras, and
as the ring of regular functions on a certain algebraic variety. We describe these in turn.

3.1. Distributions. We start by defining the convolution algebra of distributions.

We write G for the rational points of a connected reductive group over a p-adic field. Thus G is
a totally disconnected locally compact Hausdorff topological group. Further G is unimodular; fix a
Haar measure dz. Let C°(G) denote the set of C-valued compactly supported and locally constant
functions on G. Let H(G, dx) = (C°(G), *4z ), the convolution product *4, being defined using the
Haar measure dz.

A distribution is a C-linear map D : C2°(G) — C. For each f € C®(G) we define f € C>(G) by
f(@) = f(z?) for z € G. We set

D(f) == D(f).
We can convolve a distribution D with a function f € C°(G) and get a new function Dx f € C®(G),
by setting
(D * f)(g) = D(g - f),
where (g - f)(x) := f(zg). The function D x f does not automatically have compact support. We
say D is essentially compact provided that D x f € C2°(G) for every f € C°(G).

We define 9 f by 9f(z) := f(g~txzg) for x,g € G. We say that D is G-invariant if D(9f) = D(f)
for all g, f. The set D(G)S. of G-invariant essentially compact distributions on C2°(G) turns out to
have the structure of a commutative C-algebra. We describe next the convolution product and its
properties.

Given distributions D1, Do with Dy essentially compact, we define another distribution D; % Do
by

(D1 % Ds)(f) = Di(D2 % f).

Lemma 3.1.1. The convolution products D x f and Dy x Dy have the following properties:

(a) For ¢ € C°(Q) let Dy gy (sometimes abbreviated ¢ dx) denote the essentially compact dis-
tribution giwen by f— [, f(x)¢(x)dx. Then Dy * [ = ¢ *da [

(b) If f € C(@G), then D * (f dx) = (D * f)dx. In particular, Dy, 4z * Dy dz = Dy sy da-

(¢) If Do is essentially compact, then (Dq * Do) x f = D1 % (Do x f). If D1 and Do are each
essentially compact, so s D1 x Ds.

(d) If Dy and D3 are essentially compact, then (Dy % Da) x D3 = Dy % (Dg x D3).

(e) An essentially compact distribution D is G-invariant if and only if Dx(1y g4 dx) = (1yg dx)*D
for all compact open subgroups U C G and g € G. Here 1y is the characteristic function
of the set Ug.

(f) If D is essentially compact and f1, fa € C°(G), then D x (f1 %z f2) = (D * f1) *az fa.

Corollary 3.1.2. The pair (D(G)S., %) is a commutative and associative C-algebra.

3.2. The projective limit. Let J C G range over the set of all compact open subgroups of G. Let
H(G) denote the convolution algebra of compactly-supported measures on G, and let H ;(G) C H(G)
denote the ring of J-bi-invariant compactly-supported measures, with center Z;(G). The ring H ;(G)
has as unit ey = 1;dxy, where 1 is the characteristic function of J and dx; is the Haar measure
with volg,,(J) = 1. Note that if J' C J, then day = [J: J'|dz;.
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Let Z(G,J) denote the center of the algebra H(G,J) consisting of compactly-supported J-bi-
invariant functions on G with product #4,,. There is an isomorphism Z(G,J) = Z;(G) by z; —
zydxy.

For J' C J there is an algebra map Z(G,J') — Z(G, J), given by 2/ + 25/ %4, 1. Equivalently,
we have Z;/(G) — Z;(G) given by zydxy — zpdx g * (15dzy).

We can view R(G) as the category of non-degenerate smooth H(G)-modules, and any element of
@Z(G, J) acts on objects in R(G) in a way that commutes with the action of H(G). Hence there
is a canonical homomorphism Liilz(G7 J) = 3(Q).

There is also a canonical homomorphism

: G
lim Z(G, .J) = D(G)

ec

since Z = (z5); € @Z(G, J) gives a distribution on f € C(G) as follows: choose J C G
sufficiently small that f is right-J-invariant, and set

(3.2.1) 2(f) = /G 25(x) f() de.

This is independent of the choice of J. Note that for f € H(G,J) we have Z % f = zj #4,, f, and
in particular Z x 1; = zy, for all J. To see Z = (z7), as a distribution is really G-invariant, note
that for f € H(G, J), the identities Z * f = zj *au, [ = [ *az, zs imply that Z * (fdz) = (fdz) x Z.
This in turn shows that Z is G-invariant by Lemma [3.1.](e).

Now §1.4 — 1.7 of [BD] show that the above maps yield isomorphisms

(3.2.2) 3(G) & lim Z(G, J) = D(G)g.

Corollary 3.2.1. Let Z € 3(G), and suppose a finite-length representation m € R(G) has the
property that Z acts on w by a scalar Z (7).

(a) For every compact open subgroup J C G, Z x 1 acts on the left on ©’ by the scalar Z(x).
(b) For every f € H(G), tr(Z x f|7m) = Z(n) tr(f | 7).

3.3. Regular functions on the variety of supercuspidal supports.

3.3.1. Variety structure on set of supercuspidal supports. We describe the variety of supercuspidal
supports in some detail. Also we will describe it in a slightly unconventional way, in that we use the
Kottwitz homomorphism to parametrize the (weakly) unramified characters on G(F'). This will be
useful later on, when we compare the Bernstein center with the stable Bernstein center.

Let us recall the basic facts on the Kottwitz homomorphism [Ko97]. Let L be the completion
F' of the maximal unramified extension F™ in some algebraic closure of F, and let L D F
denote an algebraic closure of L. Let I = Gal(L/L) = Gal(F/F"") denote the inertia group. Let
® € Aut(L/F) be the inverse of the Frobenius automorphism o. In [K097] is defined a functorial
surjective homomorphism for any connected reductive F-group H

(3.3.1) Kt H(L) — X*(Z(H))1,

where H = H(C) denotes the Langlands dual group of H. By [Ko97, §7], it remains surjective on
taking ®-fixed points:
Ky o H(F) —» X*(Z(H))2.
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We define

We also define H(F)! D H(F); to be the kernel of the map H(F) — X* (Z(ﬁ))?/tm“s derived from
Kg.

If H is anisotropic modulo center, then H(F)! is the unique maximal compact subgroup of H(F)
and H (F); is the unique parahoric subgroup of H(F) (see e.g. [HRo]). Sometimes the two subgroups
coincide: for example if H is any unramified F-torus, then H(F); = H(F).

We define

X (H) := Homyg,,(H(F)/H(F)*,C*),

the group of unramified characters on H(F). This definition of X (H) agrees with the usual one as
in [BD]. We define

XY (H) := Homg,,(H(F)/H(F)1,C*)

and call it the group of weakly unramified characters on H(F).

We follow the notation of [BK] in discussing supercuspidal supports and inertial equivalence
classes. As indicated earlier in §3.1, for convenience we will sometimes write G when we mean the
group G(F) of F-points of an F-group G.

A cuspidal pair (M, o) consists of an F-Levi subgroup M C G and a supercuspidal representation
o on M. The G-conjugacy class of the cuspidal pair (M, o) will be denoted (M, o). We define the
inertial equivalence classes: we write (M, o) ~ (L, 7) if there exists g € G such that gMg~! = L
and 90 = 7 ® x for some x € X(L). Let [M, 0] denote the equivalence class of (M, 0)q.

If 7 € R(G)irred, then the supercuspidal support of 7 is the unique element (M, o) such that =
is a subquotient of the induced representation ig(o), where P is any F-parabolic subgroup having
M as a Levi subgroup. Let X denote the set of all supercuspidal supports (M, o)a. Denote by the
symbol s = [M, o]¢ a typical inertial class.

For an inertial class s = [M, o]q, define the set X; = {(L,7)g | (L,7) ~ (M,0)}. We have

Xa :H3€5.

We shall see below that X has a natural structure of an algebraic variety, and the Bernstein
components X; form the connected components of that variety.

First we need to recall the variety structure on X (M). As is well-known, X (M) has the structure
of a complex torus. To describe this, we first consider the weakly unramified character group X" (M).
This is a diagonalizable group over C. In fact, by Kottwitz we have an isomorphism

M(F)/M(F), = X*(Z(M)")® = X*((Z(M)")s).
This means that
X"(M)(C) = Homge,(M(F)/M(F)1,C*) = Homag (C[X*((Z(M)")s)],C),

in other words,

(3.3.2) XY(M)=(Z(M)s.
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Another way to see (3.3.2)) is to use Langlands’ duality for quasicharacters, which is an isomorphism
Homeon (M(F),C*) = H' (Wr, Z(M)).

(Here W is the Weil group of F'; see §4}) Under this isomorphism, XV (M) is identified with the
image of the inflation map H'(Wp/I, Z(M)!) — HY(Wg, Z(M)), that is, with H'((®), Z(M)) =
(Z(]/W\)I)¢.. This last identification is given by the map sending a cocycle ¢«°¥¢ € Z1((®), Z(M\)I) to
peeVe(D) € (Z(]/\z[\)l)@. The two ways of identifying X (M) with (Z(KJ\)I)tp7 that via the Kottwitz
isomorphism and that via Langlands duality, agreeﬂ For a more general result which implies this
agreement, see [Kal, Prop. 4.5.2].

Now we can apply the same argument to identify the torus X (M). We first get

X(M)(C) = Homgep(M(F)/M(F)!,C*).
Since M (F)/M(F)! is the quotient of M (F)/M (F); by its torsion, it follows that
X(M) = ((Z(M)")e)® = (Z(M))g,
the neutral component of X (M).

Now we turn to the variety structure on X5;. We fix a cuspidal pair (M, o) representing s,; =
[M, o]y and s = [M, 0]g. Let the corresponding Bernstein components be denoted X4 and X;,,. As
sets, we have X; = {(M,ox)c} and Xs,, = {(M,0x)rm }, where x € X(M). The torus X (M) acts on
X5, by x — (M, 0x)n. The isotropy group is stab, := {x | 0 =2 ox}. Let Z(M)° denote the neutral
component of the center of M. Then stab, belongs to the kernel of the map X (M) — X(Z(M)°),
X + X|z(am)e(F), hence stab, is a finite subgroup of X (M). Thus X;,, is a torsor under the torus
X (M) /stab,, and thus has the structure of an affine variety over C.

There is a surjective map

Xeyy = Xs
(M,oxX)m — (M,0X)a, x € X(M)/stab,.
Let Ng([M,o]pm) :={n € Ng(M) | "o = ox for some x € X(M)}. Then the fibers of X;,, — X4
are precisely the orbits the finite group W[%’U]M := Ng([M,0]qg)/M on X;,,. Via
X = W[?W,O‘]M\%5]\/I
the set X; acquires the structure of an irreducible affine variety over C. Up to isomorphism, this
structure does not depend on the choice of the cuspidal pair (M, o).

3.3.2. The center as regular functions on Xg. An element z € 3(G) determines a regular function
X: for a point (M, 0)¢ € X5, 2 acts on i% (o) by a scalar 2(o) and the function (M,0)g + 2(0) is a
regular function on X¢. This is the content of [BD, Prop. 2.11]. In fact we have by [BD Thm. 2.13]

an isomorphism

(3.3.3) 3(G) = Clxg)-
Together with (3.2.2)) this gives all the equivalent ways of realizing the Bernstein center of G.
2We normalize the Kottwitz homomorphism as in [Ko97], so that kg,, : L* — Z is the valuation map sending a

uniformizer w to 1. Then the claimed agreement holds provided we normalize the Langlands duality for tori as in
(14.0.4).
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4. THE LOCAL LANGLANDS CORRESPONDENCE

We need to recall the general form of the conjectural local Langlands correspondence (LLC) for
a connected reductive group G over a p-adic field F. Let F denote an algebraic closure of F. Let
Wp C Gal(F/F) =: T'r be the Weil group of F. It fits into an exact sequence of topological groups

val

1 IF WF Z 17

where I is the inertia subgroup of I'r and where, if ® € Wy is a geometric Frobenius element (the
inverse of an arithmetic Frobenius element), then val(®) = —1. Here I has its profinite topology
and Z has the discrete topology. Sometimes we write I for Iy in what follows.

Recall the Weil-Deligne group is Wj := Wg x C, where wzw ™! = |w|z for w € Wp and z € C,
with |w| := q}al(w) for gr = #(Op/(wr)), the cardinality of the residue field of F'.

A Langlands parameter is an admissible homomorphism ¢ : Wr — LG, where £G := G x Wg.
This means:

e ¢ is compatible with the projections W;, — Wg and v : LG — Wig;

e ¢ is continuous and respects Jordan decompositions of elements in W, and “G (cf. [BoT9,
§8] for the definition of Jordan decomposition in the group Wr x C and what it means to
respect Jordan decompositions here);

e if p(WW}.) is contained in a Levi subgroup of a parabolic subgroup of G, then that parabolic
subgroup is relevant in the sense of [Bo79) §3.3]. (This condition is automatic if G/F is
quasi-split.)

Let ®(G/F) denote the set of G-conjugacy classes of admissible homomorphisms ¢ : W — LG
and let II(G/F) = R(G(F))irrea the set of irreducible smooth (or admissible) representations of
G(F') up to isomorphism.

Conjecture 4.0.1 (LLC). There is a finite-to-one surjective map I(G/F) — ®(G/F), which
satisfies the desiderata of [Bo79, §10].

The fiber II, over ¢ € ®(G/F') is called the L-packet for .

We mention a few desiderata of the LLC that will come up in what follows. First, LLC for G,, is
nothing other than Langlands duality for G,,, which we normalize as follows: for T any split torus
torus over F', with dual torus T ,

~

Homconts (T(F)v (CX) = Homconts(WFa T)

£ e
satisfies, for every v € X, (T) = X*(T) and w € W,
(4.0.4) v(pe(w)) = E(v(Arty! (w))).

Here Art}l : Wb — [ is the reciprocity map of local class field theory which sends any geometric
Frobenius element ® € Wy to a uniformizer in F'.
Next, we think of Langlands parameters in two ways, either as continuous L-homomorphisms

o:Wp— @
modulo é—conjugation, or as continuous I-cocycles

PeoYe Wf,ﬂ — G
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modulo 1-coboundaries (where W acts on G via the projection Wi — Wr). The dictionary between
these is

plw) = (¢ (w), w) € G % Wi

for w € W[, and @ the image of w under Wi — Wp.

The desideratum we will use explicitly is the following (a special case of [Bo79), 10.3(2)]: given any
Levi pair (M, o) (where o € II(M/F)) with representing 1-cocycle ©%°¥¢ : W}, — M, and any un-
ramified 1-cocycle 257 : Wr — Z (J\//f I representing y € X (M) via the Langlands correspondence
for quasi-characters on M (F'), we have

cocyc __  _cocyc  cocyc
SDO'X = P ZX

modulo 1-coboundaries with values in M. We may view z{7Y“ as a l-cocycle on W, which is trivial
on C; since it takes values in the center of M , the right hand side is a 1-cocycle whose cohomology
class is independent of the choices of 1-cocycles pg@¢ and 2{7®““ in their respective cohomology
classes. Hence the condition just stated makes sense. Concretely, if x € X (M) lifts to an element
z € Z(]TI)I7 then up to M\—conjugacy we have

(4.0.5) Pox (®) = (2,1) 0o (®) € M x Wi

Remark 4.0.2. There is a well-known dictionary between equivalence classes of admissible homo-
morphisms ¢ : WrxC — LG and equivalence classes of admissible homomorphisms Wi x SLy(C) —
L@G. For a complete explanation, see [GR], Prop. 2.2]. Because of this equivalence, it is common in
the literature for the Weil-Deligne group W} to sometimes be defined as Wy x C, and sometimes
as Wg x SLy(C).

5. THE STABLE BERNSTEIN CENTER

5.1. Infinitesimal characters. Following Vogan [Vo|, we term a é—conjugacy class of an admissi-
bleﬂ homomorphism

A Wp — PG
an infinitesimal character. Denote the G-conjugacy class of A by (M- In this section we give a
geometric structure to the set of all infinitesimal characters for a group G. It should be noted that
the variety structure we define here differs from that put forth by Vogan in [Va, §7].

If o : Wi — LG is an admissible homomorphism, then its restriction |, represents an infinites-
imal character. Here it is essential to consider restriction along the proper embedding Wg — Wi if
W, is thought of as W x C, then this inclusion is w +— (w, 0); if W, is thought of as W x SLa(C),
then the inclusion is w + (w,diag(|w|'/?,|w|~/?)). If ¢, € ®(G/F) is attached by LLC to
7 € II(G/F), then following Vogan [Vo| we shall call the G-conjugacy class (¢x|w,) & the infin-
itesimal character of m.

If G is quasi-split over F, then conjecturally every infinitesimal character A is represented by a
restriction ¢, |w, : Wg — LG for some 7 € II(G/F).

3«Admissible” is defined as for the parameters ¢ : Wi — LG (e. g. \(Wp) consists of semisimple elements of L'G)
except that we omit the “relevance condition”. This is because the restriction |y, of a Langlands parameter could
conceivably factor through a non-relevant Levi subgroup of “G (even though ¢ does not) and we want to include such

restrictions in what we call infinitesimal characters.
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Assume LLC holds for G/F. Let A be an infinitesimal character for G. Define the infinitesimal
class to be the following finite union of L-packets

O, := H I,

Here ¢ ranges over é—conjugacy classes of admissible homomorphisms W, — G such that (¢|w) a=
(Mg, and IL, is the corresponding L-packet of smooth irreducible representations of G(F).

5.2. LLC+. In order to relate the Bernstein variety X with the variety 2) of infinitesimal characters,
we will assume the Local Langlands Correspondence (LLC) for G and all of its F-Levi subgroups.
We assume all the desiderata listed by Borel in [Bo79].

There are two additional desiderata of LLC we need.

Definition 5.2.1. We will declare that G satisfies LLC+ if the LLC holds for G and its F-Levi sub-
groups, and these correspondences are compatible with normalized parabolic induction in the sense
of the Conjecture [5.2.2] below, and invariant under certain isomorphisms in the sense of Conjecture

(2.7 below.

Let M C G denote an F-Levi subgroup. Then the inclusion M < G induces an embedding
LM < @G which is well-defined up to (A?—conjugacy (cf. [BaT79, §3]).

Conjecture 5.2.2. (Compatibility of LLC with parabolic induction) Let o € II(M/F) and & €
I(G/F) and assume 7 is an irreducible subquotient of i%(c), where P = MN is any F-parabolic
subgroup of G with F-Levi factor M. Then the infinitesimal characters

Onlwp : Wr — Lag

and
(pg|WF Wep — LM‘—> LG

are G- conjugate.

Remark 5.2.3. (1) The conjecture implies that the restriction ¢ |w, depends only on the supercus-
pidal support of 7. This latter statement is a formal consequence of Vogan’s Conjecture 7.18 in [Vol,
but the Conjecture [5.2.2] is slightly more precise. In Proposition [5.5.1] we will give a construction
of the map f in Vogan’s Conjecture 7.18, by sending a supercuspidal support (M, o)s (a “classical
infinitesimal character” in [Vol) to the infinitesimal character (¢, |w;)g. With this formulation, the
condition on f imposed in Vogan’s Conjecture 7.18 is exactly the compatibility in the conjecture
above.

(2) The conjecture holds for GL,,, and is implicit in the way the local Langlands correspondence for
GL,, is extended from supercuspidals to all representations (see Remark 13.1.1 of [HRal]). It was
a point of departure in Scholze’s new characterization of LLC for GL,, [Sch3|, and that paper also
provides another proof of the conjecture in that case.

(3) I was informed by Brooks Roberts (private communication), that the conjecture holds for GSp(4).
(4) Given a parameter ¢ : Wi — LG, there exists a certain P = MN and a certain tempered
parameter ¢y : Wi — LM and a certain real-valued unramified character xp; on M(F) whose
parameter is in the interior of the Weyl chamber determined by P, such that the L-packet IL, consists
of Langlands quotients J(mas ® xar), for mps ranging over the packet II,,,. The parameter ¢ is the



12 T. Haines

twist of s by the parameter associated to the character y ;. This reduces the conjecture to the case
of tempered representations. One can further reduce to the case of discrete series representations.

The following is a very natural kind of functoriality which should be satisfied for all groups.

Conjecture 5.2.4. (Invariance of LLC under isomorphisms) Suppose ¢ : (G,7) = (G',7’) is an
isomorphism of connected reductive F-groups together with irreducible smooth representations on
them. Then the induced isomorphism ¢ : Y'G" = LG (well-defined up to an inner automorphism
of é), takes the G'-conjugacy class of O Wi — LG to the G-conjugacy class of or Wi — LaG.

Proposition 5.2.5. Conjecture holds when G = GL,,.

Proof. (Guy Henniart). It is enough to consider the case where G' = GL, and ¢ is an F-
automorphism of GL,,.

The functorial properties in the Langlands correspondence for GL,, are:

(i) Compatibility with class field theory, that is, with the case where n = 1.

(ii) The determinant of the Weil-Deligne group representation corresponds to the central char-
acter: this is Langlands functoriality for the homomorphism det : GL, (C) — GL;(C).

(iii) Compatibility with twists by characters, i.e., Langlands functoriality for the obvious homo-
morphism of dual groups GL;(C) x GL,(C) — GL,(C).

(iv) Compatibility with taking contragredients: this is Langlands functoriality with respect to
the automorphism g — fg~! (transpose inverse), since it is known that for GL, (F) this
sends an irreducible representation to a representation isomorphic to its contragredient.

These properties are enough to imply the desired functoriality for F-automorphisms of GL,,.

When n = 1, the functoriality is obvious for any F-endomorphism of GL;. When n is at least 2, an
F-automorphism of GL,, induces an automorphism of SL,, hence an automorphism of the Dynkin
diagram which must be the identity or, (when n > 3) the opposition automorphism. Hence up
to conjugation by GL,, (F'), the F-automorphism is the identity on SL,,, or possibly (when n > 3)
transpose inverse. Consequently the F-automorphism can be reduced (by composing with an inner
automorphism or possibly with transpose inverse) to one which is the identity on SL,,, hence is of
the form g — g - c(det(g)) where ¢ € X.(Z(GL,,)). But this implies that it is the identity unless
n = 2, in which case it could also be g ++ g - det(g)~!. In that exceptional case, the map induced
on the dual group GLo(C) is also g — g - det(g) ™!, and the desired result holds by invoking (ii) and
(iii) above. O

Corollary 5.2.6. Let M = GL,, x---xGL,, C GL,, be a standard Levi subgroup. Let g € GL,(F).
Then Conjecture holds for the isomorphism cg : M = 9M given by conjugation by g.

Proof. Tt is enough to consider the case where g belongs to the normalizer of M in GL,,. Let T'C M
be the standard diagonal torus in GL,. Then g € Ng(T)M. Thus composing g with a permutation
matrix which normalizes M we may assume that ¢, preserves each diagonal factor GL,,,. The desired
functoriality follows by applying Proposition to each GL,,. |

For the purposes of comparing the Bernstein center and the stable Bernstein center as in Propo-

sition [5.5.1] we need only this weaker variant of Conjecture [5.2.4

Conjecture 5.2.7. (Weak invariance of LLC) Let M C G be any F-Levi subgroup and let g € G(F).
Then Congjecture holds for the isomorphism cq : M — 9M.
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5.3. Variety structure on the set of infinitesimal characters. It is helpful to rigidify things
on the dual side by choosing the data G > B> T of a Borel subgroup and maximal torus which are
stable under the action of I'r on G and which form part of the data of a I'p-invariant splitting for
G (cf. [Ko84al §1]). The variety structure we will define will be independent of this choice, up to
isomorphism, since different choices such that B > T are conjugate under G'* ([Ko84a), Cor. 1.7)).
Let “B:= B x Wr and “T =T x W.

Following [Bo79, §3.3], we say a parabolic subgroup P C G is standard if P O “B. Then its
neutral component P° := PN Gis a Wr-stable standard parabolic subgroup of G (containing E),
and P = P° x Wg. Every parabolic subgroup in “G is @—conjugate to a unique standard parabolic
subgroup.

Assume P is standard and let M° C P° be the unique Levi factor with M° D f; it is Wg-stable.
Then M := Np(M?°) is a Levi subgroup of P in the sense of [Bo79l §3.3], and M = M° x Wp.
The Levi subgroups M C G which arise this way are called standard. Every Levi subgroup in
LG is é—conjugate to at least one standard Levi subgroup; two different standard Levi subgroups
may be conjugate under G. Denote by {M} the set of standard Levi subgroups in G which are
é—conjugate to a fixed standard Levi subgroup M.

Now suppose X : Wr — G is an admissible homomorphism. Then there exists a minimal Levi
subgroup of LG containing A(Wr). Any two such are conjugate by an element of C}, where C) is
the subgroup of G commuting with A(Wg), by (the proof of) [Bo79, Prop. 3.6].

Suppose A, Ao : Wr — LG are é—conjugate. Then there exists a é—conjugate Al (vesp. AJ) of
A1 (resp. A2) and a standard Levi subgroup Mj (resp. My) containing \J (Wr) (resp. A§ (Wr))
1 = \J for some g € G. Then the Levi subgroups gMig~! and M,
contain \J (Wx) minimally, hence by [Bo79, Prop. 3.6] are conjugate by an element s € C’;;. Then
5g(M1)(sg)! = Mg, and thus {M;} = {M,}.

Hence any é—conjugacy class ())& gives rise to a unique class of standard Levi subgroups {M,},

minimally. Write gA\fg

with the property that the image of some element AT € ()\) & is contained minimally by M for
some M, in this class.

A similar argument shows the following lemma.

Lemma 5.3.1. Let A{ and AJ be admissible homomorphisms with (\{)g = (A\J)g, and suppose
A (W) and A\ (Wg) are contained minimally by a standard Levi subgroup M. Then there exists
n € Ng(M) such that "X = 7.

The following lemma is left to the reader.
Lemma 5.3.2. If M C LG is a standard Levi subgroup, then
Ng(M) = {n € Ng(M?®) | nM°® is Wpg-stable}.

Consequently, conjugation by n € Ng(M) preserves the set (Z(M°)!)g. More generally, if My and
My are standard Levi subgroups of “G and if we define the transporter subset by

Transg(Mi, Mz) := {g € G| gMig ! = Mo},
then
Transg (M, Mz) = {g € Transg(M7, M3) | gMS§ = MSg is Wp-stable}.
Consequently, conjugation by g € Transg(My, M2) sends (Z(M3)")g into (Z(M3)!)g.
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We can now define the notion of inertial equivalence (A1)a ~ (A2)g of infinitesimal characters.

Definition 5.3.3. We say (\1)g and ()\2)g are inertially equivalent if

b {M)\l} = {M/\z};
e there exists M € {My,}, and A\] € (\1)g and \J € (X\2)5 whose images are minimally
contained by M, and an element z € (Z(M°)1)3, such that

(A ) me = (A3 ate-

We write [\ for the inertial equivalence class of (A)z.
Note that M automatically contains (zA])(Wg) minimally if it contains A (Wx) minimally.

Lemma 5.3.4. The relation ~ is an equivalence relation on the set of infinitesimal characters.

Proof. Use Lemmas [5.3.1] and [5.3.2} O

Remark 5.3.5. To define (A\1)g ~ (A2)g we used the choice of GO>B>T (which was assumed to
form part of a I'p-invariant splitting for @) in order to define the notion of standard Levi subgroup
of “G. However, the equivalence relation ~ is independent of this choice, since as remarked above,
any two I p-invariant splittings for G are conjugate under G''7, by [Ko84al Cor. 1.7].

Remark 5.3.6. The property we need of standard Levi subgroups M C TG is that they are
decomposable, that is, M° := M N G is Wrpg-stable, and M = M° x Wg. Any standard Levi
subgroup is decomposable. In our discussion, we could have avoided choosing a notion of standard
Levi, by associating to each (A)z a unique class of decomposable Levi subgroups { M}, all of which
are G-conjugate, such that A factors minimally through some M € {M}.

Now fix a standard Levi subgroup M C G. We write ty for an inertial equivalence class of
admissible homomorphisms Wr — M. We write 9y, ,, for the set of M°-conjugacy classes contained
in this inertial class. We want to give this set the structure of an affine algebraic variety over C.
Define the torus

(5.3.1) Y (M°) := (Z(M°)D)3.
Then Y (M?°) acts transitively on 9), .. Fix a representative
AN Wrp - M
for this inertial class, so that tpe = [N ae.
Lemma 5.3.7. The Y (M?°)-stabilizer
staby :={z € Y(M°) | 2ZA)pmo = (M) mo }
is finite.

Proof. There exists an integer r > 1 such that ®" acts trivially on M°. The group stab) is contained
in the preimage of the finite group Z(M°)'F N (M®°)ger under the norm homomorphism
N, (Z(M°) Do — Z(MO)'r,
2 2®(2) - 0" H(2)

and the kernel of this homomorphism is finite. (|
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Then 9, ,, is a torsor under the quotient torus
Do =Y (MP)/staby.

In this way the left hand side acquires the structure of an affine algebraic variety. Up to isomorphism,
this structure is independent of the choice of A representing taso.

Now let t denote an inertial class of infinitesimal characters for G, and let )¢ denote the set of
infinitesimal characters in t. Recall t gives rise to a unique class of standard Levi subgroups { M},
having the property that some representative A for t factors minimally through some M € {M}.
Fix such a representative A : Wp — M — ZG for t, so that t = [A]5 and tyee = [AJpe. By our
previous work, there is a surjective map

Do — D

(X)) me = (20)a-
where z € Y/ (M?)/staby. Let
Na(M, [Ame) ={n € NgM) | ("N)pme = (2A) me, for some z € Y(M°)}.

From the above discussion we see the following.

Lemma 5.3.8. The fibers of D, ,. — Y are precisely the orbits of the finite group W[%MO =
Na(M, [\age) /M2 on Dy

Hence )¢ = Wti - \D¢,,o acquires the structure of an affine variety over C. Thus ) = [[, ). is
an affine variety over C and each %) is a connected component.

Let 3°(G) denote the ring of regular functions on the affine variety 2). We call this ring the
stable Bernstein center of G/F.

5.4. Base change homomorphism of the stable Bernstein center. Let E/F be a finite ex-
tension in F/F with ramification index e and residue field extension kg/kr of degree f. Then
Wg € Wg and Ig C Ip. Further, we can take &5 := <I>£ as a geometric Frobenius element in Wg.
Let 9/ resp. P/F denote the variety of infinitesimal characters associated to G resp. Gp.

Proposition 5.4.1. The map (\)g — (Mwy)g determines a morphism of algebraic varieties
G/F _ qG/E,

Definition 5.4.2. We call the corresponding map bg,p : 3% (Gg) — 3% (G) the base change homo-
morphism for the stable Bernstein center.

Proof. Suppose A : Wp — G x W factors minimally through the standard Levi subgroup M C
G W and that its restriction A|w, : Wg — G Wg factors minimally through the standard Levi
subgroup Mg C G x Wg. We may assume M C M° and thus Z(M°) C Z(M%).

There is a homomorphism of tori

(5.4.1) Y(M®) = (ZIM®)'")g, — (Z(Mp)")g, =Y (M)

of =
zr——z5 1= Nf(2)i=2-Pp(2)--- @éﬁl(z).

Recall that z € (Z(M°)IF)g, is identified with the image of the element 2(®r) € Z(M°)IF,
where z is viewed as a cohomology class z € H!({(®r), Z(M°)!F). Using the same fact for E
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in place of F, it follows that (zA)|w, = 2fA|lwy, where z; is defined as above. Thus the map
(2M)g = ((2A)|wy) g lifts to the map

(2N = (zpAlwi)ae = (¢ A lwe) g
and being induced by (5.4.1]), the latter is an algebraic morphism. a

5.5. Relation between the Bernstein center and the stable Bernstein center. The varieties
X and %) are defined unconditionally. In order to relate them, we need to assume LLC+ holds.

Proposition 5.5.1. Assume LLC+ holds for the group G. Then the map (M,0)c — (¢olwr)a
defines a quasi-finite morphism of affine algebraic varieties

f:Xx—-9.
It is surjective if G/F is quasi-split.

The reader should compare this with Conjecture 7.18 in [Vo]. Our variety structure on the set
) is different from that put forth by Vogan, and our f is given by a simple and explicit rule. In
view of LLC+ our f automatically satisfies the condition which Vogan imposed on the map in his
Conjecture 7.18: if 7 has supercuspidal support (M, o), then the infinitesimal character of 7 is

f((M,0)q).

Proof. Tt is easy to see that the map (M,0)g — (¢o|w;)a is well-defined. We need to show that
an isomorphism ¢, : (M, o) = (9M, 90) given by conjugation by g € G(F') gives rise to parameters
0o Wh = EM — LG and o, : Wj — L(9M) — LG which differ by an inner automorphism
of G. In view of Conjecture applied to M, the isomorphism “(9M) = LM takes @4, to an
Z\/Z—conjugate of ¢,. On the other hand the embeddings “M — LG and *(9M) < LG are defined
using based root systems in such a way that it is obvious that they are é—conjugate.

To examine the local structure of this map, we first fix a A and a standard M through which A
factors minimally. Let t = [A]5. Then over 9); the map f takes the form

(5.5.1) IT % = e
syt

Here s, ranges over the inertial classes [M, o]g such that (¢, |w;)g is inertially equivalent to (\)g-
We now fix a representative (M, o) for sp;. Given such a ., its restriction ¢4 |w, factors through
a G-conjugate of M. But (@olwr)a ~ (A)g implies that (up to conjugation by @) Yo |wy factors
minimally through M,. Thus we may assume that M, C M. The corresponding inclusion

—

Z(M) — Z(MS3) induces a morphism of algebraic tori
Y (M) = (Z(M)")g = (Z(M3)1)g = Y (M3).

Further, recall X(M) & Y(]/W\ ) by the Kottwitz isomorphism (or the Langlands duality for quasi-
characters), by the rule x — 2{°V¢(®).

Taking (4.0.5)) into account, we see that (5.5.1) on X,,,, given by
(M7 UX)G = (SDUX|WF)§
for y € X(M)/stab,, lifts to the map
(5.5.2) X (M)/stab, — Y(MS3)/staby,
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o~

which is the obvious map induced by X(M) — Y (M) — Y (MSY), up to translation by an element
in Y (M3) measuring the difference between (¢, |wy)mg and (A)ag. The map is clearly a
morphism of algebraic varieties. Hence the map f is a morphism of algebraic varieties.

The fibers of f are finite by a property of LLC. Finally, if G/F is quasi-split, the morphism f is
surjective by another property of LLC. a

Corollary 5.5.2. Assume G/F satisfies LLC+, so that the map f in Proposition exists. Then
f induces a C-algebra homomorphism 3%(G) — 3(G). It is injective if G/F is quasi-split.

Remark 5.5.3. For the group GL,, the constructions above are unconditional because the local
Langlands correspondence and its enhancement LLC+ are known (cf. Remark 2) and Corollary
5.2.6). One can see that Xgr, — Ycr, is an isomorphism and hence 3%°(GL,,) = 3(GL,,).

Remark 5.5.4. As remarked by Scholze and Shin [SS| §6], one may conjecturally characterize the
image of 3°(G) — 3(G) in a way that avoids direct mention of L-parameters. According to them
it should consist of the distributions D € D(G)&. such that, for any function f € C°(G(F) whose
stable orbital integrals vanish at semi-simple elements, the function D * f also has this property.
See [SS| §6] for further discussion of this. From conjectured relations between stable characters
and stable orbital integrals, one can conjecturally rephrase the condition on D in terms of stable

characters, as
(5.5.3) SOL(D * f) =0, Vo, if SO4(f) =0, Ye.

An element of 3°(G) acts by the same scalar on all 7 € II,, and so the above condition holds if
D € f(3°(G)). The converse direction is much less clear, and implies non-trivial statements about
the relation between supercuspidal supports, L-packets, and infinitesimal classes. Indeed, suppose
we are given D € 3(G) that satisfies . This should mean that it acts by the same scalar on
all T € II,. On the other hand, saying D comes from 3°*(G) would mean that D acts by the same
scalar on all w € II, and those scalars vary algebraically as A ranges over 2). So if for some A the

m =[] o,

A

infinitesimal class

contains an L-packet II,, C II\ such that the set of supercuspidal supports coming from II,, does
not meet the set of those coming from any II,, with ¢’ not conjugate to ¢q, then one could construct
a regular function D € 3(G) which is constant on the L-packets II, but not constant on IIy, and
thus not in f(3%(G)). In that case would not be sufficient to force D € f(3%*(G)), and the
conjecture of Scholze-Shin would be false. In that case, one could define the subring 35**(G) C 3(G)
of regular functions on the Bernstein variety which take the same value on all supercuspidal supports
of representations in the same L-packet. This would then perhaps better deserve the title “stable
Bernstein center” and it would be strictly larger than f(3%'(G)) at least in some cases.

To illustrate this in a more specific setting, suppose G/F is quasi-split and A does not factor
through any proper Levi subgroup of “G. Then by Propositionbelow, we expect Il to consist
entirely of supercuspidal representations. If IIy contains at least two L-packets II,, then there
would exist a D € 3(G) which is constant on the IL,’s yet not constant on II, and the Scholze-Shin
conjecture should be false. Put another way, if the Scholze-Shin conjecture is true, we expect that
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whenever A does not factor through a proper Levi in “G, the infinitesimal class II) consists of at

most one L—packetﬁ

5.6. Aside: when does an infinitesimal class consist only of supercuspidal representa-

tions?

Proposition 5.6.1. Assume G/F is quasi-split and LLC+ holds for G. Then Iy consists entirely
of supercuspidal representations if and only if A does not factor through any proper Levi subgroup
L L

M C *G.

Proof. If II, contains a nonsupercuspidal representation 7w with supercuspidal support (M, o) for
M C G, then by LLC+, we may assume ¢.|w,, and hence )\, factors through the proper Levi
subgroup “M C LG.

Conversely, if A factors minimally through a standard Levi subgroup M, C G, then we must
show that II) contains a nonsupercuspidal representation of G. Since G/F is quasi-split, we may
identify My = ¥M,, for an F-Levi subgroup M) C G.

Now for t = [A] 5, the map is surjective. For any F-Levi subgroup M 2 M), a component
of the form X4, has dimension dim (Z(M)")3 < dim (Z(My)')$ = dimQ). Thus the union of
the components of the form X[/ 5, with M 2 M) cannot surject onto 2. Thus there must be
a component of the form Xy, ,,; appearing in the left hand side of . We may assume @,
factors through LM, along with A. Writing (Niz, = (V@0 ) g7, for some x € X(M,), it follows
that IT contains the nonsupercuspidal representations with supercuspidal support (My,oxx)e. O

5.7. Construction of the distributions Zy. Let (r,V) be a finite-dimensional algebraic repre-
sentation of “G on a complex vector space. Given a geometric Frobenius element ® € Wy and an
admissible homomorphism A : Wi — “G, we may define the semi-simple trace

trS(N(®@), V) := tr(rA(®), VAR,

Note this is independent of the choice of ®.

This notion was introduced by Rapoport [Ra90] in order to define semi-simple local L-functions
L(s,mp,r), and is parallel to the notion for ¢-adic Galois representations used in [Ra90] to define
semi-simple local zeta functions (;*(X, s); see also [HN02al [HO5].

The following result is an easy consequence of the material in

Proposition 5.7.1. The map A — tr*(A(®), V) defines a reqular function on the variety %) hence
defines an element Zy € 3°(G) by

Zy((N)g) = tr*(A(®), V).

We use the same symbol Zy to denote the corresponding element in 3(G) given via 3°(G) — 3(G).
The latter has the property

(5.7.1) Zy () = tr™ (¢ (), V)

for every w € II(G/ F), where Zy (7) stands for Zyv ((M,0)q) if (M, 0)q is the supercuspidal support
of m.

4Note added in proof (Feb. 2014): In fact this statement holds: if A does not factor through a proper Levi subgroup
of L'G, then there is at most one way to extend it to an admissible homomorphism ¢ : W, — LG.
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Remark 5.7.2. One does not really need the full geometric structure on the set %) in order to
construct Zy € 3(G): one may show directly, assuming that LLC and Conjecture hold, that
m = tr°% (0 (P), V) descends to give a regular function on X and hence defines an element
Zy € 3(G). Using the map f simply makes the construction more transparent (but has the drawback
that we also need to assume Conjecture .

6. THE LANGLANDS-KOTTWITZ APPROACH FOR ARBITRARY LEVEL STRUCTURE

6.1. The test functions. Let (G, X) be a Shimura datum, where X is the G(R)-conjugacy class
of an R-group homomorphism % : R¢/rG,, — Gr. This gives rise to the reflex field E C C and a
G(C)-conjugacy class {u} C X.(Gg) which is defined over E.

Choose a quasi-split group G* over Q and an inner twisting ¢ : G* — G of Q-groups. In particular
we get an inner twisting Gj; — Gg as well as an isomorphism of L-groups X(Gg) = L(Gy).

Let Q C C denote the algebraic numbers, so that we have an inclusion E C Q and we can regard

{n} as a G(Q)-conjugacy class in X.(Gg) which is defined over E (cf. [Ko84bl Lemma 1.1.3]).

)
(IKo84bl, 1.1.3]), {p} is represented by an E-rational cocharacter i : G,,, — G};. Following Kottwitz’

Using ¢ regard {u} as a G*(Q)-conjugacy class in X,(G%), defined over E. By Kottwitz’ lemma
argument in [Ko84bl, 2.1.2], it is easy to show that there exists a unique representation (r_,,V_,)
of L(G3) such that as a representation of G* it is an irreducible representation with extreme weight
—u and the Weil group Wg acts trivially on the highest-weight space corresponding to any I'g-fixed
splitting for (A}E

Using ¢ we can regard (r_,,V_,) as a representation of “(Gg). The isomorphism class of this
representation depends only on the equivalence class of the inner twisting 1, thus only on G and
{u}.

Now we fix a rational prime p and set G := Ggq,. Choose a prime ideal p C E lying above p,
and set I/ := E,. Choose an algebraic closure @p of Q, and fix henceforth an isomorphism of fields
C = Q, such that the embedding E < C = Q,, corresponds to the prime ideal p. This gives rise to
an embedding Q — Q,, extending E — Q,,, and thus to an embedding W — Wg. We get from this
an embedding “(Gg) — *(Gg). Via this embedding we can regard (r_,,V_,) as a representation
(r—p, Vop) of “(Gp).

Associated to (r_,,V_,) € Rep(*(Gg)) we have an element Zy_, in the Bernstein center 3(Gg).
Of course here and in what follows, we are assuming LLC+ holds for Gg.

Now we review briefly the Langlands-Kottwitz approach to studying the local Hasse-Weil zeta
functions of Shimura varieties. Let Shg, = Sh(G,h™', KPK,) denote the canonical modeﬂ over E
for the Shimura variety attached to the data (G,h™!, KPK,) for some sufficiently small compact
open subgroup K? C G(A’}) and some compact open subgroup K, C G(Q,). We limit ourselves to
constant coefficients Q, in the generic fiber of Shy, (here £ # p is a fixed rational prime). Let ®,
denote any geometric Frobenius element in Gal(Q,/Q,). Then in the Langlands-Kottwitz approach
to the semi-simple local zeta function (;°(s, Shk, ), one needs to prove an identity of the form

(611) trss(@;,H;(Sth QE @pa@[)) = Z C(’}/();’y,é) O’Y(le) TO50(¢7‘)~
(7037,9)

5We use this term in the same sense as Kottwitz [Ko92a), comp. Milne [Mil, §1, esp. 1.10].
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Here the semi-simple Lefschetz number LefSS(CI);,Sth) on the left hand side is the alternating
semi-simple trace of Frobenius on the compactly-supported ¢-adic cohomology groupsﬂ of Shg, (see
[Ra90] and [HNO2a] for the notion of semi-simple trace). The expression on the right has precisely
the same form as the counting points formula proved by Kottwitz in certain good reduction cases
(PEL type A or C, K, hyperspecial; cf. [Ko92al (19.6)]). The integer r > 1 ranges over integers of
the form j - [kg, : Fp], j > 1, where Ey/Q,, is the maximal unramified subextension of E/Q, and
kg, is its residue field. Thus &) = <I>{; where ®, is a geometric Frobenius element in Gal(Q,/E).
Finally, ¢, is an element in the Hecke algebra H(G(Qpr), K,r) with values in Q,, where Q- is the
unique degree r unramified extension in @p /Qp, and where K, C G(Q,r) is a suitable compact
open subgroup which is assumed to be a natural analogue of K,, C G(Q,). To be more precise about
K-, in practice there is a smooth connected Z,-model G for G, such that K, = G(Z,). In that case,
we always take K, = G(Z,r), where Z, is the ring of integers in Q,r. In forming TOs,(¢,), the
Haar measure on G(Q,r) is normalized to give K, measure 1.

Let E;/E be the unique unramified extension of degree j in Q,/E. Let Ejo/Q, be the maximal
unramified subextension of E;/Q,. So E/Ey and E;/Ej, are totally ramified of the same degree,
and Ejo = Qpr.

We make the choice of \/p € Qy, and use it to define 5113/ % as a function with values in Q(/p) C Qy.
We can now specify the test function ¢, € Z(G(Ejo), Kjo), which will take values in Q,.

In the construction of the elements Zy € 3°(G), everything works the same way for (r,V)
a representation of G = @(@5) x Wp on a Q,-vector space. We henceforth take this point of
view. Let (r_,;,V_,;) € Rep(¥(Gg,)) denote the restriction of (r_,,V_,) € Rep(*(Gg)) via
L(Gg,) — L(Gg). We can then induce to get a representation (rfLOJ,V_EleJ) of *(Gg,,). By
Mackey theory, we get the same representation if we first induce to ©(Gp,) and then restrict to
L(Gg,,), that is, we have

€

(6.1.2) (rPo yPioy = nd " Ee ResG*We o= Ress "o 1nqS ™" Po
X Ej G G

=g =g Wg XWg T
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This gives rise to ZVEJ-OV € 3*(GE,,). By abuse of notation, we use the same symbol to denote the
—pyg

image of this in the Bernstein center: Z| r;, € 3(GE,,). Of course here we are viewing 3(Gg,,) as Q-
— o
valued regular functions on the Bernstein variety, or equivalently as Q,-valued invariant essentially

compact distributions: the topology on C playing no role, it is harmless to identify it with Q,.
The following is the conjecture formulated jointly with R. Kottwitz.

Conjecture 6.1.1. (Test function conjecture) Let d = dim(Shg,). The test function ¢, in (6.1.1)
may be taken to be p"*/? (vajo_ * 1Kpr). In particular, ¢, may be taken in the center Z(G(Qpr), Kpr)
of H(G(Q,r), Kpr) and these test functions vary compatibly with change in the level K, in an obvious

SEnse.

The same test functions should be used when one incorporates arbitrary Hecke operators away

from p into (6.1.1)).

6The Langlands-Kottwitz method really applies to the middle intersection cohomology groups of the Baily-Borel
compactification and not just to the cohomology groups with compact supports; see [Ko90] and [Mor| for some
general conjectures and results in this context, at primes of good reduction. The identity corresponds to the
contribution of the interior, at primes of arbitrary reduction, and is a first step toward understanding the intersection
cohomology groups.
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Following Rapoport’s strategy (cf. [Ra90], [Ra05], [HO5]), one seeks to find a natural integral
model M, over O for Shy,, and then rephrase the above conjecture using the method of nearby
cycles R¥ := RUM» (Q,).

Conjecture 6.1.2. There exists a natural integral model My, /Og for Shk,, such that

(6.1.3) Z tr% (@), RY,) = Z c(70;7,9) O(1k») TOso(o7),

t€Mrc, (kEjq) (v07,6)

where ¢, = p"4/? (ZVEJ-O * 1KpT) as in Conjecture|6.1.1|.

—HsJ

Remark 6.1.3. Implicit in this conjecture is that the method of nearby cycles can be used for
compactly-supported cohomology. In fact we could conjecture there exists a suitably nice compact-
ification of Mg, /Op so that the natural map

H.( Mk, ®0, F,, RU(Q,)) — H.(Shk, ®£ Q,, Q)

is a Galois-equivariant isomorphism. For G = GSp,, and where M is the natural integral model
for Shg, for K, an Iwahori subgroup, this was proved by Benoit Stroh. Of course, one is really
interested in intersection cohomology groups of the Baily-Borel compactification (see footnote 5), and
in fact Stroh [Str] computed the nearby cycles and verified the analogue of the Kottwitz conjecture
on nearby cycles (see Conjecture below) for these compactifications.

Remark 6.1.4. Some unconditional versions of Conjectures [6.1.1] and [6.1.2] have been proved. See
43

6.2. Endoscopic transfer of the stable Bernstein center. Part of the Langlands-Kottwitz ap-
proach is to perform a “pseudostabilization” of , and in particular prove the “fundamental lem-
mas” that are required for this. The stabilization expresses in the form Y i(G, H) ST (h),
the sum over global Q-elliptic endoscopic groups H for G of the (G, H)-regular Q-elliptic part of the
geometric side of the stable trace formula for (H,h) (cf. notation of [Ko90]), for a certain transfer
function h € C°(H(A)). (By contrast in “pseudostabilization” which is used in certain situations,
one instead writes in terms of the trace formula for G and not its quasi-split inner form, and
this is sometimes enough, as in e.g. Theorem below.) For stabilization one needs to produce
elements h, € C3°(H(Q,)) which are Frobenius-twisted endoscopic transfers of ¢,. The existence of
such transfers hy, is due mainly to the work of Ngé [Ngo| and Waldspurger [Wal97, [Wal04], [Wal0g].
But we hope to have a priori spectral information about the transferred functions h,,.

A guiding principle is that the nearby cycles on an appropriate “local model” for Shy, should
naturally produce a central element as a test function ¢,., which should coincide with that given by the
test function conjecture (cf. Conjecture ; then its spectral behavior is known by construction.
In that case one can formulate a conjectural endoscopic transfer h, of ¢, with known spectral
behavior.

General Frobenius-twisted endoscopic transfer homomorphisms 3% (Gq,.) — 3*(Hg,) will be
described elsewhere. Here for simplicity we content ourselves to describe two special cases: standard
(untwisted) endoscopic transfer of the geometric Bernstein center, and the base change transfer for
the stable Bernstein center.
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6.2.1. Endoscopic transfer of the geometric Bernstein center. Let us fix an endoscopic triple (H, s, 1)
for G over a p-adic field F (cf. [Ko84al §7]), and suppose we have fixed an extension n: “H — LG
of ng : H<— G (we suppose we are in a situation, e.g. Gger = Gsc, where such extensions always
exist). We could hope the natural map

YH/F __y 9)G/F
Mg r— moN)a.

would be algebraic and hence would induce an endoscopic transfer homomorphism 3% (G) — 3%*(H).
By invoking further expectations about endoscopic lifting, one would then formulate a map on the
level of Bernstein centers, 3(G) — 3(H), which we could write as Z + Z|,,. But these assertions are
not obvious. Fortunately, in practice we need this construction rather on the geometric Bernstein
center.

Definition 6.2.1. Assume LLC+ holds for G/F. We define the geometric Bernstein center
38m((7) to be the subalgebra of 3%%(G) generated by the elements Zy as V ranges over Rep(LG).

The terminology geometric Bernstein center is motivated by below.

Let V|, € Rep(“H) denote the restriction of V € Rep( “G) along 1. Further assume LLC+ also
holds for H/F. Then Zy — Zy), determines a map 38°°™(G) — 38 (H). Write Z{ (resp. Z{;In)
for the image of Zy (resp. Zy|,) in 3(G) (resp. 3(H)).

Conjecture 6.2.2. Assume LLC+ holds for both G and H. Then in the above situation the dis-
tribution Zgln € 3(H) is the endoscopic transfer of ZG € 3(G) in the following sense: whenever a
function ¢ € CX(H(F)) is a transfer of a function ¢ € C(G(F)), then Zé’ln * o is a transfer
of ZG * ¢.

This conjecture and its Frobenius-twisted analogue were announced by the author in April 2011
at Princeton [H11]. A very similar statement subsequently appeared as Conjecture 7.2 in [SS].
Considering the untwisted case for simplicity, the difference is that in [SS|, the authors take in place
of Zy an element in the stable Bernstein center essentially of the form

Mg = tr(A(@p), Vo),

where here the usual trace, not the semi-simple trace, is used. That conjecture is proved in [SS] in
all EL or quasi-EL cases, by invoking special features of general linear groups such as the existence
of base change representations.

Formally, Conjecture [6.2.2 contains as a special case the “fundamental lemma implies spherical
transfer” result of Hales [Hal| (see also Waldspurger [Wal97]). Indeed if K, Ky are hyperspecial
maximal compact subgroups in G(F), H(F), then 1k, is a transfer of 1x by the fundamental
lemma, and hence Z{EI‘" x 1x,, is a transfer of Z‘Cj * 1. But by the Satake isomorphism, every
K-spherical function on G(F) is a C-linear combination of functions of the form Z¢ * 1y, for some
representations V' (comp. .

Even in more general situations, Conjecture is most useful when applied to a pair ¢, ¢ of
unit elements in appropriate Hecke algebras. At least when G splits over F*", Kazhdan-Varshavsky
proved in [KV] that for some explicit scalar ¢, the Iwahori unit ¢ly,, is a transfer of the Iwahori
unit 1;. As another example, if K¢ C G(F) is the n-th principal congruence subgroup in G(F),
then for some explicit scalar ¢ the function clgu is a transfer of 1xc (proved by Ferrari [Fer] under
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some mild restrictions on the residue characteristic of F'), and thus c(Z‘I/{‘n * 1gn) should be an
explicit transfer of Z‘(/; * 1c. A Frobenius-twisted analogue of Ferrari’s theorem together with the
Frobenius-twisted analogue of Conjecture would give an explicit Frobenius-twisted transfer of
the test function ¢, from Conjecture if K, is a principal congruence subgroup.

6.2.2. Base change of the stable Bernstein center. We return to the situation of Proposition [5.4.1
but we specialize it to cyclic Galois extensions of F' and furthermore we assume G/F is quasi-
split. Let E/F be any finite cyclic Galois subextension of F//F with Galois group (f), and with
corresponding inclusion of Weil groups Wg — Wp.

If $ € H(G(E)) and f € H(G(F)) are functions in the corresponding Hecke algebras of locally
constant compactly-supported functions, then we say ¢, f are associated (or f is a base-change trans-
fer of ¢), if the following result holds for the stable (twisted) orbital integrals: for every semisimple
element v € G(F), we have

(6.2.1) SO,(f) =D A(7,6)SO0s0(¢)

s
where the sum is over stable f-conjugacy classes § € G(E) with semisimple norm A§, and where
A(v,8) =1if N'§ = v and A(v,d) = 0 otherwise. See e.g. [Ko86], [Ko88], [CI90], or [HO9] for further
discussion.

Conjecture 6.2.3. In the above situation, consider Z € 3°“(Gg), and consider its image, also
denoted by Z, in 3(Gg). Consider bg/p(Z) € 3°°(G) (cf. Def. and also denote by by p(Z)
its image in 3(G). Then bp,p(Z) is the base-change transfer of Z € 3(Gg), in the following sense:
whenever a function f € CX(G(F)) is a base-change transfer of ¢ € CX°(G(E)), then by p(Z) * f
is a base-change transfer of Z x ¢.

Proposition 6.2.4. Conjecture holds for GL,,.

Proof. The most efficient proof follows Scholze’s proof of Theorem C in [Sch2] which makes essen-
tial use of the existence of cyclic base change lifts for GL,,. Let = € II(GL,,/F) be a tempered
irreducible representation with base change lift IT € II(GL,,/F), a tempered representation which
is characterized by the character identity ©r((g,0)) = ©,(Ng) for all elements g € GL,,(E) with
regular semisimple norm Ng (JAC, Thm. 6.2, p. 51]). Here (g,0) € GL,(E) x Gal(E/F) and ¢ acts
on II by the normalized intertwiner Iy : II — II of [AC| p. 11].

Suppose f is a base-change transfer of ¢. Using the Weyl integration formula and its twisted
analogue (cf. [AC] p. 36]), we see that

tr((¢,0) | 11) = tr(f | 7).
Multiplying by the constant Z(II) = bg,p(Z)(r), we get
tr((Z x ¢,0) [ 1) = tr(bg/p(Z) * | ).
(Use Corollary[3.2.1]and its twisted analogue.) There exists a base-change transfer h € C2°(GL,,(F))
of Z x ¢ (JAC, Prop. 3.1]). Using the same argument as above for the pair Z x ¢ and h, we conclude
that tr(bg/p(Z)* f—h|m) = 0 for every tempered irreducible = € II(GL, /F). By Kazhdan’s density
theorem (Theorem 1 in [Kaz|) the regular semi-simple orbital integrals of bg,r(Z) * f and h agree.

Thus the (twisted) orbitals integrals of bg,r(Z) * f and ¢ match at all regular semi-simple elements,
and hence at all semi-simple elements by Clozel’s Shalika germ argument ([CI90), Prop. 7.2]). O
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Remark 6.2.5. Unconditional versions of Conjecture [6.2.3| are available for parahoric and pro-p
Iwahori-Hecke algebras, when G/F' is unramiﬁedﬂ See

6.3. Application: local Hasse-Weil zeta functions. By Kottwitz’ base change fundamental
lemma for units [Ko86], we know 1k, is a base-change transfer of 1 , whenever K, = G(Z,) and
Kpr = G(Z,r) for a smooth connected Z,-model G for G. Then Conjectures and together
say that

(631) f;gj) = prd/2 bEjo/Qp(ZVEjO_) * 1Kp
K,
is a base-change transfer of a test function ¢, that satisifies (6.1.1]).
Setting
E, E, GxW
(6.3.2) (rZp, Vo) ==Ind " "orey,

we have for any admissible parameter ¢ : Wg, — (GQp) and any 7, € IL,(G/Q)) the identity
rd 2 7: K, ss r E
(6.3.3) tr(f7) | mp) = p"2 dim(m %) tr% (p(@7), VED),

where 7 = j[Ey : Qp]. In the compact and non-endoscopic cases, the above discussion allows us to
express (;S(s, Shg,) in terms of semi-simple automorphic L-functions. To explain this we need a
detour on the point of view taken in [LI| [L2] (comp. [Ko84D, §2.2]).

Recall (r_,,V_,) € Rep(*(Gg)). Consider the Langlands representation

GXWQ
r:=1In dG Wi T

and for each prime p of E dividing p, consider

GxW, A GxW,
rp:=Ind. " Res&*We r_,=Ind. """

T_ -
G)(]WEP GXIWEF GNWEP s

Mackey theory gives

If p is understood, let E,o/Q, denote the maximal unramified subextension of E,/Q,, and set
E =E; and Ej := Eyp. Then we have

GXWQP 71 dGNWQp Ey
WE G)(]WEO _'U‘

Lemma 6.3.1. Suppose 7, € I1,(G/Qy). Then

(). r55) if r = jEn 1 Q)

(6.3.4) r, =Ind

(6.3.5) [Eo : Qp] Mtr%(0(@)), ry) =
: 0, if [Eo:Qp) Jr
Proof. There is an isomorphism of G x Wg,-modules
rp = C[G % Wo,] @cigsmy,| e,

and rv( ") has a C-basis of the form {o(®!) @wy} where 0 < i < [Ep : Q] —1 and {wy} comprises
a C-basis for (r ?Z)W(I@p . The lemma follows. O

"The pro-p Sylow subgroup of an Iwahori subgroup I C G(F) coincides with its pro-unipotent radical IT, and it
has become conventional to term the Hecke algebra C°(I1T\G(F)/I1) the pro-p Iwahori-Hecke algebra.
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The following result shows the potential utility of Conjectures and It applies not just
to PEL Shimura varieties, but to any Shimura variety where these conjectures are known. Similar
results will hold when incorporating Hecke operators away from p.

Theorem 6.3.2. Suppose Gger s anisotropic over Q, so that the associated Shimura variety Shk, =
Sh(G,h™ ', K?PK,) is proper over E. Suppose G has “no endoscopy”, in the sense that the group
R(G,,/Q) is trivial for every semisimple element o € G(Q), as in e.g. [Ko92b|. Let p be a prime
ideal of E dividing p. Assume (LLC+) (cf. , and Conjectwes and hold for all groups
GQPT .

Then in the notation above, we have

(6.3.6) G (s, Shr,) = HLSS(S — %l’ 7Tp7rp)a(7"f)dim(7r;<)7
L
where T; = 7P @, runs over irreducible admissible representations of G(Ay) and the integer a(my)
is given by
a(my) = Z (T @ Too) t1( foo |Too),
Too€lloc

where m(T§ @ Too) is the multiplicity of T¢ @ oo in L2(G(Q)Ac(R)°\G(A)). Here Ag is the Q-
split component of the center of G (which we assume is also its R-split component). Further T, is
the set of irreducible admissible representations of G(R) which have trivial infinitesimal and central
characters, and fo is defined as in [Ko92b| to be (—1)3mhK) times a pseudo-coefficient of an

essentially discrete series member 10 € Tl

Proof. The method follows closely the argument of Kottwitz in [K092b] (comp. [HRal, §13.4]), so we
just give an outline. We will use freely the notation of Kottwitz and [HRa]. Set f = [Epo : Q,]. By
definition we have

P —ifs

(6.3.7) log ¢3(s, Shi,) ZLefss (9}, Shk,)
j=1

By using (6.1.1)) together with Conjectures and the arguments of Kottwitz [Ko92b] show
that for each j > 1

(6.3.8) Lefss(fbj Shg,) ZSO (f* f J)f ),

Yo

where f(] ) is defined as in and fP is the characteristic function of K? C G(AZ;). Here g
ranges over all stable conjugacy classes in G(Q).

Since Gger is anisotropic over Q, the trace formula for any f € C*(Ag(R)°\G(A)) takes the
simple form

(6.3.9) > 7(G, Zm tr(f|7),

where 7 ranges over conjugacy classes in G(Q) and 7 ranges over irreducible representations in
L?(G(Q)Ag(R)°\G(A)). By [Ko92D, Lemma 4.1], the vanishing of all &(G.,/Q) means that

D 7(G1) O4(f) = 7(G) Y S0, (f)

~
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It follows that

Lef*(®}, Shk,) Zm tr(f2 £ foo|m)

=Z S m(ny @ ma) - tr(fP1a8) - te(f9|my) - tr(foolToc)

Tf Too€lloo

—Z 7Tf dlm ) fd/2trbb( ﬂp(q)%),v—E;(L))a

the last equality by (6.3.3)).
By definition we have

—Ts

log L*(s, mp, 1) Ztrss O, (P )p—

Now (6.3.6) follows by invoking ((6.3.5]). O

Remark 6.3.3. Unconditional versions of Theorem [6.3.2] are available for some parahoric or pro-
p-Iwahori level cases, or for certain compact “Drinfeld case” Shimura varieties with arbitrary level;
these cases are alluded to in §8]

6.4. Relation with geometric Langlands. For simplicity, assume G is split over a p-adic or local
function field F. Assume G satisfies LLC+. From the construction of Zy in Proposition [5.7.1] we
have a map

(6.4.1) KoRepe(G) — Z(G, J)
Vie—Zyxly

for any compact open subgroup J C G(F'), which gives rise to a commutative diagram

2(G,J)
—x 17
2(G, 1)
KoRep(G)— 24— ~9((G, K)

whenever J C I C K where [ resp. K is an Iwahori resp. special maximal compact subgroup, and
where the bottom two arrows are the Bernstein resp. Satake isomorphisms. We warn the reader
that the oblique arrow KoRep(G) — Z(G, J) is injective but not surjective in general, and also it is
additive but not an algebra homomorphism in general.

Gaitsgory [Gal] constructed the two arrows Sat and Bern geometrically when F' is a function
field, using nearby cycles for a degeneration of the affine Grassmannian Grg to the affine flag
variety F1 for G. Omne can hope that, as in the Iwahori case [Ga], one can construct the arrow
KoRep(é) — Z(G,J) categorically using nearby cycles for a similar degeneration of Grg to a
“partial affine flag variety”, namely an fpgc-quotient LJ/L+J where J is a smooth connected group
scheme over I, [[t]] with generic fiber Jr, (1)) = Gr, (1)) and J(F[[t]]) = J. Here LJ (resp. L1J) is
the ind-scheme (resp. scheme) over F, representing the sheaf of groups for the fpge-topology whose
sections for an F,-algebra R are given by LJ(Spec R) = J(R[t][1]) (resp. LTJ(Spec R) = J(R[t])).
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At least for J = I'", the pro-p Iwahori subgroup, this will be realized in forthcoming joint work of
the author and Benoit Stroh.

In a related vein, the geometric Satake equivalence of Mirkovic-Vilonen [MV] is a categorical
version of the Satake isomorphism Sat, and this is usually stated when G is a split group over
F =TF,((t)). One can ask for a version of this when G is nonsplit, possibly not even quasisplit, over
such a field F. The correct Satake isomorphism to “categorify” appears to be the one described in
[HRo]. In many cases where G is quasisplit and split over a tamely ramified extension of F', this has
been carried out in recent work of X. Zhu [Zhul.

7. TEST FUNCTIONS IN THE PARAHORIC CASE

We fix r = j[Ey : Qp] for some j € N. We assume K, is a parahoric subgroup of G(Q,), and we
let K, denote the corresponding parahoric subgroup of G(Q,r). Assuming LLC+ holds for Gq,.,
we can speak of the test function
(7.0.2) br = pTd/Z(ZVEin * 1, ) € Z(G(Qpr), Kpr).

We wish to give a more concrete description of this function, making use of Bernstein’s isomorphism
for Z(G(Qpr), Kpr) which is detailed in the Appendix, §11]

In the next two subsections, we are concerned with the case where Gg, . is quasisplit. We write
F := Qpr. Choose a maximal F-split torus A in G, and let T" denote its centralizer in G. Fix
an F-rational Borel subgroup B containing T. Let Kr C G(F') denote the parahoric subgroup
corresponding to K.

By Kottwitz [Ko84D, Lem. (1.1.3)], the G(Q,)-conjugacy class {u} is represented by an F-rational
cocharacter i € X, (T)®F = X.(A). It is clear that E, the field of definition of {1}, is contained in
any subfield of @p which splits G.

Given 7 € II(G/F) with 757 # 0, to understand we need to compute the scalar

(7.0.3) tr(pq(@p), (VE0)erUr)y,

There is an unramified character x of T(F) such that 7 is a subquotient of iG(x), and we may
assume @r|w, = @y|w,. Since x is unramified, ¢, (Ip) =1 x Ip C T x Wp. Regarding x as an
element of T, 1' implies that we may write ¢, (®p) = x ¥ ®p € T x Wp. Then we need to
compute

(7.0.4) tr(x X ®p, (VE)IxIr),

—u
7.1. Unramified groups and the Kottwitz conjecture. Let us consider the case where Gq,,
is unramified. Since we are assuming G splits over an unramified extension of Q,, it follows that
E/Q, is unramified, i.e. E = Ey and V,El‘j = V_,. Moreover I' = E;q contains E with degree j.
Further, since G splits over F'"", we have VE;'IF = V_,. So we are reduced to computing
tr(x x ®p, V_,). Exactly as in Kottwitz’ calculation of the Satake transform in [Ko84bl p. 295], we

see that ((7.0.3)) is

(7.1.1) tr(x @ p, Vo) = Y. (=AM
AEW (F)-p

Here W (F) = W(G, A) is the relative Weyl group for G/F, and we view A € X,(A) = X, (T)*F as
a character on 7. This proves the following result.
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Lemma 7.1.1. In the above situation,

(712) ZVE]'Q * 1Kpr = Z—u,js

—H,]

where the Bernstein function z_, ; (c¢f. Definition|11.10.2) is the unique element of Z(G(F), Kr)
which acts (on the left) on the normalized induced representation i (x)5* by the scalar 2orew () (A0,

for any unramified character x : T(F) — C*.

Of course the advantage of z_, ; is that unlike the left hand side of , it is defined uncon-
ditionally. A relatively self-contained, elementary, and efficient approach to Bernstein functions is
given in

Thus Conjecture in this situation is equivalent to the Kottwitz Conjecture.

Conjecture 7.1.2. (Kottwitz conjecture) In the situation where Gq,,. is unramified and K, is a
parahoric subgroup, the function ¢, in lb may be taken to be prd/zz_uyj.

Conjecture[7.1.2) was formulated by Kottwitz in 1998, about 11 years earlier than Conjecture
There is a closely related conjecture of Kottwitz concerning nearby cycles on Rapoport-Zink local
models Mlﬁi for Sh,. We refer to [RZ], [Ra03] for definitions of local models, and to [H05 [HN02a]
for further details about the following conjecture in various special cases.

Conjecture 7.1.3. (Kottwitz Conjecture for Nearby Cycles) Write G for the Bruhat-Tits parahoric
group scheme over Zy- with generic fiber Gg,, and with G(Zyr) = Kyr. Let Gy denote the analogous
parahoric group scheme over Fy:[[t] with the “same” special fiber as G. Then there is an L*G, . -
equivariant embedding of MII%E,JF,,»« into the affine flag variety LG, . /L+gt7Fp” via which we can

loc

identify the semisimple trace of Frobenius function x + tr%%(Fr,-, R¥, “*) on x € MII(}Z (Fpr) with
the function p¥/22_, ; € Z(Gy(Fpr (1), G (Fpr[1]))-

7.2. The quasisplit case. The group GIr isa possibly disconnected reductive group, with maximal
torus (fIF )° (see the proof of Theorem 8.2 of [Sf]). Now we may restrict the representation V7 to
the subgroup GIF x Wg C G x Wr. Let x be a weakly unramified character of T'(F'); by l) we
can view x € (T'7)g,. The only T'F-weight spaces of (VEo)yIr which contribute to 4) are
indexed by the ® p-fixed weights, i.e. by those in X*(fIF)q’F. (It is important to note that it is the
weight spaces for the diagonalizable group Tir , and not for the maximal torus (T\I £)° which come
in here.) This is consistent with Theorem of the Appendix, and may be expressed as follows.

Proposition 7.2.1. In the general quasisplit situation, ZVEJ-D_ * 1, 1s the unique function in
— K]

Z(G(Qpr), Kpr) which acts on the left on each weakly unramified principal series representation
iG ()5 by the scalar (7.0.4), and thus is a certain linear combination of Bernstein functions z_ j
where —\ € X*(TF)®r ranges over the W (G, A)-orbits of ® p-fized T'% -weights in V_Eﬁ

It is an interesting exercise to write out the linear combinations of Bernstein functions explicitly
in each given case. Once this is done, the result can be used to find explicit descriptions of test
functions for inner forms of quasi-split groups. This is the subject of the next subsection.

7.3. Passing from quasisplit to general cases via transfer homomorphisms.
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7.3.1. Test function conjecture via transfer homomorphisms. We use freely the notation and set-
up explained in the Appendix Let G* be a quasi-split F-group with an inner twisting
¥ : G — G*. Let J* C G*(F) resp. J C G(F) be parahoric subgroups and consider the normalized
transfer homomorphism t : Z(G*(F), J*) — Z(G(F), J) from Definition

The following conjecture indicates that test functions for the quasisplit group G* should determine
test functions for G. This is compatible with the global considerations which led to Theorem [6.3.2

Conjecture 7.3.1. Let K, resp. K. be parahoric subgroups of G(Qpr) resp. G*(Qpr), with
corresponding normalized transfer homomorphism t : Z(G*(Qpr), K}v) — Z(G(Qpr), Kpr). If
¢y € Z(G*(Qpr), K,-) is the function prd/z(Z‘Cj;jo * 1K;r) described in Proposition |7.2.1| for the

data (G(ap,r,,{—u},K;T), then ¢, = t(¢}) € Z(GEQPT),KPT) is a test function satisfying (6.1.1]) for
the original data (Gq,,{—p}, Kpr).

Assuming Conjecture holds, another way to formulate this is that the normalized transfer
homomorphism ¢ takes the function Z‘C/’Y;jok * 1K;T € Z(G*(Qpr), K;T) to the function ZgEjO *1g,,. €

—KsJ

Z(G(Qpr), Kpr). But the point of Co;ljléjcture is to provide an explicit test function for the
non-quasisplit data (Gg,.,{—p}, Kpr) which can be compared with direct geometric calculations of
the nearby cycles attached to this data, and thus to provide a method to prove an unconditional
analogue of Conjecture for such data. This is illustrated in below.

The next two paragraphs show that Conjecture is indeed reasonable.

7.3.2. A calculation for GLy. Take G* = GLy r and G = D>, where D is the central simple division
algebra over F' of dimension 4.

Here we will explicitly calculate and compare the test functions associated to (GLa p, {—p}, Ir)
and (D*,{—pu},OF), where u = (1,0), and where Ip C GLo(F) and OF C D* are the standard
Iwahori subgroups. This calculation will show that the normalized transfer homomorphism takes
one test function to the other. This is required in order for both Conjectures and to hold
true.

Write 2%, = Zy"? % 11, € Z(GLo(F), Ir) and 2, = Z lpx € H(D*,05) = C[Z]. The
last isomorphism is induced by the Kottwitz homomorphism, which in this case is the normalized
valuation valg o Nrdp : D* — Z, where valp is the normalized valuation for F' and Nrdp : D — F
is the reduced norm.

Write i = (0, 1) and let B* denote the Borel subgroup of lower triangular matrices in GLy. Then
GLg
B

z* , acts on the left on i7.%(x)'F by the scalar

tr(x @ @p, Vo) = (=p = 1) (%),

for any unramified character x € Hom(T*(F)/T*(F);,C*). We may view x as a diagonal 2 x 2
complex matrix x = diag(x1, x2)-

To calculate z_,, we need a few preliminary remarks. First we parametrize unramified characters
n € Hom(D*/OJ,C*) by writing n = 19 o Nrdp, where 19 € C* is viewed as the unramified
character on F'* which sends wpr +— 19. The map Nrdp : D* — F* is Langlands dual to the
diagonal embedding G,,(C) — GL2(C), and it follows that the cocycles z, and z,, attached by
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Langlands duality to the quasicharacters n and 7 satisfy

R 0
n =

] , and thus, z,(®r) =

n 0
0 o
On the other hand, if 1 denotes the trivial 1-dimensional representation of D* | then its Langlands

parameter P satisfies 0P (@) = diag(q/2, ¢*/2) (sce, e.g., [PrRa, Thm. 4.4]). So using (4.0.5),
we obtain

0z

1/2 0

x oq
tI‘(SOnD ((I)F)7V—M) = tr( [ 0 1/2 7V—M)

0 N0q

= 6@ ) —uly + 35—l ) [’700 ﬂ )

Here Z is the center of G*. Using the definition of £ we deduce the following result.

Proposition 7.3.2. The normalized transfer homomorphism t : Z(GLo(F),Ir) — H(D*,0})
sends 2%, to z—y,.

7.3.3. Compatibility with nearby cycles in some anisotropic cases. Suppose we are in a situation
where E = Q,. As before, write F' = Q. Suppose G = (D ® F)* x G,,, where D is a central
division algebra over E of degree n?, for n > 2. This situation arises in the setting of “fake unitary”
simple Shimura varieties (see, e.g. [H01l, §5]). Let G* = GL,, X Gy, a split inner form of G over Q,,.

Suppose that V_, = A™(C™) for 0 < m < n, i.e. the representation of G = GL,(C) x C* where
the first factor acts via the irreducible representation with highest weight (1™,0"~"™) and the second
factor acts via scalars.

Consider the local models M*1°¢ = M'"¢(G*, {—pu}, K}) and M'¢ = M'*°(G, {—u}, K,), where
K, C G*(F) and K, C G(F') are Iwahori subgroups. We can choose the inner twist G — G* and
the subgroups K and K, so that

M*loc (ﬁp) _ Mloc (Fp)

and where the action of geometric Frobenius ®,, on the right hand side is given by ®, = Ad(cs, ) @},
where @} is the usual Frobenius action (on the left hand side) and where 7 — Ad(c;) represents the
class in H'(Q,, PGL,) corresponding to the inner twist G — G*.

Assume (r,n) = 1 and set ¢ = p". Then M"¢(G,{—u}, K,)(F,) consists of a single point. To
understand the corresponding test function we may ignore the G,,-factor and pretend that G = D*
and G* = GL,,. Then the Kottwitz homomorphism kg : G(F) — Z induces an isomorphism

H(G(Qpr), Kpr) = CIZ].

The test function for the Shimura variety giving rise to the local Shimura data (G, {—p}, K,) should
be calculated by understanding the function trace of Frobenius on nearby cycles on M!°°, similarly
to Conjecture in the unramified case. The test function should be of the form C, - 1,, € C[Z] =
H(G(Q,), K,r) for some scalar Cj.

Proposition 7.3.3. In the above situation, Conjecture predicts that the coefficient Cy is given
by Cq = #Gr(m,n)(F,), the number of Fy-rational points on the Grassmannian variety Gr(m,n)
parametrizing m-planes in n-space.
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This is compatible with calculations of Rapoport of the trace of Frobenius on nearby cycles of
the local models for such situations, see [Ra90]. Thus the normalized transfer homomorphism gives
a group-theoretic framework with which we could make further predictions about nearby cycles on
the local models attached to non-quasiplit groups G, assuming we know explicitly the corresponding
test function for a quasisplit inner form of G.

Proof. By the final sentence of Proposition[11.12.6, we simply need to integrate the function p"#/2z* . €
Z(GL,(Qpr), K;5) over the fiber of the Kottwitz homomorphism val o det over 1,, € C[Z]. This is

rd/ QZi# explicitly. However, it is

a combinatorial problem which could be solved since we know p
easier to use geometry. Translating “integration over the fiber of the Kottwitz homomorphism” in

terms of local models gives us the equality

Cp = Y Te(@), RUM™(Q).).
zeM*loc(F,)
(Here / is a rational prime with ¢ # p.) But the special fiber of M*°® embeds into the affine flag
variety Flar,, for GL,, /F,, and under the projection p : Flgr,,, — Grgr, to the affine Grassmannian,
M*1°¢ maps onto Gr(m,n) and Rp, (R\I!M*loc (Q¢)) = Qg, the constant ¢-adic sheaf on Gr(m,n) in
degree 0. Thus we obtain

Co= Y, Tr(®),(Q)a) = #Gr(m,n)(Fy)
2€Gr(m,n)(Fq)
as desired. (The reader should note the similarity with Prop. 3.17 in [Ra90], which is justified in a
slightly different way.) O

8. OVERVIEW OF EVIDENCE FOR THE TEST FUNCTION CONJECTURE

8.1. Good reduction cases. In case Gg, is unramified and K, is a hyperspecial maximal compact
subgroup of G(Q,), we expect Sh(G,h™!, KPK,) to have good reduction over Og,. In PEL cases
this was proved by Kottwitz [Ko92a]. In the same paper for PEL cases of type A or C, it is proved
that the function ¢, = 1, ,(p-1)K,. satisfies (6.1.1)), which can be viewed as verifying Conjecture
[6.11] for these cases.

8.2. Parahoric cases. Assume K is a parahoric subgroup. We will discuss only PEL Shimura
varieties.

Here the approach is via the Rapoport-Zink local model Ml}%f, for a suitable integral model M,
for Shy, and the main ideas are due to Rapoport. We refer to the survey articles [Ra90], [Ra05], and
[HO5] for more about how local models fit in with the Langlands-Kottwitz approach. For much more
about the geometry of local models, we refer the reader to the survey article of Pappas-Rapoport-
Smithing [PRS] and the references therein.

Using local models, the first step to proving Conjecture [6.1.2] is to prove Conjecture The
first evidence was purely computational: in [HOI], z_, ; was computed explicitly in the Drinfeld
case and the result was compared with Rapoport’s computation of the nearby cycles in that setting,
proving Conjecture 7.1.3 directly. This result motivated Kottwitz’ more general conjecture and also
inspired Beilinson and Gaitsgory to construct the center of an affine Hecke algebra via a nearby
cycles construction, a feat carried out in [Ga]. Then in [HN02a] Gaitsgory’s method was adapted to
prove Conjecture for the split groups GL,, and GSp,,,. This in turn was used to demonstrate
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Conjecture for certain special Shimura varieties in [HO5], and then to prove the analogue of
Theorem for those special Shimura varieties with parahoric level structure at p. The harmonic
analysis ingredient needed for the latter was provided by [H09].

In his 2011 PhD thesis, Sean Rostami proved Conjecture [7.1.3] when G is an unramified unitary
group. In a recent breakthrough, Pappas and Zhu defined group-theoretic local models MII%E when-
ever (G splits over a tamely ramified extension, and for unramified groups G proved Conjecture[7.1.3

see [PZ], esp. Theorem 10.16.

8.3. Deeper level cases. We again limit our discussion to PEL situations, where progress to date
has occurred.

It is again natural to study directly the nearby cycles relative to a suitable integral model for
the Shimura variety and hope that it gives rise to a test distribution in the Bernstein center. For
Shimura varieties in the “Drinfeld case” with K}, a pro-p Iwahori subgroup of G(Q,) = GL,(Q,)xQ)
(“T'1(p)-level structure at p”), one may use Oort-Tate theory to define suitable integral models and
prove Conjectures and for them. This was done by the author and Rapoport [HRa] (and
[H12] provided the harmonic analysis ingredient needed to go further and prove Theorem in
this case).

Around the same time as [HRal], Scholze studied in [Schl] nearby cycles on suitable integral
models for the modular curves with arbitrarily deep full level structure at p. In this way he proved
Conjectures and in these cases, taking the compactifications also into account, and thereby
proved the analogue of Theorem for the compactified modular curves at nearly all primes of
bad reduction. The nearby cycles on his integral models naturally gave rise to some remarkable
distributions in the Bernstein center, for which he gave explicit formulae (see .

Then in [Sch2] Scholze generalized the approach of [Schi] to compact Shimura varieties in the
Drinfeld case, again finding an explicit description of nearby cycles. In this case, he was still able to
produce a test function to plug into , or rather, simultaneously incorporating the base-change
transfer results he needed in precisely this case, he found a test function that goes directly into the
pseudostabilization of . This allowed him to prove Theorem In contrast to the modular
curve situation, in higher rank the nearby cycles on Scholze’s integral models do not directly produce
distributions in the Bernstein center, and an explicit description of his test functions seems hopeless.
But nevertheless Scholze was able to prove by indirect means Conjecture [6.1.1]in this case.

The description of the nearby cycles in [Sch2] provided one ingredient for Scholze’s subsequent
paper [Sch3] which gave a new and streamlined proof of the local Langlands conjecture for general
linear groups.

In later work Scholze [Schd] formalized his method of producing test functions in many cases,
using deformation spaces of p-divisible groups, and this is used to give a nearly complete description
of the cohomology groups of many compact unitary Shimura varieties in his joint work [SS| with
S.W. Shin; their main assumption at p is that Gg, is a product of Weil restrictions of general
linear groups. The advantage of what we could call the Langlands-Kottwitz-Scholze approach in
this situation is that it yields in [SS] a new construction of the Galois representations constructed
earlier by Shin [Sh], in a shorter way that avoids Igusa varieties.

In these later developments, Conjecture[6.1.1]does not play a central part, but the stable Bernstein
center does nevertheless still play a clarifying role in the pseudostabilization process (e.g. in [SS]).
It seems that only certain integral models, such as those we see in many parahoric or pro-p Iwahori
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level cases, have the favorable property that their nearby cycles naturally give rise to distributions in
the Bernstein center. It remains an interesting problem to find such integral models in more cases,
and to better understand the role of the Bernstein center in the study of Shimura varieties.

9. EVIDENCE FOR CONJECTURES ON TRANSFER OF THE BERNSTEIN CENTER

Here we present some evidence for the general principle that the (stable/geometric) Bernstein cen-
ter is particularly well-behaved with respect to (twisted) endoscopic transfer. The primary evidence
thus far consists of some unconditional analogues of Conjecture [6.2.3]

Let G/F be an unramified group, and let F;./F be the degree r unramified extension of F' in some
algebraic closure of F'. In [HQ09, [H12], the author defined base change homomorphisms

by : Z(G(E), J,) — Z(G(F), J),

where J C G(F) is either a parahoric subgroup or a pro-p Iwahori subgroup, and where J, is the
corresponding subgroup of G(F;.). Then we have “base-change fundamental lemmas” of the following
form [

Theorem 9.0.1. For any ¢, € Z(G(F}), ), the function b.(¢,) is a base-change transfer of ¢, in
the sense of (6.2.1)).

By Kottwitz [Ko86], the function 1; is a base-change transfer of 1; . Hence for any V, €
Rep(%(GF,)), Conjecture predicts that bp, p(Zy, ) * 17 is a base-change transfer of Zy, 1,
This is a consequence of Theorem because of the following compatibility between the base-
change operations in [H09| [H12] and in the context of stable Bernstein centers (cf. Prop. |5.4.1]).

Lemma 9.0.2. In the above situations, b,(Zy, *1;,) =bp_ /p(Zy,) * 1.

Proof. First assume J is a parahoric subgroup. Let x be any unramified character of T'(F'). It
is enough to show that the two functions act on the left by the same scalar on every unramified
principal series representation i%(x)”.

Let N, : T(F,) — T(F) be the norm homomorphism. By the definition of b, in [HQ9], b,.(Zy, 1)
acts by the scalar by which Zy, x1;, acts on zg: (x o N,)’=. This is the scalar by which Zy, acts on
i (x o Ny), which in view of LLC+ is

(9.0.1) tr*° (o1, (PF), Vi) = 0% (L (BF), V7).
G

But the right hand side is the scalar by which bp, ,r(Zv,) * 1 acts on i (x)”.
The equality goz;g n (%) = ol (®%) we used in ID follows from the commutativity of the
diagram of Langlands dualities for tori

Homeonis (T(F),C*) —— H} . .(Wp, ET)

conts

lN,. e

Homeonts (T'(F-), C*) —— Hclonts(WFr? LTT)

which was proved in [KV] Lemma 8.1.3].

8Re1ating to pro-p Iwahori level, a much stronger result is proved in [H12] concerning the base change transfer of
Bernstein centers of Bernstein blocks for depth-zero principal series representations.



34 T. Haines

Now suppose J = IT is a pro-p Iwahori subgroup. Then the same argument works given the
following fact: for any depth-zero character x : T'(F); — C* and any extension of it to a character
¥ on T(F), and any z, € Z(G(F,),I;}), the function b,(z,) acts on i€(%)!" by the scalar by which
z acts on ng (¥ o N,)I" . This follows from the definition of b, given in Definition 10.0.3 of [H12],
using [HI2] Lemma 4.2.1]. O

Let us also mention again Scholze’s Theorem C in [Sch2], which essentially proves Conjecture

for GL,, (see Proposition [6.2.4)).

10. EXPLICIT COMPUTATION OF THE TEST FUNCTIONS

10.1. Parahoric cases. Conjecture implies that test functions are compatible with change of
level. Therefore for the purposes of computing them for parahoric level, the key case is where K, is an
Iwahori subgroup. Thus, for the rest of this subsection we consider only Iwahori level structure. Since
test functions attached to quasisplit groups should determine, in a computable way, those for inner
forms (by Conjecture and Proposition , it is enough to understand quasisplit groups.
Via Propositionthis boils down to giving explicit descriptions of the Bernstein functions z_j ;,
assuming we have already expressed the test function explicitly in term of these — this is automatic
for unramified groups using the Kottwitz Conjecture (Conjecture [7.1.2)).

Let us therefore consider the problem of explicitly computing Bernstein functions z, attached
to any group G/F and an Iwahori subgroup I C G(F') (F being any local non-archimedean field).
For simplicity consider the case where G/F' is unramified, and regard p as a dominant coweight in
X.(A). The p which arise in Conjecture are minuscule; however, we consider ; which are not
necessarily minuscule here. Let W denote the extended affine Weyl group of G over F (cf. .
Attached to u is an the p-admissible set Adm(u) C W, defined by

Adm(p) ={z € W |z < ty, for some \ € W(G,A) - u},

where < denotes the Bruhat order on W determined by the Iwahori subgroup I and where t) denotes
the translation element in W corresponding to A € X, (A). The u-admissible set has been studied
for its relation to the stratification by Iwahori-orbits in the local model leg‘;, for much information
see [KR], [HNO2b], [Ra05]. The strongest combinatorial results relating local models and Adm(u)
are due to Brian Smithling, see e.g. [Smil [Sm2, [Sm3].

For our purposes, the set Adm(u) enters because it is the set indexing the double cosets in the

support of z,.

Proposition 10.1.1. The support of z, is the union |J (1) IxI.

rE€Adm
Proof. This was proved using the theory of alcove walks as elaborated by Gortz [G], in the Appendix
to [HRal. It applies to affine Hecke algebras with arbitrary parameters, hence the corresponding

result holds for arbitrary groups, not just unramified groups. O

The following explicit formula was proved in [HO1] and in [HP]. Let T, = 1y, for « € W. In the
formulas here and below, ¢ = p” is the cardinality of the residue field of F'.
Proposition 10.1.2. Assume u is minuscule. Assume the parameters for the ITwahori Hecke algebra
are all equal. Then

qe(tu)/QZ'u:(—l)e(tu) Z (—l)é(m)me)(q)TM
rz€Adm(p)
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where x decomposes as x = typyw € X, (A) x W = W and where R, ,(q) denotes the R-polynomial
of Kazhdan-Lusztig [KL], and £ the length function, for the quasi-Cozeter group W. A similar
formula holds in the context of affine Hecke algebras with arbitrary parameters. In the Drinfeld case
G = GL, and pp = (1,0"1), the coefficient of Ty, is (1 — q)*tw)—4(=),

There are also explicit formulas for Bernstein functions z, when g is not minuscule, but they
tend to be much more complicated. For related computations see [HP] and [GH].

10.2. A Pro-p Iwahori level case. In the Drinfeld case where Gg, = GL, x G, and p =
(1,0"1) x 1, and where K, is a pro-p Iwahori subgroup, an explicit formula for the test function
¢, for Sh(G,h™!, KPK,) was found by the author and Rapoport. We shall rephrase this slightly
by ignoring the G,, factor and giving the formula for G = GL,,.

Proposition 10.2.1. ([HRal Prop. 12.2.1]) Let ¢ = p". Let I} denote the standard pro-p Twahori
subgroup of Gy := GL,,(Qpr). Let T denote the standard diagonal torus in GL,,. In terms of natural
embeddings T'(F,) — G, and w € W — G,. giving elements tw™! € G,. representing I7\G,/I;}, we
have

0, ifw¢ Adm(p)
(10.2.1) So(LFtw™ IT) =0, if w e Adm(p) but N, (t) & T (F,)
(=)™ (p— 1)nfls(w)‘ (1- q)‘S(w”*"*l, otherwise.

Here S(w) is the set of critical indices for w, equivalently S(w) is the set of standard basis vectors
ej € Z" such that w < ., in the Bruhat order on W determined by the standard Iwahori subgroup
of GL,,.

10.3. Deeper level structures. Here the known explicit descriptions pertain only to G = GLo
and first were proved by Scholze [Schl]. It remains an interesting question whether one can find
explicit descriptions of test functions in higher rank groups with arbitrary level structure: even the
Drinfeld case G = GL,,, u = (1,0~ 1) looks difficult, cf. [Sch2].

To state Scholze’s result, we need some notation. As usual let F' be a nonarchimedean local
field with ring of integers O, uniformizer w, and residue field cardinality q. Let B denote the O-
subalgebra M(0) of May(F). For any j € Z set B; = w/B. Let K = B*, the standard maximal
compact subgroup of G = GLy(F'). For n > 1, let K,, = 1 + B,; so K, is a principal congruence
subgroup and is a normal subgroup of K.

Scholze defines a (compatible) family of functions ¢,, € H(G, K,,) for n > 1. His definition uses
two functions, £: G — Z U {co} and k : G — Z. Let £(g) = val o det(1 — g). Let k(g) be the unique
integer k such that g € By and g ¢ Bi41. By definition ¢, is 0 unless val o det(g) = 1, tr(g) € O,
and g € By_,. Assume these conditions, in which case one can check that 1 —n < k(g) < 0 and
£(g) > 0. Now define

—-1—gq, if tr(g) € wO,
dn(g) == 1— g2 if tr(g) € O and {(g) < n + k(g),
14 @2 +k@)=1 " if tr(g) € O* and £(g) > n + k(g).

Proposition 10.3.1. (Scholze [Schl]) For each n > 1, the function z, := [I?:_I(ln] - ¢ belongs

to the center Z(GLa(F), K,), and the family (zn)n is compatible with change of level and thus
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defines a distribution in the sense of (3.2.1). This distribution is ¢*/*>Zy where V is the standard
representation C? of the Langlands dual group GLy(C).

In an unpublished work, Kottwitz gave another proof of this proposition and also described the
same distribution in terms of a family (®,,), of functions ®,, € Z(GLa(F), I,,) where I,, ranges over
the “barycentric” Moy-Prasad filtration in the standard Iwahori subgroup I C GLy(F).

By a completely different technique, in [Var] Sandeep Varma extended both the results of Scholze
and Kottwitz stated above, by describing the distributions attached to V = Sym” (C?) where 7 is
any odd natural number less than p, the residual characteristic of F'.

11. APPENDIX: BERNSTEIN ISOMORPHISMS VIA TYPES

11.1. Statement of Purpose. Alan Roche proved the following beautiful result in [Roc], Theorem
1.10.3.1.

Theorem 11.1.1 (Roche). Let e be an idempotent in the Hecke algebra H = H(G(F)). View H
as a smooth G(F)-module via the left regular representation, and write e = ) & €s according to
the Bernstein decomposition H = P,.g Hs. Let &, = {s € & |es # 0}, and consider the category
RO (G(F)) = [Isee, Rs(G(F)) and its categorical center 35 =[] e, 3s- Let Z(eHe) denote the
center of the algebra eHe.

Then the map z — z(e) defines an algebra isomorphism 3¢ = Z(eHe).

Roche’s proof is decidedly non-elementary: besides the material developed in [Rod|, it relies
on some deep results of Bernstein cited there, most importantly Bernstein’s Second Adjointness
Theorem and the construction of an explicit progenerator for each Bernstein block SR (G(F)).

In this chapter we use only the very special case of Roche’s theorem where e = e; for a parahoric
subgroup J C G(F). We will explain a more elementary approach to this special case. It will
rely only on the part of Bernstein’s theory embodied in Proposition below. Formally, the
inputs needed are, first, the existence of Bernstein’s categorical decomposition R(G) = [], Rs(G),
which is proved for instance in [Roc, Thm. 1.7.3.1] in an elementary way, and, second, the internal
structure of the Bernstein block R, (G) associated to a cuspidal pair s = [(M (F), x]¢ where M is a
minimal F-Levi subgroup of G and ¥ is a character on M (F') which is trivial on its unique parahoric
subgroup. For such components, progenerators can be constructed in an elementary way, without
using Bernstein’s Second Adjointness Theorem. In fact in what follows we describe this internal
structure using a few straightforward elements of the theory of Bushnell-Kutzko types, all of which
are contained in [BK].

For e = e; Roche’s theorem gives the identification of the center of the parahoric Hecke algebra,
in other words a Bernstein isomorphism for the most general case, where G/F is arbitrary and
J C G(F) is an arbitrary parahoric subgroup. However we will provide a proof only for the crucial
case of J = I, an Iwahori subgroup of G(F). The general parahoric case should follow formally
from the Iwahori case, following the method of Theorem 3.1.1 of [H09], provided one is willing to
rely on some basic properties of intertwiners for principal series representations (a purely algebraic
theory of such intertwiners was detailed for split resp. unramified groups in [HKP] resp. [HO7], and
the extension to arbitrary groups should be similar to [HO7]).
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The Iwahori case is approached in a different way by S. Rostami [Ro]. Rostami’s proof yields more
information, describing the Iwahori-Matsumoto and Bernstein presentations for the Iwahori-Hecke
algebra and deducing the description of its center from its Bernstein presentation.

11.2. Some notation. The notation will largely come from [HRo|. Recall L = Fun and let
o € Aut(L/F) the Frobenius automorphism, which has fixed field F. We use the symbol Ag as an ab-
breviation for X*(Z (é))?F Moreover, if S denotes a maximal L-split torus in G which is defined over
F, with centralizer T = Cent(S), then Q¢ will denote the subgroup of W' = Ng(S)(L)/T (L)1,
the extended affine Weyl group for G/L, which preserves the alcove a in the apartment S corre-
sponding to S, in the building B(G, L) of G over L.

As always, we let I be the Iwahori subgroup I = G2%(OF), which we recall we have chosen to be
in good position relative to A: the corresponding alcove a” C B(G, F) is required to belong in the
apartment A corresponding to A.

Let vp € a® be a special vertex with corresponding special maximal parahoric subgroup K =
G4 (Op). Thus K D I.

Recall M is a minimal F-Levi subgroup of G. Further, if I is an Iwahori subgroup of G(F'), then
Ing := M(F)NI = M(F) is the corresponding Iwahori subgroup of M (F) (cf. [HRo, Lem. 4.1.1]).

Use the symbol 1 to denote the trivial 1-dimensional representation of any group.

11.3. Preliminary structure theory results. Several of the results discussed here were proved
independently by S. Rostami and will appear with somewhat different proofs in [Ro].

11.3.1. Iwahori-Weyl group over F. The following lemma concerns variations on well-known results,
and were first proved by Timo Richarz [Ri].

Let G denote the subgroup of G(F) generated by all parahoric subgroups of G(F). By [HRall
Lem. 17] and [Ri], we have G; = G(F)1. Let N1 = Ng(A)(F) N G, and let S denote the set of
reflections through the walls of a. Then by [BT2, Prop. 5.2.12], the quadruple (G1,I,N1,S) is a
(double) Tits system with affine Weyl group Wog = N1/I N Ny, and the inclusion G; — G(F) is
BN —adaptecﬂ of connected type.

Lemma 11.3.1 (T. Richarz [Ri]). (a) Let My = M(F)1. Define the Iwahori-Weyl group as
W= Ng(A)(F)/My. Then there is an isomorphism W = Wag x Ag, which is canonical
given the choice of base alcove a. This gives W the structure of a quasi-Coxeter group.

(b) If S C G is a mazimal L-split torus which is F-rational and contains A, and if we set T :=
Centg(S) and W = Na(S)(L)/T (L)1, then the natural map Ng(S)(L)? — Ng(A)(F)

induces an isomorphism (W")7 = W.

Thus, in light of (b) we may reformulate the Bruhat-Tits decomposition of [HRall Prop. 8,
Rem. 9], as follows.

Lemma 11.3.2. The map Ng(A)(F') — G(F) induces a bijection

(11.3.1) W~ I\G(F)/I.

9In [BT2] the symbol B is used in place of I.
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Further, the Bruhat order < and length function ¢ on W,g extend in the usual way to W, and
we have for w € W and s € Wog representing a simple affine reflection, the usual BN-pair relations

Iswl, if w < sw
(11.3.2) IsIwl =

Twl U Iswl, if sw < w.

11.3.2. Iwahori factorization. Let P = M N be an F-rational parabolic subgroup with Levi factor
M , unipotent radical N and opposite unipotent radical N. Letlg = INH for H = N, N, or M.

Lemma 11.3.3. In the above situation, we have the Iwahori factorization
(11.3.3) I=1In Iy Ix.
Proof. We use the notation of [BT2|]. By [BT2| 5.2.4] with Q := a, we have
83(0F) = UFFUZANE,
where N2# := N% N 3°(0%)UY. Since 3°(0%) UYL C &3(0%), we have
NgE = NE A @3(0F) = 3°(0%).

The key inclusion here, N¥ N3 (0%) C 3°(0%), translates in our notation to Ng(A)(F)NI € M(F);,
which can be deduced from Lemma [I1.3.1fa).

Translating again back to our notation we get I = I - I - Inr which is the desired equality since
Iy normalizes I O

11.3.3. On M(F)'/M(F);.

Lemma 11.3.4. The following basic structure theory results hold:
(a) In the notation of [HR], we have M (F)'/M(F), = K /K, which injects into G(F)'/G(F);.
Thus M(F); = M(F)! N G(F);.
(b) The Weyl group W (G, A) acts trivially on M(F)'/M(F);.
(¢) Let a C B(G,L) denote the alcove invariant under the group Aut(L/F) D (o) which
corresponds to the Iwahori I C G(F). We assume I C K. Then the naive Iwahori
I := G(F)' NFix(a’) has the following properties
o M(F)'/M(F), =1/I=K/K.
o [=1-M(F)'.

Proof. Part (a): in the notation of [HRo], we know that Apsiors = K/K ([HR0, Prop. 11.1.4]).
Applying this to G = M we get Apsiors = M(F)'/M(F),. So M(F)'/M(F), = K/K. By (8.0.1)
and Lemma 8.0.1 in [HRo], the latter injects into G(F)!/G(F);. The final statement follows.

Part (b): By [HRol Lemma 5.0.1], W(G, A) has representatives in K N Ng(A)(F). Thus it is
enough to show that if n € K N Ng(A)(F) and m € M(F)!, then nmn~tm~! € M(F);. This
follows from (a), since we clearly have nmn='m=! € M(F)! N G(F);.

Part (c): First note that M (F)' ¢ I and M(F), C I. Thus there is a commutative diagram

I/I

|

M(F)'/M(F),

K/K
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The oblique arrow is bijective by (a). We claim the horizontal arrow is injective, that is, INK =1.
But /N K = G(F)' N Fix(a”) N G(F); N Fix(vp), where vp is the special vertex in B(Gad, F)
corresponding to K (cf. [AR0, Lem. 8.0.1]). Thus /N K = G(F), NFix(a’) = I by Remark 8.0.2 of
[HRo]. It now follows that all arrows in the diagram are bijective. This implies both statements in
(¢). O

Remark 11.3.5. Let P = M N be as above. We deduce from (c) and (11.3.3]) the Iwahori factor-
ization for I

(11.3.4) I=1Iy-M(F)' Iy,

using the fact that M (F)! normalizes Iy and I5.

11.3.4. Iwasawa decomposition. Next we need to establish a suitable form of the Iwasawa decompo-
sition. Let P = M N be as above.

Lemma 11.3.6. The inclusion Ng(A)(F) — G(F) induces bijections
(11.3.5) W := Ng(A)(F)/M(F), = M(F)N(F)\G(F)/I
(11.3.6) W(G,A) = Ng(A)(F)/M(F) = P(F)\G(F)/I.

Proof. In view of the decomposition W = Q% x W(G,A) (cf. Lemma 3.0.1(III) of [HRo] plus
Lemma|l1.3.1{(b)) and the Kottwitz isomorphism QF, = M (F)/M(F); (cf. Lemma 3.0.1 of [HRo]),

it suffices to prove (|11.3.5]).
For z € B(G, F), let P, C G(F) denote the subgroup fixing . By [Land], Proposition 12.9, we

have
G(F)=N(F) - Ng(A)(F) - Py.
For sufficiently generic points = € a?, we have P, = I, which is M(F)'I by Lemma c). Since
M(F)' € Ng(A)(F), we have G(F) = N(F) - Ng(A)(F) - I and the map is surjective.
To prove injectivity, assume ny = umg - ng - j for w € N(F), mg € M(F)1, n1,na € Ng(4)(F),
and j € I. There exists z € Z(M)(F) such that zuz=! € Iy (cf. e.g. [BK|, Lem. 6.14]). Then

zny = (zuz"mg - zny - j € Tznol,

and so by (11.3.1)), zns = zny modulo M (F);. |

Lemma 11.3.7. If z,y € W and M(F)yN(F)xI NIyl # 0, then x <y in the Bruhat order on %
determined by I.

Proof. This follows from the BN-pair relations ([11.3.2]) as in the proof of the Claim in Lemma 1.6.1
of [HKP]. |

11.3.5. The universal unramified principal series module M. Define

M = Co(M(F) N(F)\G(F)/T).

[A9))

The subscript “c” means we are considering functions supported on finitely many double cosets.
Some basic facts about M were given in [HKP] for the special case where G is split, and here we
need to state those facts in the current general situation.

Abbreviate by setting H = H(G(F),I) and R = C[Ap]. Then f € H acts on the left on M
by right convolutions by f, which is defined by f(g) = f(g~'). The same goes for the normalized
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induced representation i%(¥)! = IndIGg(éll)p)Z)I, where Y is a character on M (F')/M(F');. Moreover,
R acts on the left on M by normalized left convolutions: for r € R and ¢ € M, m € M(F),

(r- 6)(m) = /M(F) r()5Y () by "m) dy

where volg, (M(F)1) = 1. The actions of R and H commute, so M is an (R, H)-bimodule.

Lemma 11.3.8. The following statements hold.

(a) Any character Y= : M(F)/M(F); — C* extends to an algebra homomorphism X' : R —

C, and there is an isomorphism of left H-modules
C@pg M=ig(0)".

(b) Forw € W(G,A) =W, set vy, = Lypry,N(Fywr € M. Then M is free of rank 1 over H
with canonical generator vy.
(c) M is free as an R-module, with basis {Vy fwew -

Proof. The proofs for (a-b) are nearly identical to their analogues for split groups in [HKP]. Part
(a) is formal. Part (b) relies on the Bruhat-Tits decomposition , the Iwasawa decomposition
, and Lemma

Part (c) was not explicitly mentioned in [HKP]. But it can be proved using along with
the relations analogous to [HKPL (1.6.1-1.6.2)], for which the Iwahori factorization is the

main ingredient. O

11.4. Why (M(F)1,1) is an & y-type. We let x range over the characters of M (F)!/M(F);. Let
X denote any extension to a character of the finitely generated abelian group M (F')/M(F'),. Fix one
such extension Y. Note that the inertial class [M(F), xo]am consists of all pairs (M (F), X), since
M (F)-conjugation does not introduce any new characters on M (F'). Therefore we may abuse nota-
tion and denote this inertial class by [M(F), X]ar =: s3". Let S := {[M(F), X]a | x ranges as above}.
This is a finite set of inertial classes, in bijective correspondence with M (F)!/M(F);.

Proposition 11.4.1. The pair (M(F)1,1) is a Bushnell-Kutzko type for Sy;.

Note: This proposition simply makes precise the last paragraph of [BK] (9.2)].

Proof. Let o be an irreducible smooth representation of M (F'). We must show that o = x for some
x iff U|M(F)1 D1

(=): Obvious.

(«<): We see that 0 3 v # 0 on which M (F); acts trivially. Since o is irreducible, it coincides with
the smallest M (F)-subrepresentation containing v, and then since M (F');<M (F'), we see that M (F'),
acts trivially on all of o; further, o is necessarily finite-dimensional over C. Since M (F')/M(F); is
abelian, o contains an M (F')-stable line, since a commuting set of matrices can be simultaneously
triangularized. This line is all of ¢ since o is irreducible. Thus ¢ is 1-dimensional, and so ¢ = x for
some X. ([l
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11.5. Why (I,1) is an Sg-type. We define S = {[tl¢ | [t]m € Sa}. The map [M, x|y —
[M, X is injective: if [M, X1]ag = [M, X2]a, then there exists n € Ng(A)(F') such that ™(x1) = Xa2n
for some character n on M(F)/M(F)'. Restricting to M(F)! and using "(x1) = x1 (Lemma
[11.3.4(b)), we see x1 = x2. So Sy = &¢ via [t]y — [t]e.

We saw above that (M(F)1,1) is an &s-type. The fact that (I,1) is an Sg-type follows from
[BK| Thm. 8.3], once we check the following proposition.

Proposition 11.5.1. The pair (I,1) is a G-cover for (M (F)1,1) in the sense of [BK| Definition 8.1].

Proof. We need to check the three conditions (i-iii) of Definition 8.1. First (i), the fact that (I,1) is
decomposed with respect to (M, P) in the sense of [BK], (6.1)], follows from the Iwahori factorization
I = Iy - I - Iy discussed in Remark The equality I N M(F) = M(F); gives condition (ii).

Finally we must prove (iii): for every F-parabolic P with Levi factor M, there exists an invertible
element of H(G(F'),I) supported on Izpl, where zp belongs to Z(M)(F') and is strongly (P,I)-
positive. The existence of elements zp € Z(M)(F') which are strongly (P, I)-positive is proved in
[BK| Lemma 6.14]. Any corresponding characteristic function 1., is invertible in H(G(F'),I), as
follows from the Iwahori-Matsumoto presentation of H(G(F'), I). (This presentation itself is easy to

prove using (11.3.2)).) |

11.6. Structure of the Bernstein varieties. Let 5R(G) denote the category of smooth representa-
tions of G(F), and let R, (G) denote the full subcategory corresponding to the inertial class [M, x]¢q.
That is, a representation (7,V) € R(G) is an object of R, (G) if and only if for each irreducible
subquotient 7’ of 7, there exists an extension ¥ of y such that 7’ is a subquotient of Indg((ﬁg/ 2)2).

We review the structure of the Bernstein varieties %S and f{iﬂ . In this discussion, for each x we
fix an extension x of x once and for all — the structures we define will be independent of the choice
of x, i.e. uniquely determined by (M, x) up to a unique isomorphism.

As a set xf (resp. X2') consists of the elements (M, xn)g (resp. (M, xn)a) belonging to the
inertial equivalence class [M, X]¢ (resp. [M,X]a) as n ranges over the set X (M) of unramified
C*-valued characters on M (F) (unramified means it factors through M (F)/M(F)").

The map X (M) — 36;”, n+— (M, Xn), is a bijection. Since X (M) is a complex torus, this gives
%Q/l the structure of a complex torus. More canonically, .%’i\(/[ is just the variety of all extensions y
of x, and it is a torsor under the torus X (M).

Now fix y again. There is a surjective map

M G
Xy = X
Since W := W (G, A) acts trivially on M (F)!/M(F); (Lemma [11.3.4), one can prove that the fibers
of this map are precisely the W-orbits on 355;4 . Thus as sets
w\xY = x¢,
and this gives Xf the structure of an affine variety over C. Having chosen the isomorphism X (M)
.’{Q/l as above, we can transport the W-action on xff over to an action on X (M). This action depends

on the choice of X and is not the usual action unless x is W -invariant. We obtain .’{g =W\yX(M),
where the latter denotes the quotient with respect to this unusual action on X (M).
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Let C[}Cf] denote the ring of regular functions on the variety 3e§ The algebraic morphism
Z{XM — Xf induces an isomorphism of algebras

(11.6.1) Clx$] = crxy V.

11.7. Consequences of the theory of types. Let us define convolution in H(G(F'), I) using the
Haar measure dx on G(F') which gives I volume 1. Let Z(G(F), I) denote the center of H(G(F),I).

We define for each y € (M(F)'/M(F);)V a function e, € H(G(F),I) by requiring it to be
supported on I, and by setting ex(y) = volg, (1:)*1 x(y)~tifye I. Here we regard x as a character
on I/ (cf. Lemma and let § € I/ denote the image of y. If y = ny-m'-n_ € In-M(F)' I,

then e, (y) = volg,(I)~* x(m')~L.

Lemma 11.7.1. The functions {e,}, give a complete set of central orthogonal idempotents for
H(G(F),I):

(a) ex € Z(G(F),1);

(b) eyeyr =y v €y, there 0y s is the Kronecker delta function;

(c) 1r=3" ex.
Proof. The proof is a straightforward exercise for the reader. For parts (a-b), use the fact that M (F)?
normalizes I, that G(F) =1 - Ng(A)(F)- I, and that W (G, A) acts trivially on M (F)*/M(F); (cf.
Lemma |11.3.4)). O

Proposition 11.7.2. The idempotents e, are the elements in the Bernstein center which project
the category R(G) onto the various Bernstein components R, (G). That is, there is a canonical
isomorphism of algebras

H(G(F), 1) = [ [ exH(G(F), D)ey
X
and, for any smooth representation (w,V) € R(G), the G(F)-module spanned by the x-isotypical
vectors VX = 7(ey )V is the component of V' lying in the subcategory R, (G). Finally,

exH(G(F), Dey = H(G(F), T, x),
the right hand side being the algebra of I-bi-invariant C-valued functions f € C.(G(F)) such that
firgia) = x(i1) "1 f(9)x(i2) "t for all g € G(F) and iy,is € I.

The following records the standard consequences of the fact that (I,1) is an Sg-type (see [BK|
Thm. 4.3]). Let 2;(G) denote the full subcategory of (G) whose objects are generated as G-
modules by their I-invariant vectors.

Proposition 11.7.3. As subcategories of R(G), we have the equality Ri(G) = [[, Ry (G). In
particular, an irreducible representation (mw,V) € R(G) belongs to R(G) if and only if 7 € Ry (G)
for some x. Furthermore, there is an equivalence of categories

R (G) = H(G(F),I)-Mod

(m,V) = VI

Finally, Z(G(F),I) is isomorphic with the center of the category [, My (G), which according to
Bernstein’s theory is the ring [ ], (C[i‘f]
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Concretely, the map Z(G(F),I) — Hx C[%g], z — %, is characterized as follows: for every x and
every (M,X)a € X{, z € Z(G(F),I) acts on Ind%(é},ﬂ){)l by the scalar 2(x).

Let us single out what happens in the special case of G = M. We can identify H(M (F), M(F),) =
C[An]. Let e} denote the idempotent in (M (F), M(F);) analogous to ey, for the case G = M.
By Propositions [11.7.2] and [11.7.3] for G = M, we have

(11.7.1) H(M(F),M(F),) = [[eXH(M(F), M(F),)e} =[] Clx}],

the last equality holding since H(M (F'), M (F')1) is already commutative. Thus, the ring
eXH(MF), M(F)y)ey!

can be regarded as the ring of regular functions on the variety %iﬂ of all extensions x of Y.

11.8. The embedding of C[Ay/]" into Z(G(F),I). We make use of the following special case of

a general construction of Bushnell-Kutzko [BK]: for any F-parabolic P with Levi factor M, there

is an injective algebra homomorphism

which is uniquely characterized by the property that for each (7,V) € R;(G), v € VI, and h €

H(M(F), M(F)1), we have the identity

(11.8.1) g=(tp(h)-v) =h-qz(v).

Here ¢, : VI = V]s/[ (1 s an isomorphism, which is induced by the canonical projection V — Vi
to the (unnormalized) Jacquet module. See [BK|, Thm. 7.9].

It turns out that it is better to work with a different normalization. We define another injective
algebra homomorphism

Op : H(M(F), M(F)1) — H(G(F),I)
h s tp(6p"/?h).
Then using Op satisfies
(11.8.2) 4= (0p(h) -v) = (65"°R) - 4= (v).

We view x as a varying element of the Zariski-dense subset S of the variety of all characters on the
finitely-generated abelian group M (F)/M(F);, consisting of those regular characters x such that
V(X) = i%(X) := Indg(éll)mf() is irreducible as an object of 93(G). We apply the above discussion
to the representations V := V(x) with x € S. By a result of Casselman [Cas], we know that as

M (F)-modules
Vi = €D 65°("%)
weW
and that M (F); acts trivially on this module. Now suppose h € C[A;/]". Then 6;1/2h acts on
VN = Vji\,/[ () by the scalar h(X) (viewing h as a regular function on X3'). It follows from
that
0p(h) acts by the scalar h(Y) on iG(x)!, for Y € S.

Now let f € H be arbitrary, and set € := f x0p(h) — 0p(h) * f € H. We see that

11.8.3 € acts by zero on iG(x)! for every ¥ € S.
P
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We claim that ¢ = 0. Recall that ¢ € H gives an R-linear endomorphism of M, hence by
Lemma [T1.3.§|c) may be represented by an |W| x |W| matrix E with entries in R. Now Spec(R) =
Spec(C[Ap/]) is a diagonalizable group scheme over C with character group Ap;. Hence R is a
reduced finite-type C-algebra and its maximal ideals are precisely the kernels of the C-algebra
homomorphisms ¥~! : R — C coming into Lemma a). By that Lemma and , we see
that £ = 0 (modm) for a Zariski-dense set of maximal ideals m in Spec(R). Since R is reduced
and finite-type over C, this implies that the entries of E are identically zero. This proves the claim
because M is free of rank 1 over H (Lemma[I1.3.8(b)).

Since f was arbitrary, we get Op(h) € Z(G(F),I), as desired. We have proved the following
result.

Lemma 11.8.1. The map 0p : C[Ay] — H(G(F),I) restricts to give an embedding C[Ap ]V —
Z(G(F),I).

11.9. The center of the Iwahori-Hecke algebra.

Theorem 11.9.1. The map 0p gives an algebra isomorphism C[Ay |V = Z(G(F),I). Further,
this isomorphism is independent of the choice of parabolic P containing M as a Levi factor.

Proof. The description of 8p above, and the preceding discussion, show that we have a commutative

diagram
ClAM]Y —TII, Clxy1Y
opl T
Z(G(F),I) ——— IT, (C[%g] .
The left vertical arrow is bijective because the right vertical arrow is, by (11.6.1)). |

11.10. Bernstein isomorphisms and functions. Putting together Roche’s theorem [11.1.1| with
Theorem [11.9.1] we deduce a more general result that holds for any parahoric subgroup J 2 I.

Theorem 11.10.1. The composition

0p —xrly

(11.10.1) ClAM]Y —— Z(G(F),I) —= Z(G(F),J)
is an isomorphism. We call this map the Bernstein isomorphism.

Definition 11.10.2. Given u € Ay, we define the Bernstein function z, € Z(G(F'),J) to be the
image of the symmetric monomial function -,y A € C[A )" under the Bernstein isomorphism

({T1.10.1).

11.11. Compatibility with constant terms. Recall M = Centg(A) is a minimal F-Levi subgroup
of G and P = MN is a minimal F-parabolic subgroup with Levi factor M and unipotent radical
N. Let @ = LR be another F-parabolic subgroup with F-Levi factor L and unipotent radical R.
Assume @Q O P; then L O M and R C N. Further L contains a minimal F-parabolic subgroup
LNP=M-(LNN),and N=LNN-R.

If J C G(F) is a parahoric subgroup corresponding to a facet in the apartment of the Bruhat-Tits
building of G(F') corresponding to A, then Jr, := J N L is a parahoric subgroup of L(F') (by [HRol,
Lem. 4.1.1]).
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Given f € H(G(F),J), define f(@) € H(L(F),J.) by
AW =5 [ fanar =53 [ seyar

where volg,(J N R) = 1. An argument similar to Lemma 4.7.2 of [H09] shows that f — f(?) sends
Z(G(F),J) into Z(L(F), Jr), and determines a map c¢ making the following diagram commute:

(11.11.1) ClAMVEA —— Z(G(F), J)

ClAp VA = Z(L(F), Jp).

The diagram shows that c¢ is indeed an (injective) algebra homomorphism and, as the notation
suggests, is independent of the choice of parabolic subgroup @ having L as a Levi factor. We call
c§ the constant term homomorphism.

By its very construction, the map 07 : C[Ay| = H(M(F), M (F)1) has its inverse induced by the
Kottwitz isomorphism kps(F) : M(F)/M(F); = Ap. By taking L = M in , this remark
allows us to write down the inverse of fp in general.

Corollary 11.11.1. The composition rp(F) o ¢§; takes values in C[Ap ]V (4 and is the inverse
of the Bernstein isomorphism Op.

11.12. Transfer homomorphisms.

11.12.1. Construction. Transfer homomorphisms were defined for special maximal parahoric Hecke
algebras in [HRo]. By virtue of the Bernstein isomorphisms (11.10.1)), we can now define these
homomorphisms on the level of centers of arbitrary parahoric Hecke algebras.

Let us recall the general set-up from [HRo, §11.2]. Let G* be a quasi-split group over F. Let
F* denote a separable closure of F', and set I' = Gal(F*/F). Recall that an inner form of G* is a
pair (G, ) consisting of a connected reductive F-group G and a I-stable G, (F®)-orbit ¥ of F*-
isomorphisms ¢ : G — G*. The set of isomorphism classes of pairs (G, ¥) corresponds bijectively to
H(F, ).

Fix once and for all parahoric subgroups J C G(F) and J* C G*(F'). Choose any maximal F-split
tori A C G and A* C G* such that the facet fixed by J (resp. J*) is contained in the apartment of
the building B(G, F) (resp. B(G*, F)) corresponding to the torus A (resp. A*). Let M = Centg(A)
and T* = Centg« (A*), a maximal F-torus in G*.

Now choose an F-parabolic subgroup P C G having M as Levi factor, and an F-rational Borel
subgroup B* C G* having T* as Levi factor. Then there exists a unique parabolic subgroup P* C G*
such that P* O B* and P* is G*(F*®)-conjugate to (P) for every » € W. Let M* be the unique
Levi factor of P* containing T*. Then define

Up ={y € V[ P(P) =P, (M) = M"}.

The set ¥y, is a nonempty I'-stable M, (F*)-orbit of F*-isomorphisms M — M*, and so (M, ¥ )
is an inner form of M*. Choose any ¢y € ¥js. Then since | A is F-rational, 1)o(A) is an F-split
torus in Z(M*) and hence 9)(A) C A*.

Now )9 induces a I'-equivariant map Z (M\ )= Z (M\*) <+ T* and hence a homomorphism

tas a s CIX*(TF)FFIW(EAD — Clx(Z(M))7r ]V (G,



46 T. Haines

where (-)* designates the Galois action on G* (for Weyl-group equivariance see [HRol §12.2]). Since
Wy is a torsor for M, this homomorphism does not depend on the choice of 1y € Wy,. Further, it
depends only on the choice of A* and A, and not on the choice of the parabolic subgroups P D M
and B* D T* we made in constructing it.

Definition 11.12.1. Let J C G(F) and J* C G*(F) be any parahoric subgroups and choose
compatible maximal F-split tori A resp. A* as above. Then we define the transfer homomorphism
t: Z(G*(F),J*) - Z(G(F),J) to be the unique homomorphism making the following diagram
commute

t

Z(G(F),J") Z(G(F),J)

| |

.Y v 4wy tax.a . —
CLX*(T) V@A) = CIX*(Z(M))pr ]V (@A),

where the vertical arrows are the Bernstein isomorphisms.

By [BT2, 4.6.28], any two choices for A (resp. A*) are J-(resp. J*-)conjugate. Using Corollary
11.11.1] it follows that ¢ is independent of the choice of A and A* and is a completely canonical
homomorphism.

Remark 11.12.2. The map
« 7o\ P (2 ( T
tasa: XN — XH(Z(M))7F
is surjective. Via the Kottwitz homomorphism we may view this as the composition

-1
(11.12.1) T*(F)/T*(F), —— M*(F)/M*(F)1 wi*> M(F)/M(F),

where the first arrow is induced by the inclusion 7% < M*. It is enough to observe that M*(F) =
T*(F) - M*(F)1, which in turn follows from the Iwasawa decomposition (cf. (I1.3.6)) for M*(F),
which states that M*(F) = T*(F)-Uj;. (F)- Ky for an F-rational Borel subgroup Bj,. = T*-Uj .
and a special maximal parahoric subgroup K+« in M*, and from the vanishing of the Kottwitz
homomorphism on Uj,. (F) - Kpy-.

11.12.2. Normalized transfer homomorphism. The transfer homomorphism is slightly too naive, and
it is necessary to normalize it in order to get a homomorphism which has the required properties. We
need to define normalized homomorphisms fth*’ 4 on Weyl-group invariants, for which the following

lemma is needed.

Lemma 11.12.3. Recall that T* = Centg~(A*) is a mazimal torus in G* defined over F'; let S*
be the F"-split component of T, a mazximal F"-split torus in G* defined over F' and containing
A*. We have T* = Centg(A*) = Centg+(S*). Choose a mazimal F"™-split torus S C G which
is defined over F and which contains A, and set T = Centg(S). Choose 1y € Uy such that vg is
defined over F™™ and satisfies ¥o(S) = S* and hence o(T) = T*. Then the diagram

W(G,A) - - ——— — = WI(G*, A*)/W (M*, A¥)

| |

[W(G, S)/W(M,S)]|"" —2% [W(G*,S%)/W(M*, )] "

~
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defines a bijective map 1/18. It depends on the choice of the data P, B* used to define Uy and M*,
but it is independent of the choices of S and g € W with the stated properties.

Proof. The left vertical arrow is [HRol Lemma 6.1.2]. The right vertical arrow is described in [HRo),
Proposition 12.1.1]. The proof of the latter justifies the lower horizontal arrow. Indeed, given
w € W(G, A) we may choose a representative n € Ng(S)(L)*# (cf. [HRo]). We have ¢y ' o &% o
Yo 0 @' = Int(mg) for some mg € Npr(S)(F?). Since n is ®p-fixed, we get
5 (vo(n)) = ho(n) - [Yo(n) ™ vo(me)ho(n)io(me)~"].
As n normalizes M and hence ¢ (n) normalizes M*, this shows that 1o(n)W (M™*, S*) is ®}-fixed.
There exists m), € Ny« (S*)(L) such that o(n)m) € Ng«(A*)(F). Then wg(w) is the image of
Yo(n)m) in W(G*, A*)/W (M*, A*). The independence statement is proved using this description.
O

Via the Kottwitz homomorphism we can view ¢4+ 4 as induced by the composition (11.12.1). We
now alter this slightly.

Lemma 11.12.4. Given the choices of P D M and B* D T* needed to define Wy, and given any
F" -rational ¥y € V), we define an algebra homomorphism

(11.12.2) C[T*(F)/T*(F)1] —s C[M(F)/M(F)]
Zat*t %Z > ad St 2 ()53 (m)) - m,

where t* ranges over T*(F)/T*(F)1 and m ranges over M(F)/M(F); and t* — m means that
U () € mM(F)y, (cf. (11.12.1)).
Then takes W (G*, A*)-invariants to W (G, A)-invariants, and the resulting homomor-
phism
tas.a: C[T*(F)/T*(F) )V @A) = CIM(F)/M(F),]V(©A)
is independent of the choices of P, B*, and F"™-rational ¥y € Wy,.

Proof. To check the Weyl-group invariance, we may fix P and B*, and choose S and ) as in
Lemma [11.12.3] Suppose  _,. a;~t* is W(G*, A*)-invariant. We need to show that the function on

M(F)/M(F)
(11.12.3) m Y apdpt ()02 (m)

t*>m
is W(G, A)-invariant, and independent of the choice of P and B*.

For w € W(G, A) choose n and m}, as in the proof of Lemma [I1.12.3] and define n’ by ¢ (n’) =
Yo(n)my. Thus g(n') € Ng«(A*)(F) and hence it normalizes T*(F).

We claim that takes the same values on mM (F'); and on "mM (F);. First we observe
that "mM(F); = "mM(F);. Setting m, := ¢5*(m%), it is enough to prove ™ mM (F); =
mM(F);. But as 1y is L-rational we have m, € M(L) and so conjugation by m,, induces the
identity map on M (L)/M(L); and hence on its subset M (F)/M(F); as well.

Now we write the value of (11.12.3) on ™' mM(F); as

ST a5 (M m).

t** > ' mM(F),
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Setting ¢* = “o™) " ¢** and using a;- = agpe- (which follows from W(G*, A*)-invariance), we write
the above as

37 a5 (D) 612 (M m).

trm
The index set is stable under the W (M™*, A*)-action on T*(F)/T*(F);. If we look at the sum over
the W(M*, A*)-orbit of a single element ¢, with stabilizer group Stab(tf), we get

1 —1/2 n' %
IStab(gg)] 2 a7,
Yy

where y ranges over W(M*, A*). Now n € Ng(S)(L)*F C Ng(A)(F) = Ng(M)(F). Hence
Yo(n)m) = o(n') normalizes M* as well as T™, and thus conjugation by tg(n') takes B},. to
another F-rational Borel subgroup of M* containing 7. Using this it is clear that is
unchanged if the superscript ¥g(n’) is omitted, and this proves our claim. For the same reason
(11.12.3) is independent of the choice of P and B*, and similarly £4+ 4 is independent of the choice
of P and B*, and of the choice of F""-rational g € ¥y,. a

(11.12.4)

Now we give a normalized version of Definition [I1.12.1

Definition 11.12.5. We define the normalized transfer homomorphismt : Z(G*(F), J*) — Z(G(F), J)
to be the unique homomorphism making the following diagram commute

i

Z(G*(F),J*) ————— = Z(G(F),J)

| {

(TR ERW(G.A") A8 iy (0T
CLX* (T) P @A) 258 CLx(2(RD) r ]V (©4),
where the vertical arrows are the Bernstein isomorphisms.

As was the case for ¢, the homomorphism # is independent of the choice of A and A*, and it is a
completely canonical homomorphism.
The following shows it is compatible with constant term homomorphisms.

11.12.3. Normalized transfer homomorphisms and constant terms. We use the notation of
Write L = Centg(AL) for some torus A, C A. Let L* = Centg-(Aj.) for a subtorus Aj. C A*.
Without loss of generality, we may assume that our inner twist G — G* restricts to give an inner
twist L — L*.

Proposition 11.12.6. In the above situation, the following diagram commutes:

(11.12.5) Z(G*(F),J*) —— Z(G(F),J)

G* G
o i . i

* * f
Z(L*(F), Ji.) —= Z(L(F), J1).
Taking L = M, the diagram shows in order to compute t it is enough to compute it in the case where
Glaq is anisotropic. In that case if z € Z(G*(F), J*), the function t(z) is given by integrating z over
the fibers of the Kottwitz homomorphism kg« (F).
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Proof. The commutativity boils down to the fact that the quantities ((11.12.4)) do not depend on the
ambient group G. (]

Remark 11.12.7. The final sentence in Proposition [11.12.6] is the key to explicit computation
of #(z) given z, and is illustrated in This final sentence was incorrectly asserted to hold
for the unnormalized transfer homomorphisms (for special maximal parahoric Hecke algebras) in
Prop. 12.3.1 of [HRq].
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