
THE STABLE BERNSTEIN CENTER AND

TEST FUNCTIONS FOR SHIMURA VARIETIES

THOMAS J. HAINES

Abstract. We elaborate the theory of the stable Bernstein center of a p-adic group G,

and apply it to state a general conjecture on test functions for Shimura varieties due to

the author and R. Kottwitz. This conjecture provides a framework by which one might

pursue the Langlands-Kottwitz method in a very general situation: not necessarily PEL

Shimura varieties with arbitrary level structure at p. We give a concrete reinterpretation

of the test function conjecture in the context of parahoric level structure. We also use the

stable Bernstein center to formulate some of the transfer conjectures (the “fundamental

lemmas”) that would be needed if one attempts to use the test function conjecture to

express the local Hasse-Weil zeta function of a Shimura variety in terms of automorphic

L-functions.
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1. Introduction

The main purpose of this chapter is to give precise statements of some conjectures on test functions

for Shimura varieties with bad reduction.

In the Langlands-Kottwitz approach to studying the cohomology of a Shimura variety, one of

the main steps is to identify a suitable test function that is “plugged into” the counting points

formula that resembles the geometric side of the Arthur-Selberg trace formula. To be more precise,
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2 T. Haines

let (G, h−1,KpKp) denote Shimura data where p is a fixed rational prime such that the level-

structure group factorizes as KpKp ⊂ G(Apf )G(Qp). This data gives rise to a quasi-projective

variety ShKp := Sh(G, h−1,KpKp) over a number field E ⊂ C. Let Φp ∈ Gal(Qp/Qp) denote

a geometric Frobenius element. Then one seeks to prove a formula for the semi-simple Lefschetz

number Lefss(Φrp, ShKp)

(1.0.1) trss(Φrp,H
•
c(ShKp ⊗E Qp ,Q`)) =

∑
(γ0;γ,δ)

c(γ0; γ, δ) Oγ(1Kp) TOδθ(φr),

(see §6.1 for more details).

The test function φr appearing here is the most interesting part of the formula. Experience

has shown that we may often find a test function belonging to the center Z(G(Qpr ),Kpr ) of the

Hecke algebra H(G(Qpr ),Kpr ), in a way that is explicitly determined by the E-rational conjugacy

class {µ} of 1-parameter subgroups of G associated to the Shimura data. In most PEL cases with

good reduction, where Kp ⊂ G(Qp) is a hyperspecial maximal compact subgroup, this was done by

Kottwitz (cf. e.g. [Ko92a]). When Kp is a parahoric subgroup of G(Qp) and when GQp is unramified,

the Kottwitz conjecture predicts that we can take φr to be a power of p times the Bernstein function

z
Kp
−µ,j arising from the Bernstein isomorphism for the center Z(G(Qpr ),Kpr ) of the parahoric Hecke

algebra H(G(Qpr ),Kpr ) (see Conjecture 7.1.2 and §11).

In fact Kottwitz formulated (again, for unramified groups coming from Shimura data) a closely

related conjecture concerning nearby cycles on Rapoport-Zink local models of Shimura varieties,

which subsequently played an important role in the study of local models (Conjecture 7.1.3). It also

inspired important developments in the geometric Langlands program, e.g. [Ga]. Both versions of

Kottwitz’ conjectures were later proved in several parahoric cases attached to linear or symplectic

groups (see [HN02a, H05]). In a recent breakthrough, Pappas and Zhu [PZ] defined group-theoretic

versions of Rapoport-Zink local models for quite general groups, and proved in the unramified

situations the analogue of Kottwitz’ nearby cycles conjecture for them. These matters are discussed

in more detail in §7 and §8.

Until around 2009 it was still not clear how one could describe the test functions φr in all deeper

level situations. In the spring of 2009 the author and Kottwitz formulated a conjecture predicting

test functions φr for general level structure Kp. This is the test function conjecture, Conjecture

6.1.1. It postulates that we may express φr in terms of a distribution Z
V
Ej0
−µ,j

in the Bernstein center

Z(G(Qpr )) associated to a certain representation V
Ej0
−µ,j (defined in (6.1.2)) of the Langlands L-group

L(GQpr ). Let d = dim(ShKp). Then Conjecture 6.1.1 asserts that we may take

φr = prd/2
(
Z
V
Ej0
−µ,j
∗ 1Kpr

)
∈ Z(G(Qpr ),Kpr )

the convolution of the distribution Z
V
Ej0
−µ,j

with the characteristic function 1Kpr of the subgroup Kpr .

As shown in §7, this specializes to the Kottwitz conjecture for parahoric subgroups in unramified

groups. Conjecture 6.1.1 was subsequently proved for Drinfeld case Shimura varieties with Γ1(p)-

level structure by the author and Rapoport [HRa], and for modular curves and for Drinfeld case

Shimura varieties with arbitrary level structure by Scholze [Sch1, Sch2].

The distributions in Conjecture 6.1.1 are best seen as examples of a construction V  ZV which

attaches to any algebraic representation V of the Langlands dual group LG (for G any connected

reductive group over any p-adic field F ), an element ZV in the stable Bernstein center of G/F .
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This chapter elaborates the theory of the stable Bernstein center, following the lead of Vogan [Vo].

The set of all infinitesimal characters, i.e. the set of all Ĝ-conjugacy classes of admissible homomor-

phisms λ : WF → LG (where WF is the Weil group of the local field F ), is given the structure of an

affine algebraic variety over C, and the stable Bernstein center Zst(G/F ) is defined to be the ring of

regular functions on this variety.1

In order to describe the precise conjectural relation between the Bernstein and stable Bernstein

centers of a p-adic group, it was necessary to formulate an enhancement LLC+ of the usual con-

jectural local Langlands correspondence LLC for that group. Having this relation in hand, the

construction V  ZV provides a supply of elements in the usual Bernstein center of G/F , which we

call the geometric Bernstein center.

It is for such distributions that one can formulate natural candidates for (Frobenius-twisted)

endoscopic transfer, which we illustrate for standard endoscopy in Conjecture 6.2.2 and for stable

base change in Conjecture 6.2.3. These form part of the cadre of “fundamental lemmas” that one

would need to pursue the “pseudostabilization” of (1.0.1) and thereby express the cohomology of

ShKp in terms of automorphic representations along the lines envisioned by Kottwitz [Ko90] but

for places with arbitrary bad reduction. In the compact and non-endoscopic situations, we prove in

Theorem 6.3.2 that the various Conjectures we have made yield an expression of the semi-simple local

Hasse-Weil zeta function in terms of semi-simple automorphic L-functions. Earlier unconditional

results in this direction, for nice PEL situations, were established in [H05], [HRa], [Sch1, Sch2]. We

stress that the framework here should not be limited to PEL Shimura varieties, but should work

more generally.

In recent work of Scholze and Shin [SS], the connection of the stable Bernstein center with

Shimura varieties helped them to give nearly complete descriptions of the cohomology of many

compact unitary Shimura varieties with bad reduction at p; they consider the “EL cases” where

GQp is a product of Weil restrictions of general linear groups . It would be interesting to extend the

connection to further examples.

Returning to the original Kottwitz conjecture for parahoric level structure, Conjecture 6.1.1 in

some sense subsumes it, since it makes sense for arbitrary level structure and without the hypothesis

that GQpr be unramified. However, Conjecture 6.1.1 has the drawback that it assumes LLC+ for

GQpr . Further, it is still of interest to formulate the Kottwitz conjecture in the parahoric cases

for arbitrary groups in a concrete way that can be checked (for example) by explicit comparison of

test functions with nearby cycles. In §7 we formulate the Kottwitz conjecture for general groups,

making use of the transfer homomorphisms of the Appendix §11 to determine test functions on

arbitrary groups from test functions on their quasi-split inner forms. The definition of transfer

homomorphisms requires a theory of Bernstein isomorphisms more general than what was heretofore

available. Therefore, in the Appendix we establish these isomorphisms in complete generality in a

nearly self-contained way, and also provide some related structure theory results that should be of

independent interest.

Here is an outline of the contents of this chapter. In §3 we review the Bernstein center of a p-adic

group, including the algebraic structure on the Bernstein variety of all supercuspidal supports. In §4
we recall the conjectural local Langlands correspondence (LLC), and discuss additional desiderata

1The difference between our treatment and Vogan’s is in the definition of the variety structure on the set of

infinitesimal characters.
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we need in our elaboration of the stable Bernstein center in §5. In particular in §5.2 we describe

the enhancement (LLC+) which plays a significant role throughout the chapter, and explain why it

holds for general linear groups in Remark 5.2.3 and Corollary 5.2.6. The distributions ZV are defined

in §5.7, and are used to formulate the test function conjecture, Conjecture 6.1.1, in §6.1. In the

rest of §6, we describe the nearby cycles variant Conjecture 6.1.2 along with some of the endoscopic

transfer conjectures needed for the “pseudostabilization”, and assuming these conjectures we prove in

Theorem 6.3.2 the expected form of the semi-simple local Hasse-Weil zeta functions, in the compact

and non-endoscopic cases. In §7 we give a concrete reformulation of the test function conjecture

in parahoric cases, recovering the Kottwitz conjecture and generalizing it to all groups using the

material from the Appendix. The purpose of §8 and §9 is to list some of the available evidence for

Conjectures 6.1.1 and 6.2.3. In §10 certain test functions are described very explicitly. Finally, the

Appendix gives the treatment of Bernstein isomorphisms and the transfer homomorphisms, alluded

to above.

Acknowledgments. I am very grateful to Guy Henniart for supplying the proof of Proposition

5.2.5 and for allowing me to include his proof in this chapter. I warmly thank Timo Richarz for

sending me his unpublished article [Ri] and for letting me quote a few of his results in Lemma

11.3.1. I am indebted to Brooks Roberts for proving Conjecture 5.2.2 for GSp(4) (see Remark

5.2.3). I thank my colleagues Jeffrey Adams and Niranjan Ramachandran for useful conversations.

I also thank Robert Kottwitz for his influence on the ideas in this chapter and for his comments

on a preliminary version. I thank Michael Rapoport for many stimulating conversations about test

functions over the years. I am grateful to the referee for helpful suggestions and remarks.

2. Notation

If G is a connected reductive group over a p-adic field F , then R(G) will denote the category of

smooth representations of G(F ) on C-vector spaces. We will write π ∈ R(G)irred or π ∈ Π(G/F ) if

π is an irreducible object in R(G).

If G as above contains an F -rational parabolic subgroup P with F -Levi factor M and unipotent

radical N , define the modulus function δP : M(F )→ R>0 by

δP (m) = |det(Ad(m) ; Lie(N(F )))|F

where | · |F is the normalized absolute value on F . By δ
1/2
P (m) we mean the positive square-root

of the positive real number δP (m). For σ ∈ R(M), we frequently consider the normalized induced

representation

iGP (σ) = Ind
G(F )
P (F )(δ

1/2
P σ).

We let 1S denote the characteristic function of a subset S of some ambient space. If S ⊂ G, let
gS = gSg−1. If f is a function on S, define the function gf on gS by gf(·) = f(g−1 · g).

Throughout the chapter we use the Weil form of the local or global Langlands L-group LG.

3. Review of the Bernstein center

We shall give a brief synopsis of [BD] that is suitable for our purposes. Other useful references

are [Be92], [Ren], and [Roc].

The Bernstein center Z(G) of a p-adic group G is defined as the ring of endomorphisms of the

identity functor on the category of smooth representations R(G). It can also be realized as an algebra
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of certain distributions, as the projective limit of the centers of the finite-level Hecke algebras, and

as the ring of regular functions on a certain algebraic variety. We describe these in turn.

3.1. Distributions. We start by defining the convolution algebra of distributions.

We write G for the rational points of a connected reductive group over a p-adic field. Thus G is

a totally disconnected locally compact Hausdorff topological group. Further G is unimodular; fix a

Haar measure dx. Let C∞c (G) denote the set of C-valued compactly supported and locally constant

functions on G. Let H(G, dx) = (C∞c (G), ∗dx), the convolution product ∗dx being defined using the

Haar measure dx.

A distribution is a C-linear map D : C∞c (G)→ C. For each f ∈ C∞(G) we define f̆ ∈ C∞(G) by

f̆(x) = f(x−1) for x ∈ G. We set

D̆(f) := D(f̆).

We can convolve a distribution D with a function f ∈ C∞c (G) and get a new function D∗f ∈ C∞(G),

by setting

(D ∗ f)(g) = D̆(g · f),

where (g · f)(x) := f(xg). The function D ∗ f does not automatically have compact support. We

say D is essentially compact provided that D ∗ f ∈ C∞c (G) for every f ∈ C∞c (G).

We define gf by gf(x) := f(g−1xg) for x, g ∈ G. We say that D is G-invariant if D( gf) = D(f)

for all g, f . The set D(G)Gec of G-invariant essentially compact distributions on C∞c (G) turns out to

have the structure of a commutative C-algebra. We describe next the convolution product and its

properties.

Given distributions D1, D2 with D2 essentially compact, we define another distribution D1 ∗D2

by

(D1 ∗D2)(f) = D̆1(D2 ∗ f̆).

Lemma 3.1.1. The convolution products D ∗ f and D1 ∗D2 have the following properties:

(a) For φ ∈ C∞c (G) let Dφ dx (sometimes abbreviated φdx) denote the essentially compact dis-

tribution given by f 7→
∫
G
f(x)φ(x) dx. Then Dφ dx ∗ f = φ ∗dx f .

(b) If f ∈ C∞c (G), then D ∗ (f dx) = (D ∗ f) dx. In particular, Dφ1 dx ∗Dφ2 dx = Dφ1∗dxφ2 dx.

(c) If D2 is essentially compact, then (D1 ∗ D2) ∗ f = D1 ∗ (D2 ∗ f). If D1 and D2 are each

essentially compact, so is D1 ∗D2.

(d) If D2 and D3 are essentially compact, then (D1 ∗D2) ∗D3 = D1 ∗ (D2 ∗D3).

(e) An essentially compact distribution D is G-invariant if and only if D∗(1Ug dx) = (1Ug dx)∗D
for all compact open subgroups U ⊂ G and g ∈ G. Here 1Ug is the characteristic function

of the set Ug.

(f) If D is essentially compact and f1, f2 ∈ C∞c (G), then D ∗ (f1 ∗dx f2) = (D ∗ f1) ∗dx f2.

Corollary 3.1.2. The pair (D(G)Gec, ∗) is a commutative and associative C-algebra.

3.2. The projective limit. Let J ⊂ G range over the set of all compact open subgroups of G. Let

H(G) denote the convolution algebra of compactly-supported measures on G, and letHJ(G) ⊂ H(G)

denote the ring of J-bi-invariant compactly-supported measures, with center ZJ(G). The ringHJ(G)

has as unit eJ = 1J dxJ , where 1J is the characteristic function of J and dxJ is the Haar measure

with voldxJ (J) = 1. Note that if J ′ ⊂ J , then dxJ′ = [J : J ′] dxJ .
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Let Z(G, J) denote the center of the algebra H(G, J) consisting of compactly-supported J-bi-

invariant functions on G with product ∗dxJ . There is an isomorphism Z(G, J) →̃ ZJ(G) by zJ 7→
zJdxJ .

For J ′ ⊂ J there is an algebra map Z(G, J ′)→ Z(G, J), given by zJ′ 7→ zJ′ ∗dxJ′ 1J . Equivalently,

we have ZJ′(G)→ ZJ(G) given by zJ′dxJ′ 7→ zJ′dxJ′ ∗ (1JdxJ).

We can view R(G) as the category of non-degenerate smooth H(G)-modules, and any element of

lim←−Z(G, J) acts on objects in R(G) in a way that commutes with the action of H(G). Hence there

is a canonical homomorphism lim←−Z(G, J)→ Z(G).

There is also a canonical homomorphism

lim←−Z(G, J)→ D(G)Gec

since Z = (zJ)J ∈ lim←−Z(G, J) gives a distribution on f ∈ C∞c (G) as follows: choose J ⊂ G

sufficiently small that f is right-J-invariant, and set

(3.2.1) Z(f) =

∫
G

zJ(x) f(x) dxJ .

This is independent of the choice of J . Note that for f ∈ H(G, J) we have Z ∗ f = zJ ∗dxJ f , and

in particular Z ∗ 1J = zJ , for all J . To see Z = (zJ)J as a distribution is really G-invariant, note

that for f ∈ H(G, J), the identities Z ∗ f = zJ ∗dxJ f = f ∗dxJ zJ imply that Z ∗ (fdx) = (fdx) ∗Z.

This in turn shows that Z is G-invariant by Lemma 3.1.1(e).

Now §1.4− 1.7 of [BD] show that the above maps yield isomorphisms

(3.2.2) Z(G) ←̃ lim←−Z(G, J) →̃ D(G)Gec.

Corollary 3.2.1. Let Z ∈ Z(G), and suppose a finite-length representation π ∈ R(G) has the

property that Z acts on π by a scalar Z(π).

(a) For every compact open subgroup J ⊂ G, Z ∗ 1J acts on the left on πJ by the scalar Z(π).

(b) For every f ∈ H(G), tr(Z ∗ f |π) = Z(π) tr(f |π).

3.3. Regular functions on the variety of supercuspidal supports.

3.3.1. Variety structure on set of supercuspidal supports. We describe the variety of supercuspidal

supports in some detail. Also we will describe it in a slightly unconventional way, in that we use the

Kottwitz homomorphism to parametrize the (weakly) unramified characters on G(F ). This will be

useful later on, when we compare the Bernstein center with the stable Bernstein center.

Let us recall the basic facts on the Kottwitz homomorphism [Ko97]. Let L be the completion

F̂ un of the maximal unramified extension F un in some algebraic closure of F , and let L̄ ⊃ F̄

denote an algebraic closure of L. Let I = Gal(L̄/L) ∼= Gal(F̄ /F un) denote the inertia group. Let

Φ ∈ Aut(L/F ) be the inverse of the Frobenius automorphism σ. In [Ko97] is defined a functorial

surjective homomorphism for any connected reductive F -group H

(3.3.1) κH : H(L)� X∗(Z(Ĥ))I ,

where Ĥ = Ĥ(C) denotes the Langlands dual group of H. By [Ko97, §7], it remains surjective on

taking Φ-fixed points:

κH : H(F )� X∗(Z(Ĥ))Φ
I .
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We define

H(L)1 := ker(κH)

H(F )1 := ker(κH) ∩H(F ).

We also define H(F )1 ⊇ H(F )1 to be the kernel of the map H(F )→ X∗(Z(Ĥ))Φ
I /tors derived from

κH .

If H is anisotropic modulo center, then H(F )1 is the unique maximal compact subgroup of H(F )

and H(F )1 is the unique parahoric subgroup of H(F ) (see e.g. [HRo]). Sometimes the two subgroups

coincide: for example if H is any unramified F -torus, then H(F )1 = H(F )1.

We define

X(H) := Homgrp(H(F )/H(F )1,C×),

the group of unramified characters on H(F ). This definition of X(H) agrees with the usual one as

in [BD]. We define

Xw(H) := Homgrp(H(F )/H(F )1,C×)

and call it the group of weakly unramified characters on H(F ).

We follow the notation of [BK] in discussing supercuspidal supports and inertial equivalence

classes. As indicated earlier in §3.1, for convenience we will sometimes write G when we mean the

group G(F ) of F -points of an F -group G.

A cuspidal pair (M,σ) consists of an F -Levi subgroup M ⊆ G and a supercuspidal representation

σ on M . The G-conjugacy class of the cuspidal pair (M,σ) will be denoted (M,σ)G. We define the

inertial equivalence classes: we write (M,σ) ∼ (L, τ) if there exists g ∈ G such that gMg−1 = L

and gσ = τ ⊗ χ for some χ ∈ X(L). Let [M,σ]G denote the equivalence class of (M,σ)G.

If π ∈ R(G)irred, then the supercuspidal support of π is the unique element (M,σ)G such that π

is a subquotient of the induced representation iGP (σ), where P is any F -parabolic subgroup having

M as a Levi subgroup. Let XG denote the set of all supercuspidal supports (M,σ)G. Denote by the

symbol s = [M,σ]G a typical inertial class.

For an inertial class s = [M,σ]G, define the set Xs = {(L, τ)G | (L, τ) ∼ (M,σ)}. We have

XG =
∐
s

Xs.

We shall see below that XG has a natural structure of an algebraic variety, and the Bernstein

components Xs form the connected components of that variety.

First we need to recall the variety structure on X(M). As is well-known, X(M) has the structure

of a complex torus. To describe this, we first consider the weakly unramified character group Xw(M).

This is a diagonalizable group over C. In fact, by Kottwitz we have an isomorphism

M(F )/M(F )1
∼= X∗(Z(M̂)I)Φ = X∗((Z(M̂)I)Φ).

This means that

Xw(M)(C) = Homgrp(M(F )/M(F )1,C×) = Homalg(C[X∗((Z(M̂)I)Φ)],C),

in other words,

(3.3.2) Xw(M) = (Z(M̂)I)Φ.
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Another way to see (3.3.2) is to use Langlands’ duality for quasicharacters, which is an isomorphism

Homcont(M(F ),C×) ∼= H1(WF , Z(M̂)).

(Here WF is the Weil group of F ; see §4.) Under this isomorphism, Xw(M) is identified with the

image of the inflation map H1(WF /I, Z(M̂)I) → H1(WF , Z(M̂)), that is, with H1(〈Φ〉, Z(M̂)I) =

(Z(M̂)I)Φ. This last identification is given by the map sending a cocycle ϕcocyc ∈ Z1(〈Φ〉, Z(M̂)I) to

ϕcocyc(Φ) ∈ (Z(M̂)I)Φ. The two ways of identifying Xw(M) with (Z(M̂)I)Φ, that via the Kottwitz

isomorphism and that via Langlands duality, agree.2 For a more general result which implies this

agreement, see [Kal, Prop. 4.5.2].

Now we can apply the same argument to identify the torus X(M). We first get

X(M)(C) = Homgrp(M(F )/M(F )1,C×).

Since M(F )/M(F )1 is the quotient of M(F )/M(F )1 by its torsion, it follows that

X(M) = ((Z(M̂)I)Φ)◦ =: (Z(M̂)I)◦Φ,

the neutral component of Xw(M).

Now we turn to the variety structure on Xs. We fix a cuspidal pair (M,σ) representing sM =

[M,σ]M and s = [M,σ]G. Let the corresponding Bernstein components be denoted Xs and XsM . As

sets, we have Xs = {(M,σχ)G} and XsM = {(M,σχ)M}, where χ ∈ X(M). The torus X(M) acts on

XsM by χ 7→ (M,σχ)M . The isotropy group is stabσ := {χ | σ ∼= σχ}. Let Z(M)◦ denote the neutral

component of the center of M . Then stabσ belongs to the kernel of the map X(M)→ X(Z(M)◦),

χ 7→ χ|Z(M)◦(F ), hence stabσ is a finite subgroup of X(M). Thus XsM is a torsor under the torus

X(M)/stabσ, and thus has the structure of an affine variety over C.

There is a surjective map

XsM → Xs

(M,σχ)M 7→ (M,σχ)G, χ ∈ X(M)/stabσ.

Let NG([M,σ]M ) := {n ∈ NG(M) | nσ ∼= σχ for some χ ∈ X(M)}. Then the fibers of XsM → Xs

are precisely the orbits the finite group WG
[M,σ]M

:= NG([M,σ]G)/M on XsM . Via

Xs = WG
[M,σ]M

\XsM

the set Xs acquires the structure of an irreducible affine variety over C. Up to isomorphism, this

structure does not depend on the choice of the cuspidal pair (M,σ).

3.3.2. The center as regular functions on XG. An element z ∈ Z(G) determines a regular function

X: for a point (M,σ)G ∈ Xs, z acts on iGP (σ) by a scalar z(σ) and the function (M,σ)G 7→ z(σ) is a

regular function on XG. This is the content of [BD, Prop. 2.11]. In fact we have by [BD, Thm. 2.13]

an isomorphism

(3.3.3) Z(G) →̃ C[XG].

Together with (3.2.2) this gives all the equivalent ways of realizing the Bernstein center of G.

2We normalize the Kottwitz homomorphism as in [Ko97], so that κGm : L× → Z is the valuation map sending a

uniformizer $ to 1. Then the claimed agreement holds provided we normalize the Langlands duality for tori as in

(4.0.4).
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4. The local Langlands correspondence

We need to recall the general form of the conjectural local Langlands correspondence (LLC) for

a connected reductive group G over a p-adic field F . Let F̄ denote an algebraic closure of F . Let

WF ⊂ Gal(F̄ /F ) =: ΓF be the Weil group of F . It fits into an exact sequence of topological groups

1 // IF // WF
val // Z // 1,

where IF is the inertia subgroup of ΓF and where, if Φ ∈WF is a geometric Frobenius element (the

inverse of an arithmetic Frobenius element), then val(Φ) = −1. Here IF has its profinite topology

and Z has the discrete topology. Sometimes we write I for IF in what follows.

Recall the Weil-Deligne group is W ′F := WF n C, where wzw−1 = |w|z for w ∈ WF and z ∈ C,

with |w| := q
val(w)
F for qF = #(OF /($F )), the cardinality of the residue field of F .

A Langlands parameter is an admissible homomorphism ϕ : W ′F → LG, where LG := Ĝ oWF .

This means:

• ϕ is compatible with the projections W ′F →WF and ν : LG→WF ;

• ϕ is continuous and respects Jordan decompositions of elements in W ′F and LG (cf. [Bo79,

§8] for the definition of Jordan decomposition in the group WF n C and what it means to

respect Jordan decompositions here);

• if ϕ(W ′F ) is contained in a Levi subgroup of a parabolic subgroup of LG, then that parabolic

subgroup is relevant in the sense of [Bo79, §3.3]. (This condition is automatic if G/F is

quasi-split.)

Let Φ(G/F ) denote the set of Ĝ-conjugacy classes of admissible homomorphisms ϕ : W ′F → LG

and let Π(G/F ) = R(G(F ))irred the set of irreducible smooth (or admissible) representations of

G(F ) up to isomorphism.

Conjecture 4.0.1 (LLC). There is a finite-to-one surjective map Π(G/F ) → Φ(G/F ), which

satisfies the desiderata of [Bo79, §10].

The fiber Πϕ over ϕ ∈ Φ(G/F ) is called the L-packet for ϕ.

We mention a few desiderata of the LLC that will come up in what follows. First, LLC for Gm is

nothing other than Langlands duality for Gm, which we normalize as follows: for T any split torus

torus over F , with dual torus T̂ ,

Homconts(T (F ),C×) = Homconts(WF , T̂ )

ξ ↔ ϕξ

satisfies, for every ν ∈ X∗(T ) = X∗(T̂ ) and w ∈WF ,

(4.0.4) ν(ϕξ(w)) = ξ(ν(Art−1
F (w))).

Here Art−1
F : W ab

F → F× is the reciprocity map of local class field theory which sends any geometric

Frobenius element Φ ∈WF to a uniformizer in F .

Next, we think of Langlands parameters in two ways, either as continuous L-homomorphisms

ϕ : W ′F → LG

modulo Ĝ-conjugation, or as continuous 1-cocycles

ϕcocyc : W ′F → Ĝ
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modulo 1-coboundaries (where W ′F acts on Ĝ via the projection W ′F →WF ). The dictionary between

these is

ϕ(w) = (ϕcocyc(w), w̄) ∈ ĜoWF

for w ∈W ′F and w̄ the image of w under W ′F →WF .

The desideratum we will use explicitly is the following (a special case of [Bo79, 10.3(2)]: given any

Levi pair (M,σ) (where σ ∈ Π(M/F )) with representing 1-cocycle ϕcocycσ : W ′F → M̂ , and any un-

ramified 1-cocycle zcocycχ : WF → Z(M̂)I representing χ ∈ X(M) via the Langlands correspondence

for quasi-characters on M(F ), we have

ϕcocycσχ = ϕcocycσ · zcocycχ

modulo 1-coboundaries with values in M̂ . We may view zcocycχ as a 1-cocycle on W ′F which is trivial

on C; since it takes values in the center of M̂ , the right hand side is a 1-cocycle whose cohomology

class is independent of the choices of 1-cocycles ϕcocycσ and zcocycχ in their respective cohomology

classes. Hence the condition just stated makes sense. Concretely, if χ ∈ X(M) lifts to an element

z ∈ Z(M̂)I , then up to M̂ -conjugacy we have

(4.0.5) ϕσχ(Φ) = (z, 1)ϕσ(Φ) ∈ M̂ oWF .

Remark 4.0.2. There is a well-known dictionary between equivalence classes of admissible homo-

morphisms ϕ : WFnC→ LG and equivalence classes of admissible homomorphisms WF×SL2(C)→
LG. For a complete explanation, see [GR, Prop. 2.2]. Because of this equivalence, it is common in

the literature for the Weil-Deligne group W ′F to sometimes be defined as WF n C, and sometimes

as WF × SL2(C).

5. The stable Bernstein center

5.1. Infinitesimal characters. Following Vogan [Vo], we term a Ĝ-conjugacy class of an admissi-

ble3 homomorphism

λ : WF → LG

an infinitesimal character. Denote the Ĝ-conjugacy class of λ by (λ)Ĝ. In this section we give a

geometric structure to the set of all infinitesimal characters for a group G. It should be noted that

the variety structure we define here differs from that put forth by Vogan in [Vo, §7].

If ϕ : W ′F → LG is an admissible homomorphism, then its restriction ϕ|WF
represents an infinites-

imal character. Here it is essential to consider restriction along the proper embedding WF ↪→W ′F : if

W ′F is thought of as WF nC, then this inclusion is w 7→ (w, 0); if W ′F is thought of as WF ×SL2(C),

then the inclusion is w 7→ (w,diag(|w|1/2, |w|−1/2)). If ϕπ ∈ Φ(G/F ) is attached by LLC to

π ∈ Π(G/F ), then following Vogan [Vo] we shall call the Ĝ-conjugacy class (ϕπ|WF
)Ĝ the infin-

itesimal character of π.

If G is quasi-split over F , then conjecturally every infinitesimal character λ is represented by a

restriction ϕπ|WF
: WF → LG for some π ∈ Π(G/F ).

3“Admissible” is defined as for the parameters ϕ : W ′F →
LG (e. g. λ(WF ) consists of semisimple elements of LG)

except that we omit the “relevance condition”. This is because the restriction ϕ|WF
of a Langlands parameter could

conceivably factor through a non-relevant Levi subgroup of LG (even though ϕ does not) and we want to include such

restrictions in what we call infinitesimal characters.
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Assume LLC holds for G/F . Let λ be an infinitesimal character for G. Define the infinitesimal

class to be the following finite union of L-packets

Πλ :=
∐
ϕ λ

Πϕ.

Here ϕ ranges over Ĝ-conjugacy classes of admissible homomorphismsW ′F → LG such that (ϕ|WF
)Ĝ =

(λ)Ĝ, and Πϕ is the corresponding L-packet of smooth irreducible representations of G(F ).

5.2. LLC+. In order to relate the Bernstein variety X with the variety Y of infinitesimal characters,

we will assume the Local Langlands Correspondence (LLC) for G and all of its F -Levi subgroups.

We assume all the desiderata listed by Borel in [Bo79].

There are two additional desiderata of LLC we need.

Definition 5.2.1. We will declare that G satisfies LLC+ if the LLC holds for G and its F -Levi sub-

groups, and these correspondences are compatible with normalized parabolic induction in the sense

of the Conjecture 5.2.2 below, and invariant under certain isomorphisms in the sense of Conjecture

5.2.7 below.

Let M ⊂ G denote an F -Levi subgroup. Then the inclusion M ↪→ G induces an embedding
LM ↪→ LG which is well-defined up to Ĝ-conjugacy (cf. [Bo79, §3]).

Conjecture 5.2.2. (Compatibility of LLC with parabolic induction) Let σ ∈ Π(M/F ) and π ∈
Π(G/F ) and assume π is an irreducible subquotient of iGP (σ), where P = MN is any F -parabolic

subgroup of G with F -Levi factor M . Then the infinitesimal characters

ϕπ|WF
: WF → LG

and

ϕσ|WF
: WF → LM ↪→ LG

are Ĝ-conjugate.

Remark 5.2.3. (1) The conjecture implies that the restriction ϕπ|WF
depends only on the supercus-

pidal support of π. This latter statement is a formal consequence of Vogan’s Conjecture 7.18 in [Vo],

but the Conjecture 5.2.2 is slightly more precise. In Proposition 5.5.1 we will give a construction

of the map f in Vogan’s Conjecture 7.18, by sending a supercuspidal support (M,σ)G (a “classical

infinitesimal character” in [Vo]) to the infinitesimal character (ϕσ|WF
)Ĝ. With this formulation, the

condition on f imposed in Vogan’s Conjecture 7.18 is exactly the compatibility in the conjecture

above.

(2) The conjecture holds for GLn, and is implicit in the way the local Langlands correspondence for

GLn is extended from supercuspidals to all representations (see Remark 13.1.1 of [HRa]). It was

a point of departure in Scholze’s new characterization of LLC for GLn [Sch3], and that paper also

provides another proof of the conjecture in that case.

(3) I was informed by Brooks Roberts (private communication), that the conjecture holds for GSp(4).

(4) Given a parameter ϕ : W ′F → LG, there exists a certain P = MN and a certain tempered

parameter ϕM : W ′F → LM and a certain real-valued unramified character χM on M(F ) whose

parameter is in the interior of the Weyl chamber determined by P , such that the L-packet Πϕ consists

of Langlands quotients J(πM ⊗ χM ), for πM ranging over the packet ΠϕM . The parameter ϕ is the
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twist of ϕM by the parameter associated to the character χM . This reduces the conjecture to the case

of tempered representations. One can further reduce to the case of discrete series representations.

The following is a very natural kind of functoriality which should be satisfied for all groups.

Conjecture 5.2.4. (Invariance of LLC under isomorphisms) Suppose φ : (G, π) →̃ (G′, π′) is an

isomorphism of connected reductive F -groups together with irreducible smooth representations on

them. Then the induced isomorphism Lφ : LG′ →̃ LG (well-defined up to an inner automorphism

of Ĝ), takes the Ĝ′-conjugacy class of ϕπ′ : W ′F → LG′ to the Ĝ-conjugacy class of ϕπ : W ′F → LG.

Proposition 5.2.5. Conjecture 5.2.4 holds when G = GLn.

Proof. (Guy Henniart). It is enough to consider the case where G′ = GLn and φ is an F -

automorphism of GLn.

The functorial properties in the Langlands correspondence for GLn are:

(i) Compatibility with class field theory, that is, with the case where n = 1.

(ii) The determinant of the Weil-Deligne group representation corresponds to the central char-

acter: this is Langlands functoriality for the homomorphism det : GLn(C)→ GL1(C).

(iii) Compatibility with twists by characters, i.e., Langlands functoriality for the obvious homo-

morphism of dual groups GL1(C)×GLn(C)→ GLn(C).

(iv) Compatibility with taking contragredients: this is Langlands functoriality with respect to

the automorphism g 7→ tg−1 (transpose inverse), since it is known that for GLn(F ) this

sends an irreducible representation to a representation isomorphic to its contragredient.

These properties are enough to imply the desired functoriality for F -automorphisms of GLn.

When n = 1, the functoriality is obvious for any F -endomorphism of GL1. When n is at least 2, an

F -automorphism of GLn induces an automorphism of SLn hence an automorphism of the Dynkin

diagram which must be the identity or, (when n ≥ 3) the opposition automorphism. Hence up

to conjugation by GLn(F ), the F -automorphism is the identity on SLn, or possibly (when n ≥ 3)

transpose inverse. Consequently the F -automorphism can be reduced (by composing with an inner

automorphism or possibly with transpose inverse) to one which is the identity on SLn, hence is of

the form g 7→ g · c(det(g)) where c ∈ X∗(Z(GLn)). But this implies that it is the identity unless

n = 2, in which case it could also be g 7→ g · det(g)−1. In that exceptional case, the map induced

on the dual group GL2(C) is also g 7→ g · det(g)−1, and the desired result holds by invoking (ii) and

(iii) above. �

Corollary 5.2.6. Let M = GLn1
×· · ·×GLnr ⊂ GLn be a standard Levi subgroup. Let g ∈ GLn(F ).

Then Conjecture 5.2.4 holds for the isomorphism cg : M →̃ gM given by conjugation by g.

Proof. It is enough to consider the case where g belongs to the normalizer of M in GLn. Let T ⊂M
be the standard diagonal torus in GLn. Then g ∈ NG(T )M . Thus composing g with a permutation

matrix which normalizes M we may assume that cg preserves each diagonal factor GLni . The desired

functoriality follows by applying Proposition 5.2.5 to each GLni . �

For the purposes of comparing the Bernstein center and the stable Bernstein center as in Propo-

sition 5.5.1, we need only this weaker variant of Conjecture 5.2.4.

Conjecture 5.2.7. (Weak invariance of LLC) Let M ⊆ G be any F -Levi subgroup and let g ∈ G(F ).

Then Conjecture 5.2.4 holds for the isomorphism cg : M →̃ gM .
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5.3. Variety structure on the set of infinitesimal characters. It is helpful to rigidify things

on the dual side by choosing the data Ĝ ⊃ B̂ ⊃ T̂ of a Borel subgroup and maximal torus which are

stable under the action of ΓF on Ĝ and which form part of the data of a ΓF -invariant splitting for

Ĝ (cf. [Ko84a, §1]). The variety structure we will define will be independent of this choice, up to

isomorphism, since different choices such that B̂ ⊃ T̂ are conjugate under ĜΓF ([Ko84a, Cor. 1.7]).

Let LB := B̂ oWF and LT = T̂ oWF .

Following [Bo79, §3.3], we say a parabolic subgroup P ⊆ LG is standard if P ⊇ LB. Then its

neutral component P◦ := P ∩ Ĝ is a WF -stable standard parabolic subgroup of Ĝ (containing B̂),

and P = P◦ oWF . Every parabolic subgroup in LG is Ĝ-conjugate to a unique standard parabolic

subgroup.

Assume P is standard and letM◦ ⊂ P◦ be the unique Levi factor withM◦ ⊇ T̂ ; it is WF -stable.

Then M := NP(M◦) is a Levi subgroup of P in the sense of [Bo79, §3.3], and M = M◦ oWF .

The Levi subgroups M ⊂ LG which arise this way are called standard. Every Levi subgroup in
LG is Ĝ-conjugate to at least one standard Levi subgroup; two different standard Levi subgroups

may be conjugate under Ĝ. Denote by {M} the set of standard Levi subgroups in LG which are

Ĝ-conjugate to a fixed standard Levi subgroup M.

Now suppose λ : WF → LG is an admissible homomorphism. Then there exists a minimal Levi

subgroup of LG containing λ(WF ). Any two such are conjugate by an element of C◦λ, where Cλ is

the subgroup of Ĝ commuting with λ(WF ), by (the proof of) [Bo79, Prop. 3.6].

Suppose λ1, λ2 : WF → LG are Ĝ-conjugate. Then there exists a Ĝ-conjugate λ+
1 (resp. λ+

2 ) of

λ1 (resp. λ2) and a standard Levi subgroup M1 (resp. M2) containing λ+
1 (WF ) (resp. λ+

2 (WF ))

minimally. Write gλ+
1 g
−1 = λ+

2 for some g ∈ Ĝ. Then the Levi subgroups gM1g
−1 and M2

contain λ+
2 (WF ) minimally, hence by [Bo79, Prop. 3.6] are conjugate by an element s ∈ C◦

λ+
2

. Then

sg(M1)(sg)−1 =M2, and thus {M1} = {M2}.
Hence any Ĝ-conjugacy class (λ)Ĝ gives rise to a unique class of standard Levi subgroups {Mλ},

with the property that the image of some element λ+ ∈ (λ)Ĝ is contained minimally by Mλ for

some Mλ in this class.

A similar argument shows the following lemma.

Lemma 5.3.1. Let λ+
1 and λ+

2 be admissible homomorphisms with (λ+
1 )Ĝ = (λ+

2 )Ĝ, and suppose

λ+
1 (WF ) and λ+

2 (WF ) are contained minimally by a standard Levi subgroup M. Then there exists

n ∈ NĜ(M) such that nλ+
1 = λ+

2 .

The following lemma is left to the reader.

Lemma 5.3.2. If M⊆ LG is a standard Levi subgroup, then

NĜ(M) = {n ∈ NĜ(M◦) | nM◦ is WF -stable}.

Consequently, conjugation by n ∈ NĜ(M) preserves the set (Z(M◦)I)◦Φ. More generally, if M1 and

M2 are standard Levi subgroups of LG and if we define the transporter subset by

TransĜ(M1,M2) := {g ∈ Ĝ | gM1g
−1 =M2},

then

TransĜ(M1,M2) = {g ∈ TransĜ(M◦1,M◦2) | gM◦1 =M◦2g is WF -stable}.

Consequently, conjugation by g ∈ TransĜ(M1,M2) sends (Z(M◦1)I)◦Φ into (Z(M◦2)I)◦Φ.
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We can now define the notion of inertial equivalence (λ1)Ĝ ∼ (λ2)Ĝ of infinitesimal characters.

Definition 5.3.3. We say (λ1)Ĝ and (λ2)Ĝ are inertially equivalent if

• {Mλ1
} = {Mλ2

};
• there exists M ∈ {Mλ1

}, and λ+
1 ∈ (λ1)Ĝ and λ+

2 ∈ (λ2)Ĝ whose images are minimally

contained by M, and an element z ∈ (Z(M◦)I)◦Φ, such that

(zλ+
1 )M◦ = (λ+

2 )M◦ .

We write [λ]Ĝ for the inertial equivalence class of (λ)Ĝ.

Note that M automatically contains (zλ+
1 )(WF ) minimally if it contains λ+

1 (WF ) minimally.

Lemma 5.3.4. The relation ∼ is an equivalence relation on the set of infinitesimal characters.

Proof. Use Lemmas 5.3.1 and 5.3.2. �

Remark 5.3.5. To define (λ1)Ĝ ∼ (λ2)Ĝ we used the choice of Ĝ ⊃ B̂ ⊃ T̂ (which was assumed to

form part of a ΓF -invariant splitting for Ĝ) in order to define the notion of standard Levi subgroup

of LG. However, the equivalence relation ∼ is independent of this choice, since as remarked above,

any two ΓF -invariant splittings for Ĝ are conjugate under ĜΓF , by [Ko84a, Cor. 1.7].

Remark 5.3.6. The property we need of standard Levi subgroups M ⊆ LG is that they are

decomposable, that is, M◦ := M ∩ Ĝ is WF -stable, and M = M◦ o WF . Any standard Levi

subgroup is decomposable. In our discussion, we could have avoided choosing a notion of standard

Levi, by associating to each (λ)Ĝ a unique class of decomposable Levi subgroups {M}, all of which

are Ĝ-conjugate, such that λ factors minimally through some M∈ {M}.

Now fix a standard Levi subgroup M ⊆ LG. We write tM◦ for an inertial equivalence class of

admissible homomorphisms WF →M. We write YtM◦ for the set ofM◦-conjugacy classes contained

in this inertial class. We want to give this set the structure of an affine algebraic variety over C.

Define the torus

(5.3.1) Y (M◦) := (Z(M◦)I)◦Φ.

Then Y (M◦) acts transitively on YtM◦ . Fix a representative

λ : WF →M

for this inertial class, so that tM◦ = [λ]M◦ .

Lemma 5.3.7. The Y (M◦)-stabilizer

stabλ := {z ∈ Y (M◦) | (zλ)M◦ = (λ)M◦}

is finite.

Proof. There exists an integer r ≥ 1 such that Φr acts trivially onM◦. The group stabλ is contained

in the preimage of the finite group Z(M◦)ΓF ∩ (M◦)der under the norm homomorphism

Nr : (Z(M◦)I)Φ → Z(M◦)ΓF ,

z 7→ zΦ(z) · · ·Φr−1(z)

and the kernel of this homomorphism is finite. �
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Then YtM◦ is a torsor under the quotient torus

YtM◦
∼= Y (M◦)/stabλ.

In this way the left hand side acquires the structure of an affine algebraic variety. Up to isomorphism,

this structure is independent of the choice of λ representing tM◦ .

Now let t denote an inertial class of infinitesimal characters for G, and let Yt denote the set of

infinitesimal characters in t. Recall t gives rise to a unique class of standard Levi subgroups {M},
having the property that some representative λ for t factors minimally through some M ∈ {M}.
Fix such a representative λ : WF → M ↪→ LG for t, so that t = [λ]Ĝ and tM◦ = [λ]M◦ . By our

previous work, there is a surjective map

YtM◦ → Yt

(zλ)M◦ 7→ (zλ)Ĝ.

where z ∈ Y (M◦)/stabλ. Let

NĜ(M, [λ]M◦) = {n ∈ NĜ(M) | ( nλ)M◦ = (zλ)M◦ , for some z ∈ Y (M◦)}.

From the above discussion we see the following.

Lemma 5.3.8. The fibers of YtM◦ → Yt are precisely the orbits of the finite group W Ĝ
[λ]M◦

:=

NĜ(M, [λ]M◦)/M◦ on YtM◦ .

Hence Yt = W Ĝ
tM◦
\YtM◦ acquires the structure of an affine variety over C. Thus Y =

∐
t Yt is

an affine variety over C and each Yt is a connected component.

Let Zst(G) denote the ring of regular functions on the affine variety Y. We call this ring the

stable Bernstein center of G/F .

5.4. Base change homomorphism of the stable Bernstein center. Let E/F be a finite ex-

tension in F/F with ramification index e and residue field extension kE/kF of degree f . Then

WE ⊂ WF and IE ⊆ IF . Further, we can take ΦE := ΦfF as a geometric Frobenius element in WE .

Let YG/F resp. YG/E denote the variety of infinitesimal characters associated to G resp. GE .

Proposition 5.4.1. The map (λ)Ĝ 7→ (λ|WE
)Ĝ determines a morphism of algebraic varieties

YG/F → YG/E.

Definition 5.4.2. We call the corresponding map bE/F : Zst(GE)→ Zst(G) the base change homo-

morphism for the stable Bernstein center.

Proof. Suppose λ : WF → Ĝ oWF factors minimally through the standard Levi subgroup M ⊂
ĜoWF and that its restriction λ|WE

: WE → ĜoWE factors minimally through the standard Levi

subgroup ME ⊂ ĜoWE . We may assume M◦E ⊆M◦ and thus Z(M◦) ⊂ Z(M◦E).

There is a homomorphism of tori

Y (M◦) = (Z(M◦)IF )◦ΦF −→ (Z(M◦E)IE )◦
ΦfF

= Y (M◦E)(5.4.1)

z 7−→ zf := Nf (z) := z · ΦF (z) · · ·Φf−1
F (z).

Recall that z ∈ (Z(M◦)IF )ΦF is identified with the image of the element z(ΦF ) ∈ Z(M◦)IF ,

where z is viewed as a cohomology class z ∈ H1(〈ΦF 〉, Z(M◦)IF ). Using the same fact for E
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in place of F , it follows that (zλ)|WE
= zfλ|WE

, where zf is defined as above. Thus the map

(zλ)Ĝ 7→ ((zλ)|WE
)Ĝ lifts to the map

(zλ)M◦ 7→ (zfλ|WE
)M◦ 7→ (zfλ|WE

)Ĝ,

and being induced by (5.4.1), the latter is an algebraic morphism. �

5.5. Relation between the Bernstein center and the stable Bernstein center. The varieties

X and Y are defined unconditionally. In order to relate them, we need to assume LLC+ holds.

Proposition 5.5.1. Assume LLC+ holds for the group G. Then the map (M,σ)G 7→ (ϕσ|WF
)Ĝ

defines a quasi-finite morphism of affine algebraic varieties

f : X→ Y.

It is surjective if G/F is quasi-split.

The reader should compare this with Conjecture 7.18 in [Vo]. Our variety structure on the set

Y is different from that put forth by Vogan, and our f is given by a simple and explicit rule. In

view of LLC+ our f automatically satisfies the condition which Vogan imposed on the map in his

Conjecture 7.18: if π has supercuspidal support (M,σ)G, then the infinitesimal character of π is

f((M,σ)G).

Proof. It is easy to see that the map (M,σ)G 7→ (ϕσ|WF
)Ĝ is well-defined. We need to show that

an isomorphism cg : (M,σ) →̃ ( gM, gσ) given by conjugation by g ∈ G(F ) gives rise to parameters

ϕσ : W ′F → LM ↪→ LG and ϕ gσ : W ′F → L( gM) ↪→ LG which differ by an inner automorphism

of Ĝ. In view of Conjecture 5.2.7 applied to M , the isomorphism L( gM) →̃ LM takes ϕ gσ to an

M̂ -conjugate of ϕσ. On the other hand the embeddings LM ↪→ LG and L( gM) ↪→ LG are defined

using based root systems in such a way that it is obvious that they are Ĝ-conjugate.

To examine the local structure of this map, we first fix a λ and a standard Mλ through which λ

factors minimally. Let t = [λ]Ĝ. Then over Yt the map f takes the form

(5.5.1)
∐

sM t

XsM → Yt.

Here sM ranges over the inertial classes [M,σ]G such that (ϕσ|WF
)Ĝ is inertially equivalent to (λ)Ĝ.

We now fix a representative (M,σ) for sM . Given such a ϕσ, its restriction ϕσ|WF
factors through

a Ĝ-conjugate of LM . But (ϕσ|WF
)Ĝ ∼ (λ)Ĝ implies that (up to conjugation by Ĝ) ϕσ|WF

factors

minimally through Mλ. Thus we may assume that Mλ ⊆ LM . The corresponding inclusion

Z(M̂) ↪→ Z(M◦λ) induces a morphism of algebraic tori

Y (M̂) = (Z(M̂)I)◦Φ → (Z(M◦λ)I)◦Φ = Y (M◦λ).

Further, recall X(M) ∼= Y (M̂) by the Kottwitz isomorphism (or the Langlands duality for quasi-

characters), by the rule χ 7→ zcocycχ (Φ).

Taking (4.0.5) into account, we see that (5.5.1) on XsM , given by

(M,σχ)G 7→ (ϕσχ|WF
)Ĝ

for χ ∈ X(M)/stabσ, lifts to the map

(5.5.2) X(M)/stabσ → Y (M◦λ)/stabλ,
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which is the obvious map induced by X(M) → Y (M̂) → Y (M◦λ), up to translation by an element

in Y (M◦λ) measuring the difference between (ϕσ|WF
)M◦λ and (λ)M◦λ . The map (5.5.2) is clearly a

morphism of algebraic varieties. Hence the map f is a morphism of algebraic varieties.

The fibers of f are finite by a property of LLC. Finally, if G/F is quasi-split, the morphism f is

surjective by another property of LLC. �

Corollary 5.5.2. Assume G/F satisfies LLC+, so that the map f in Proposition 5.5.1 exists. Then

f induces a C-algebra homomorphism Zst(G)→ Z(G). It is injective if G/F is quasi-split.

Remark 5.5.3. For the group GLn the constructions above are unconditional because the local

Langlands correspondence and its enhancement LLC+ are known (cf. Remark 5.2.3(2) and Corollary

5.2.6). One can see that XGLn → YGLn is an isomorphism and hence Zst(GLn) = Z(GLn).

Remark 5.5.4. As remarked by Scholze and Shin [SS, §6], one may conjecturally characterize the

image of Zst(G) → Z(G) in a way that avoids direct mention of L-parameters. According to them

it should consist of the distributions D ∈ D(G)Gec such that, for any function f ∈ C∞c (G(F ) whose

stable orbital integrals vanish at semi-simple elements, the function D ∗ f also has this property.

See [SS, §6] for further discussion of this. From conjectured relations between stable characters

and stable orbital integrals, one can conjecturally rephrase the condition on D in terms of stable

characters, as

(5.5.3) SOϕ(D ∗ f) = 0, ∀ϕ, if SOϕ(f) = 0, ∀ϕ.

An element of Zst(G) acts by the same scalar on all π ∈ Πϕ, and so the above condition holds if

D ∈ f(Zst(G)). The converse direction is much less clear, and implies non-trivial statements about

the relation between supercuspidal supports, L-packets, and infinitesimal classes. Indeed, suppose

we are given D ∈ Z(G) that satisfies (5.5.3). This should mean that it acts by the same scalar on

all π ∈ Πϕ. On the other hand, saying D comes from Zst(G) would mean that D acts by the same

scalar on all π ∈ Πλ and those scalars vary algebraically as λ ranges over Y. So if for some λ the

infinitesimal class

Πλ =
∐
ϕ λ

Πϕ

contains an L-packet Πϕ0
( Πλ such that the set of supercuspidal supports coming from Πϕ0

does

not meet the set of those coming from any Πϕ′ with ϕ′ not conjugate to ϕ0, then one could construct

a regular function D ∈ Z(G) which is constant on the L-packets Πϕ but not constant on Πλ, and

thus not in f(Zst(G)). In that case (5.5.3) would not be sufficient to force D ∈ f(Zst(G)), and the

conjecture of Scholze-Shin would be false. In that case, one could define the subring Zst∗(G) ⊆ Z(G)

of regular functions on the Bernstein variety which take the same value on all supercuspidal supports

of representations in the same L-packet. This would then perhaps better deserve the title “stable

Bernstein center” and it would be strictly larger than f(Zst(G)) at least in some cases.

To illustrate this in a more specific setting, suppose G/F is quasi-split and λ does not factor

through any proper Levi subgroup of LG. Then by Proposition 5.6.1 below, we expect Πλ to consist

entirely of supercuspidal representations. If Πλ contains at least two L-packets Πϕ, then there

would exist a D ∈ Z(G) which is constant on the Πϕ’s yet not constant on Πλ, and the Scholze-Shin

conjecture should be false. Put another way, if the Scholze-Shin conjecture is true, we expect that
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whenever λ does not factor through a proper Levi in LG, the infinitesimal class Πλ consists of at

most one L-packet.4

5.6. Aside: when does an infinitesimal class consist only of supercuspidal representa-

tions?

Proposition 5.6.1. Assume G/F is quasi-split and LLC+ holds for G. Then Πλ consists entirely

of supercuspidal representations if and only if λ does not factor through any proper Levi subgroup
LM ( LG.

Proof. If Πλ contains a nonsupercuspidal representation π with supercuspidal support (M,σ)G for

M ( G, then by LLC+, we may assume ϕπ|WF
, and hence λ, factors through the proper Levi

subgroup LM ( LG.

Conversely, if λ factors minimally through a standard Levi subgroup Mλ ( LG, then we must

show that Πλ contains a nonsupercuspidal representation of G. Since G/F is quasi-split, we may

identify Mλ = LMλ for an F -Levi subgroup Mλ ( G.

Now for t = [λ]Ĝ, the map (5.5.1) is surjective. For any F -Levi subgroup M )Mλ, a component

of the form X[M,σ]G has dimension dim (Z(M̂)I)◦Φ < dim (Z(M̂λ)I)◦Φ = dimYt. Thus the union of

the components of the form X[M,σ]G with M ) Mλ cannot surject onto Yt. Thus there must be

a component of the form X[Mλ,σλ] appearing in the left hand side of (5.5.1). We may assume ϕσλ
factors through LMλ along with λ. Writing (λ)

M̂λ
= (zcocycχ ϕσλ)

M̂λ
for some χ ∈ X(Mλ), it follows

that Πλ contains the nonsupercuspidal representations with supercuspidal support (Mλ, σλχ)G. �

5.7. Construction of the distributions ZV . Let (r, V ) be a finite-dimensional algebraic repre-

sentation of LG on a complex vector space. Given a geometric Frobenius element Φ ∈ WF and an

admissible homomorphism λ : WF → LG, we may define the semi-simple trace

trss(λ(Φ), V )) := tr(rλ(Φ), V rλ(IF )).

Note this is independent of the choice of Φ.

This notion was introduced by Rapoport [Ra90] in order to define semi-simple local L-functions

L(s, πp, r), and is parallel to the notion for `-adic Galois representations used in [Ra90] to define

semi-simple local zeta functions ζss
p (X, s); see also [HN02a, H05].

The following result is an easy consequence of the material in §5.3.

Proposition 5.7.1. The map λ 7→ trss(λ(Φ), V ) defines a regular function on the variety Y hence

defines an element ZV ∈ Zst(G) by

ZV ((λ)Ĝ) = trss(λ(Φ), V ).

We use the same symbol ZV to denote the corresponding element in Z(G) given via Zst(G)→ Z(G).

The latter has the property

(5.7.1) ZV (π) = trss(ϕπ(Φ), V )

for every π ∈ Π(G/F ), where ZV (π) stands for ZV ((M,σ)G) if (M,σ)G is the supercuspidal support

of π.

4Note added in proof (Feb. 2014): In fact this statement holds: if λ does not factor through a proper Levi subgroup

of LG, then there is at most one way to extend it to an admissible homomorphism ϕ : W ′F →
LG.
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Remark 5.7.2. One does not really need the full geometric structure on the set Y in order to

construct ZV ∈ Z(G): one may show directly, assuming that LLC and Conjecture 5.2.2 hold, that

π 7→ trss(ϕπ(Φ), V ) descends to give a regular function on X and hence (5.7.1) defines an element

ZV ∈ Z(G). Using the map f simply makes the construction more transparent (but has the drawback

that we also need to assume Conjecture 5.2.7).

6. The Langlands-Kottwitz approach for arbitrary level structure

6.1. The test functions. Let (G, X) be a Shimura datum, where X is the G(R)-conjugacy class

of an R-group homomorphism h : RC/RGm → GR. This gives rise to the reflex field E ⊂ C and a

G(C)-conjugacy class {µ} ⊂ X∗(GC) which is defined over E.

Choose a quasi-split group G∗ over Q and an inner twisting ψ : G∗ → G of Q-groups. In particular

we get an inner twisting G∗E → GE as well as an isomorphism of L-groups L(GE) →̃ L(G∗E).

Let Q ⊂ C denote the algebraic numbers, so that we have an inclusion E ⊂ Q and we can regard

{µ} as a G(Q)-conjugacy class in X∗(GQ) which is defined over E (cf. [Ko84b, Lemma 1.1.3]).

Using ψ regard {µ} as a G∗(Q)-conjugacy class in X∗(G
∗
Q), defined over E. By Kottwitz’ lemma

([Ko84b, 1.1.3]), {µ} is represented by an E-rational cocharacter µ : Gm → G∗E. Following Kottwitz’

argument in [Ko84b, 2.1.2], it is easy to show that there exists a unique representation (r−µ, V−µ)

of L(G∗E) such that as a representation of Ĝ∗ it is an irreducible representation with extreme weight

−µ and the Weil group WE acts trivially on the highest-weight space corresponding to any ΓE-fixed

splitting for Ĝ∗E.

Using ψ we can regard (r−µ, V−µ) as a representation of L(GE). The isomorphism class of this

representation depends only on the equivalence class of the inner twisting ψ, thus only on G and

{µ}.
Now we fix a rational prime p and set G := GQp . Choose a prime ideal p ⊂ E lying above p,

and set E := Ep. Choose an algebraic closure Qp of Qp and fix henceforth an isomorphism of fields

C ∼= Qp such that the embedding E ↪→ C ∼= Qp corresponds to the prime ideal p. This gives rise to

an embedding Q ↪→ Qp extending E ↪→ Qp, and thus to an embedding WE ↪→WE. We get from this

an embedding L(GE) ↪→ L(GE). Via this embedding we can regard (r−µ, V−µ) as a representation

(r−µ, V−µ) of L(GE).

Associated to (r−µ, V−µ) ∈ Rep( L(GE)) we have an element ZV−µ in the Bernstein center Z(GE).

Of course here and in what follows, we are assuming LLC+ holds for GE .

Now we review briefly the Langlands-Kottwitz approach to studying the local Hasse-Weil zeta

functions of Shimura varieties. Let ShKp = Sh(G, h−1,KpKp) denote the canonical model5 over E

for the Shimura variety attached to the data (G, h−1,KpKp) for some sufficiently small compact

open subgroup Kp ⊂ G(Apf ) and some compact open subgroup Kp ⊂ G(Qp). We limit ourselves to

constant coefficients Q` in the generic fiber of ShKp (here ` 6= p is a fixed rational prime). Let Φp

denote any geometric Frobenius element in Gal(Qp/Qp). Then in the Langlands-Kottwitz approach

to the semi-simple local zeta function ζss
p (s, ShKp), one needs to prove an identity of the form

(6.1.1) trss(Φrp,H
•
c(ShKp ⊗E Qp ,Q`)) =

∑
(γ0;γ,δ)

c(γ0; γ, δ) Oγ(1Kp) TOδθ(φr).

5We use this term in the same sense as Kottwitz [Ko92a], comp. Milne [Mil, §1, esp. 1.10].
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Here the semi-simple Lefschetz number Lefss(Φrp, ShKp) on the left hand side is the alternating

semi-simple trace of Frobenius on the compactly-supported `-adic cohomology groups6 of ShKp (see

[Ra90] and [HN02a] for the notion of semi-simple trace). The expression on the right has precisely

the same form as the counting points formula proved by Kottwitz in certain good reduction cases

(PEL type A or C, Kp hyperspecial; cf. [Ko92a, (19.6)]). The integer r ≥ 1 ranges over integers of

the form j · [kE0
: Fp], j ≥ 1, where E0/Qp is the maximal unramified subextension of E/Qp and

kE0
is its residue field. Thus Φrp = Φjp where Φp is a geometric Frobenius element in Gal(Qp/E).

Finally, φr is an element in the Hecke algebra H(G(Qpr ),Kpr ) with values in Q`, where Qpr is the

unique degree r unramified extension in Qp/Qp, and where Kpr ⊂ G(Qpr ) is a suitable compact

open subgroup which is assumed to be a natural analogue of Kp ⊂ G(Qp). To be more precise about

Kpr , in practice there is a smooth connected Zp-model G for G, such that Kp = G(Zp). In that case,

we always take Kpr = G(Zpr ), where Zpr is the ring of integers in Qpr . In forming TOδσ(φr), the

Haar measure on G(Qpr ) is normalized to give Kpr measure 1.

Let Ej/E be the unique unramified extension of degree j in Qp/E. Let Ej0/Qp be the maximal

unramified subextension of Ej/Qp. So E/E0 and Ej/Ej0 are totally ramified of the same degree,

and Ej0 = Qpr .
We make the choice of

√
p ∈ Q`, and use it to define δ

1/2
P as a function with values in Q(

√
p) ⊂ Q`.

We can now specify the test function φr ∈ Z(G(Ej0),Kj0), which will take values in Q`.
In the construction of the elements ZV ∈ Zst(G), everything works the same way for (r, V )

a representation of LG := Ĝ(Q`) o WF on a Q`-vector space. We henceforth take this point of

view. Let (r−µ,j , V−µ,j) ∈ Rep( L(GEj )) denote the restriction of (r−µ, V−µ) ∈ Rep( L(GE)) via
L(GEj ) ↪→ L(GE). We can then induce to get a representation (r

Ej0
−µ,j , V

Ej0
−µ,j) of L(GEj0). By

Mackey theory, we get the same representation if we first induce to L(GE0) and then restrict to
L(GEj0), that is, we have

(6.1.2) (r
Ej0
−µ,j , V

Ej0
−µ,j) := Ind

ĜoWEj0

ĜoWEj

ResĜoWE

ĜoWEj

r−µ = Res
ĜoWE0

ĜoWEj0

Ind
ĜoWE0

ĜoWE
r−µ.

This gives rise to Z
V
Ej0
−µ,j
∈ Zst(GEj0). By abuse of notation, we use the same symbol to denote the

image of this in the Bernstein center: Z
V
Ej0
−µ,j
∈ Z(GEj0). Of course here we are viewing Z(GEj0) as Q`-

valued regular functions on the Bernstein variety, or equivalently as Q`-valued invariant essentially

compact distributions: the topology on C playing no role, it is harmless to identify it with Q`.
The following is the conjecture formulated jointly with R. Kottwitz.

Conjecture 6.1.1. (Test function conjecture) Let d = dim(ShKp). The test function φr in (6.1.1)

may be taken to be prd/2
(
Z
V
Ej0
−µ,j
∗1Kpr

)
. In particular, φr may be taken in the center Z(G(Qpr ),Kpr )

of H(G(Qpr ),Kpr ) and these test functions vary compatibly with change in the level Kp in an obvious

sense.

The same test functions should be used when one incorporates arbitrary Hecke operators away

from p into (6.1.1).

6The Langlands-Kottwitz method really applies to the middle intersection cohomology groups of the Baily-Borel

compactification and not just to the cohomology groups with compact supports; see [Ko90] and [Mor] for some

general conjectures and results in this context, at primes of good reduction. The identity (6.1.1) corresponds to the

contribution of the interior, at primes of arbitrary reduction, and is a first step toward understanding the intersection

cohomology groups.
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Following Rapoport’s strategy (cf. [Ra90], [Ra05], [H05]), one seeks to find a natural integral

modelMKp over OE for ShKp , and then rephrase the above conjecture using the method of nearby

cycles RΨ := RΨMKp (Q`).

Conjecture 6.1.2. There exists a natural integral model MKp/OE for ShKp , such that

(6.1.3)
∑

x∈MKp (kEj0 )

trss(Φrp, RΨx) =
∑

(γ0;γ,δ)

c(γ0; γ, δ) O(1Kp) TOδθ(φr),

where φr = prd/2
(
Z
V
Ej0
−µ,j
∗ 1Kpr

)
as in Conjecture 6.1.1.

Remark 6.1.3. Implicit in this conjecture is that the method of nearby cycles can be used for

compactly-supported cohomology. In fact we could conjecture there exists a suitably nice compact-

ification of MKp/OE so that the natural map

Hi
c(MKp ⊗OE Fp , RΨ(Q`))→ Hi

c(ShKp ⊗E Qp , Q`)

is a Galois-equivariant isomorphism. For G = GSp2g and where MKp is the natural integral model

for ShKp for Kp an Iwahori subgroup, this was proved by Benoit Stroh. Of course, one is really

interested in intersection cohomology groups of the Baily-Borel compactification (see footnote 5), and

in fact Stroh [Str] computed the nearby cycles and verified the analogue of the Kottwitz conjecture

on nearby cycles (see Conjecture 7.1.3 below) for these compactifications.

Remark 6.1.4. Some unconditional versions of Conjectures 6.1.1 and 6.1.2 have been proved. See

§8.

6.2. Endoscopic transfer of the stable Bernstein center. Part of the Langlands-Kottwitz ap-

proach is to perform a “pseudostabilization” of (6.1.1), and in particular prove the “fundamental lem-

mas” that are required for this. The stabilization expresses (6.1.1) in the form
∑

H i(G,H)ST ∗e (h),

the sum over global Q-elliptic endoscopic groups H for G of the (G,H)-regular Q-elliptic part of the

geometric side of the stable trace formula for (H,h) (cf. notation of [Ko90]), for a certain transfer

function h ∈ C∞c (H(A)). (By contrast in “pseudostabilization” which is used in certain situations,

one instead writes (6.1.1) in terms of the trace formula for G and not its quasi-split inner form, and

this is sometimes enough, as in e.g. Theorem 6.3.2 below.) For stabilization one needs to produce

elements hp ∈ C∞c (H(Qp)) which are Frobenius-twisted endoscopic transfers of φr. The existence of

such transfers hp is due mainly to the work of Ngô [Ngo] and Waldspurger [Wal97, Wal04, Wal08].

But we hope to have a priori spectral information about the transferred functions hp.

A guiding principle is that the nearby cycles on an appropriate “local model” for ShKp should

naturally produce a central element as a test function φr, which should coincide with that given by the

test function conjecture (cf. Conjecture 6.1.2); then its spectral behavior is known by construction.

In that case one can formulate a conjectural endoscopic transfer hp of φr with known spectral

behavior.

General Frobenius-twisted endoscopic transfer homomorphisms Zst(GQpr ) → Zst(HQp) will be

described elsewhere. Here for simplicity we content ourselves to describe two special cases: standard

(untwisted) endoscopic transfer of the geometric Bernstein center, and the base change transfer for

the stable Bernstein center.
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6.2.1. Endoscopic transfer of the geometric Bernstein center. Let us fix an endoscopic triple (H, s, η0)

for G over a p-adic field F (cf. [Ko84a, §7]), and suppose we have fixed an extension η : LH → LG

of η0 : Ĥ ↪→ Ĝ (we suppose we are in a situation, e.g. Gder = Gsc, where such extensions always

exist). We could hope the natural map

YH/F −→ YG/F

(λ)Ĥ 7−→ (η ◦ λ)Ĝ.

would be algebraic and hence would induce an endoscopic transfer homomorphism Zst(G)→ Zst(H).

By invoking further expectations about endoscopic lifting, one would then formulate a map on the

level of Bernstein centers, Z(G)→ Z(H), which we could write as Z 7→ Z|η. But these assertions are

not obvious. Fortunately, in practice we need this construction rather on the geometric Bernstein

center.

Definition 6.2.1. Assume LLC+ holds for G/F . We define the geometric Bernstein center

Zgeom(G) to be the subalgebra of Zst(G) generated by the elements ZV as V ranges over Rep( LG).

The terminology geometric Bernstein center is motivated by §6.4 below.

Let V |η ∈ Rep( LH) denote the restriction of V ∈ Rep( LG) along η. Further assume LLC+ also

holds for H/F . Then ZV 7→ ZV |η determines a map Zgeom(G)→ Zgeom(H). Write ZGV (resp. ZHV |η )

for the image of ZV (resp. ZV |η ) in Z(G) (resp. Z(H)).

Conjecture 6.2.2. Assume LLC+ holds for both G and H. Then in the above situation the dis-

tribution ZHV |η ∈ Z(H) is the endoscopic transfer of ZGV ∈ Z(G) in the following sense: whenever a

function φH ∈ C∞c (H(F )) is a transfer of a function φ ∈ C∞c (G(F )), then ZHV |η ∗ φ
H is a transfer

of ZGV ∗ φ.

This conjecture and its Frobenius-twisted analogue were announced by the author in April 2011

at Princeton [H11]. A very similar statement subsequently appeared as Conjecture 7.2 in [SS].

Considering the untwisted case for simplicity, the difference is that in [SS], the authors take in place

of ZV an element in the stable Bernstein center essentially of the form

(λ)Ĝ 7→ tr(λ(ΦF ), V−µ),

where here the usual trace, not the semi-simple trace, is used. That conjecture is proved in [SS] in

all EL or quasi-EL cases, by invoking special features of general linear groups such as the existence

of base change representations.

Formally, Conjecture 6.2.2 contains as a special case the “fundamental lemma implies spherical

transfer” result of Hales [Hal] (see also Waldspurger [Wal97]). Indeed if K,KH are hyperspecial

maximal compact subgroups in G(F ), H(F ), then 1KH is a transfer of 1K by the fundamental

lemma, and hence ZHV |η ∗ 1KH is a transfer of ZGV ∗ 1K . But by the Satake isomorphism, every

K-spherical function on G(F ) is a C-linear combination of functions of the form ZGV ∗ 1K , for some

representations V (comp. §6.4).

Even in more general situations, Conjecture 6.2.2 is most useful when applied to a pair φ, φH of

unit elements in appropriate Hecke algebras. At least when G splits over Fun, Kazhdan-Varshavsky

proved in [KV] that for some explicit scalar c, the Iwahori unit c1IH is a transfer of the Iwahori

unit 1I . As another example, if KG
n ⊂ G(F ) is the n-th principal congruence subgroup in G(F ),

then for some explicit scalar c the function c1KH
n

is a transfer of 1KG
n

(proved by Ferrari [Fer] under
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some mild restrictions on the residue characteristic of F ), and thus c(ZHV |η ∗ 1KH
n

) should be an

explicit transfer of ZGV ∗ 1KG
n

. A Frobenius-twisted analogue of Ferrari’s theorem together with the

Frobenius-twisted analogue of Conjecture 6.2.2 would give an explicit Frobenius-twisted transfer of

the test function φr from Conjecture 6.1.1, if Kp is a principal congruence subgroup.

6.2.2. Base change of the stable Bernstein center. We return to the situation of Proposition 5.4.1,

but we specialize it to cyclic Galois extensions of F and furthermore we assume G/F is quasi-

split. Let E/F be any finite cyclic Galois subextension of F/F with Galois group 〈θ〉, and with

corresponding inclusion of Weil groups WE ↪→WF .

If φ ∈ H(G(E)) and f ∈ H(G(F )) are functions in the corresponding Hecke algebras of locally

constant compactly-supported functions, then we say φ, f are associated (or f is a base-change trans-

fer of φ), if the following result holds for the stable (twisted) orbital integrals: for every semisimple

element γ ∈ G(F ), we have

(6.2.1) SOγ(f) =
∑
δ

∆(γ, δ) SOδθ(φ)

where the sum is over stable θ-conjugacy classes δ ∈ G(E) with semisimple norm N δ, and where

∆(γ, δ) = 1 if N δ = γ and ∆(γ, δ) = 0 otherwise. See e.g. [Ko86], [Ko88], [Cl90], or [H09] for further

discussion.

Conjecture 6.2.3. In the above situation, consider Z ∈ Zst(GE), and consider its image, also

denoted by Z, in Z(GE). Consider bE/F (Z) ∈ Zst(G) (cf. Def. 5.4.2) and also denote by bE/F (Z)

its image in Z(G). Then bE/F (Z) is the base-change transfer of Z ∈ Z(GE), in the following sense:

whenever a function f ∈ C∞c (G(F )) is a base-change transfer of φ ∈ C∞c (G(E)), then bE/F (Z) ∗ f
is a base-change transfer of Z ∗ φ.

Proposition 6.2.4. Conjecture 6.2.3 holds for GLn.

Proof. The most efficient proof follows Scholze’s proof of Theorem C in [Sch2] which makes essen-

tial use of the existence of cyclic base change lifts for GLn. Let π ∈ Π(GLn/F ) be a tempered

irreducible representation with base change lift Π ∈ Π(GLn/E), a tempered representation which

is characterized by the character identity ΘΠ((g, θ)) = Θπ(Ng) for all elements g ∈ GLn(E) with

regular semisimple norm Ng ([AC, Thm. 6.2, p. 51]). Here (g, θ) ∈ GLn(E) o Gal(E/F ) and θ acts

on Π by the normalized intertwiner Iθ : Π→ Π of [AC, p. 11].

Suppose f is a base-change transfer of φ. Using the Weyl integration formula and its twisted

analogue (cf. [AC, p. 36]), we see that

tr((φ, θ) |Π) = tr(f |π).

Multiplying by the constant Z(Π) = bE/F (Z)(π), we get

tr((Z ∗ φ, θ) |Π) = tr(bE/F (Z) ∗ f |π).

(Use Corollary 3.2.1 and its twisted analogue.) There exists a base-change transfer h ∈ C∞c (GLn(F ))

of Z ∗ φ ([AC, Prop. 3.1]). Using the same argument as above for the pair Z ∗ φ and h, we conclude

that tr(bE/F (Z)∗f−h |π) = 0 for every tempered irreducible π ∈ Π(GLn/F ). By Kazhdan’s density

theorem (Theorem 1 in [Kaz]) the regular semi-simple orbital integrals of bE/F (Z) ∗ f and h agree.

Thus the (twisted) orbitals integrals of bE/F (Z)∗f and φ match at all regular semi-simple elements,

and hence at all semi-simple elements by Clozel’s Shalika germ argument ([Cl90, Prop. 7.2]). �
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Remark 6.2.5. Unconditional versions of Conjecture 6.2.3 are available for parahoric and pro-p

Iwahori-Hecke algebras, when G/F is unramified.7 See §9.

6.3. Application: local Hasse-Weil zeta functions. By Kottwitz’ base change fundamental

lemma for units [Ko86], we know 1Kp is a base-change transfer of 1Kpr whenever Kp = G(Zp) and

Kpr = G(Zpr ) for a smooth connected Zp-model G for G. Then Conjectures 6.1.1 and 6.2.3 together

say that

(6.3.1) f (j)
p := prd/2 bEj0/Qp(Z

V
Ej0
−µ,j

) ∗ 1Kp

is a base-change transfer of a test function φr that satisifies (6.1.1).

Setting

(6.3.2) (rE0
−µ, V

E0
−µ ) := Ind

ĜoWE0

ĜoWE
r−µ

we have for any admissible parameter ϕ : W ′Qp →
L(GQp) and any πp ∈ Πϕ(G/Qp) the identity

(6.3.3) tr(f (j)
p |πp) = prd/2 dim(πKpp ) trss(ϕ(Φrp) , V

E0
−µ ),

where r = j[E0 : Qp]. In the compact and non-endoscopic cases, the above discussion allows us to

express ζss
p (s, ShKp) in terms of semi-simple automorphic L-functions. To explain this we need a

detour on the point of view taken in [L1, L2] (comp. [Ko84b, §2.2]).

Recall (r−µ, V−µ) ∈ Rep( L(GE)). Consider the Langlands representation

r := Ind
ĜoWQ

ĜoWE
r−µ,

and for each prime p of E dividing p, consider

rp := Ind
ĜoWQp

ĜoWEp

ResĜoWE

ĜoWEp

r−µ = Ind
ĜoWQp

ĜoWEp

r−µ.

Mackey theory gives

Res
ĜoWQ

ĜoWQp
r =

⊕
p|p

rp.

If p is understood, let Ep0/Qp denote the maximal unramified subextension of Ep/Qp, and set

E = Ep and E0 := Ep0. Then we have

(6.3.4) rp = Ind
ĜoWQp

ĜoWE
r−µ = Ind

ĜoWQp

ĜoWE0

rE0
−µ.

Lemma 6.3.1. Suppose πp ∈ Πϕ(G/Qp). Then

(6.3.5) [E0 : Qp]−1trss(ϕ(Φrp), rp) =

trss(ϕ(Φjp), rE0
−µ) if r = j[E0 : Qp]

0, if [E0 : Qp] 6 |r

Proof. There is an isomorphism of ĜoWQp -modules

rp ∼= C[ĜoWQp ]⊗C[ĜoWE0
] r
E0
−µ,

and r
ϕ(IQp )
p has a C-basis of the form {ϕ(Φip)⊗wk} where 0 ≤ i ≤ [E0 : Qp]− 1 and {wk} comprises

a C-basis for (rE0
−µ)ϕ(IQp ). The lemma follows. �

7The pro-p Sylow subgroup of an Iwahori subgroup I ⊂ G(F ) coincides with its pro-unipotent radical I+, and it

has become conventional to term the Hecke algebra C∞c (I+\G(F )/I+) the pro-p Iwahori-Hecke algebra.
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The following result shows the potential utility of Conjectures 6.1.1 and 6.2.3. It applies not just

to PEL Shimura varieties, but to any Shimura variety where these conjectures are known. Similar

results will hold when incorporating Hecke operators away from p.

Theorem 6.3.2. Suppose Gder is anisotropic over Q, so that the associated Shimura variety ShKp =

Sh(G, h−1,KpKp) is proper over E. Suppose G has “no endoscopy”, in the sense that the group

K(Gγ0/Q) is trivial for every semisimple element γ0 ∈ G(Q), as in e.g. [Ko92b]. Let p be a prime

ideal of E dividing p. Assume (LLC+) (cf. §5.2), and Conjectures 6.1.1 and 6.2.3 hold for all groups

GQpr .

Then in the notation above, we have

(6.3.6) ζss
p (s, ShKp) =

∏
πf

Lss(s− d

2
, πp, rp)a(πf ) dim(πKf ),

where πf = πp⊗πp runs over irreducible admissible representations of G(Af ) and the integer a(πf )

is given by

a(πf ) =
∑

π∞∈Π∞

m(πf ⊗ π∞) tr(f∞|π∞),

where m(πf ⊗ π∞) is the multiplicity of πf ⊗ π∞ in L2(G(Q)AG(R)◦\G(A)). Here AG is the Q-

split component of the center of G (which we assume is also its R-split component). Further Π∞ is

the set of irreducible admissible representations of G(R) which have trivial infinitesimal and central

characters, and f∞ is defined as in [Ko92b] to be (−1)dim(ShK) times a pseudo-coefficient of an

essentially discrete series member π0
∞ ∈ Π∞.

Proof. The method follows closely the argument of Kottwitz in [Ko92b] (comp. [HRa, §13.4]), so we

just give an outline. We will use freely the notation of Kottwitz and [HRa]. Set f = [Ep0 : Qp]. By

definition we have

(6.3.7) log ζss
p (s, ShKp) =

∞∑
j=1

Lefss(Φjp, ShKp)
p−jfs

j
.

By using (6.1.1) together with Conjectures 6.1.1 and 6.2.3, the arguments of Kottwitz [Ko92b] show

that for each j ≥ 1

(6.3.8) Lefss(Φjp, ShKp) = τ(G)
∑
γ0

SOγ0(fp f (j)
p f∞),

where f
(j)
p is defined as in (6.3.1) and fp is the characteristic function of Kp ⊂ G(Apf ). Here γ0

ranges over all stable conjugacy classes in G(Q).

Since Gder is anisotropic over Q, the trace formula for any f ∈ C∞c (AG(R)◦\G(A)) takes the

simple form

(6.3.9)
∑
γ

τ(Gγ)Oγ(f) =
∑
π

m(π) tr(f |π),

where γ ranges over conjugacy classes in G(Q) and π ranges over irreducible representations in

L2(G(Q)AG(R)◦\G(A)). By [Ko92b, Lemma 4.1], the vanishing of all K(Gγ0/Q) means that∑
γ

τ(Gγ) Oγ(f) = τ(G)
∑
γ0

SOγ0(f).
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It follows that

Lefss(Φjp, ShKp) =
∑
π

m(π) tr(fpf (j)
p f∞|π)

=
∑
πf

∑
π∞∈Π∞

m(πf ⊗ π∞) · tr(fp|πpf ) · tr(f (j)
p |πp) · tr(f∞|π∞)

=
∑
πf

a(πf ) dim(πKf ) pjfd/2 trss(ϕπp(Φjp), V E0
−µ ),

the last equality by (6.3.3).

By definition we have

logLss(s, πp, rp) =

∞∑
r=1

trss(ϕπp(Φrp), rp)
p−rs

r
.

Now (6.3.6) follows by invoking (6.3.5). �

Remark 6.3.3. Unconditional versions of Theorem 6.3.2 are available for some parahoric or pro-

p-Iwahori level cases, or for certain compact “Drinfeld case” Shimura varieties with arbitrary level;

these cases are alluded to in §8.

6.4. Relation with geometric Langlands. For simplicity, assume G is split over a p-adic or local

function field F . Assume G satisfies LLC+. From the construction of ZV in Proposition 5.7.1, we

have a map

K0RepC(Ĝ)→ Z(G, J)(6.4.1)

V 7→ ZV ∗ 1J

for any compact open subgroup J ⊂ G(F ), which gives rise to a commutative diagram

Z(G, J)

−∗J1I

��
Z(G, I)

−∗I1K

��
K0Rep(Ĝ)

Sat

∼
//

Bern

∼

55

88

H(G,K)

whenever J ⊆ I ⊂ K where I resp. K is an Iwahori resp. special maximal compact subgroup, and

where the bottom two arrows are the Bernstein resp. Satake isomorphisms. We warn the reader

that the oblique arrow K0Rep(Ĝ)→ Z(G, J) is injective but not surjective in general, and also it is

additive but not an algebra homomorphism in general.

Gaitsgory [Ga] constructed the two arrows Sat and Bern geometrically when F is a function

field, using nearby cycles for a degeneration of the affine Grassmannian GrG to the affine flag

variety Fl for G. One can hope that, as in the Iwahori case [Ga], one can construct the arrow

K0Rep(Ĝ) → Z(G, J) categorically using nearby cycles for a similar degeneration of GrG to a

“partial affine flag variety”, namely an fpqc-quotient LJ/L+J where J is a smooth connected group

scheme over Fp[[t]] with generic fiber JFp((t)) = GFp((t)) and J(Fp[[t]]) = J . Here LJ (resp. L+J) is

the ind-scheme (resp. scheme) over Fp representing the sheaf of groups for the fpqc-topology whose

sections for an Fp-algebra R are given by LJ(SpecR) = J(R[[t]][ 1
t ]) (resp. L+J(SpecR) = J(R[[t]])).
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At least for J = I+, the pro-p Iwahori subgroup, this will be realized in forthcoming joint work of

the author and Benoit Stroh.

In a related vein, the geometric Satake equivalence of Mirkovic-Vilonen [MV] is a categorical

version of the Satake isomorphism Sat, and this is usually stated when G is a split group over

F = Fp((t)). One can ask for a version of this when G is nonsplit, possibly not even quasisplit, over

such a field F . The correct Satake isomorphism to “categorify” appears to be the one described in

[HRo]. In many cases where G is quasisplit and split over a tamely ramified extension of F , this has

been carried out in recent work of X. Zhu [Zhu].

7. Test functions in the parahoric case

We fix r = j[E0 : Qp] for some j ∈ N. We assume Kp is a parahoric subgroup of G(Qp), and we

let Kpr denote the corresponding parahoric subgroup of G(Qpr ). Assuming LLC+ holds for GQpr ,

we can speak of the test function

(7.0.2) φr = prd/2
(
Z
V
Ej0
−µ,j
∗ 1Kpr

)
∈ Z(G(Qpr ),Kpr ).

We wish to give a more concrete description of this function, making use of Bernstein’s isomorphism

for Z(G(Qpr ),Kpr ) which is detailed in the Appendix, §11.

In the next two subsections, we are concerned with the case where GQpr is quasisplit. We write

F := Qpr . Choose a maximal F -split torus A in G, and let T denote its centralizer in G. Fix

an F -rational Borel subgroup B containing T . Let KF ⊂ G(F ) denote the parahoric subgroup

corresponding to Kp.

By Kottwitz [Ko84b, Lem. (1.1.3)], the G(Qp)-conjugacy class {µ} is represented by an F -rational

cocharacter µ ∈ X∗(T )ΦF = X∗(A). It is clear that E, the field of definition of {µ}, is contained in

any subfield of Qp which splits G.

Given π ∈ Π(G/F ) with πKF 6= 0, to understand (7.0.2) we need to compute the scalar

(7.0.3) tr(ϕπ(ΦF ), (V E0
−µ )ϕπ(IF )).

There is an unramified character χ of T (F ) such that π is a subquotient of iGB(χ), and we may

assume ϕπ|WF
= ϕχ|WF

. Since χ is unramified, ϕχ(IF ) = 1 o IF ⊂ T̂ oWF . Regarding χ as an

element of T̂ , (4.0.4) implies that we may write ϕχ(ΦF ) = χ o ΦF ∈ T̂ oWF . Then we need to

compute

(7.0.4) tr(χo ΦF , (V E0
−µ )1oIF ).

7.1. Unramified groups and the Kottwitz conjecture. Let us consider the case where GQpr

is unramified. Since we are assuming G splits over an unramified extension of Qp, it follows that

E/Qp is unramified, i.e. E = E0 and V E0
−µ = V−µ. Moreover F = Ej0 contains E with degree j.

Further, since G splits over F un, we have V 1oIF
−µ = V−µ. So we are reduced to computing

tr(χoΦF , V−µ). Exactly as in Kottwitz’ calculation of the Satake transform in [Ko84b, p. 295], we

see that (7.0.3) is

(7.1.1) tr(χo ΦF , V−µ) =
∑

λ∈W (F )·µ

(−λ)(χ).

Here W (F ) = W (G,A) is the relative Weyl group for G/F , and we view λ ∈ X∗(A) = X∗(T )ΦF as

a character on T̂ . This proves the following result.
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Lemma 7.1.1. In the above situation,

(7.1.2) Z
V
Ej0
−µ,j
∗ 1Kpr = z−µ,j ,

where the Bernstein function z−µ,j (cf. Definition 11.10.2) is the unique element of Z(G(F ),KF )

which acts (on the left) on the normalized induced representation iGB(χ)KF by the scalar
∑
λ∈W (F )·µ(−λ)(χ),

for any unramified character χ : T (F )→ C×.

Of course the advantage of z−µ,j is that unlike the left hand side of (7.1.2), it is defined uncon-

ditionally. A relatively self-contained, elementary, and efficient approach to Bernstein functions is

given in §11.

Thus Conjecture 6.1.1 in this situation is equivalent to the Kottwitz Conjecture.

Conjecture 7.1.2. (Kottwitz conjecture) In the situation where GQpr is unramified and Kp is a

parahoric subgroup, the function φr in (6.1.1) may be taken to be prd/2z−µ,j.

Conjecture 7.1.2 was formulated by Kottwitz in 1998, about 11 years earlier than Conjecture 6.1.1.

There is a closely related conjecture of Kottwitz concerning nearby cycles on Rapoport-Zink local

models Mloc
Kp

for ShKp . We refer to [RZ, Ra05] for definitions of local models, and to [H05, HN02a]

for further details about the following conjecture in various special cases.

Conjecture 7.1.3. (Kottwitz Conjecture for Nearby Cycles) Write G for the Bruhat-Tits parahoric

group scheme over Zpr with generic fiber GQpr and with G(Zpr ) = Kpr . Let Gt denote the analogous

parahoric group scheme over Fpr [[t]] with the “same” special fiber as G. Then there is an L+Gt,Fpr -

equivariant embedding of Mloc
Kp,Fpr into the affine flag variety LGt,Fpr /L+Gt,Fpr , via which we can

identify the semisimple trace of Frobenius function x 7→ trss(Frpr , RΨ
Mloc
Kp

x ) on x ∈ Mloc
Kp

(Fpr ) with

the function pdr/2z−µ,j ∈ Z(Gt(Fpr ((t))) , Gt(Fpr [[t]])).

7.2. The quasisplit case. The group ĜIF is a possibly disconnected reductive group, with maximal

torus (T̂ IF )◦ (see the proof of Theorem 8.2 of [St]). Now we may restrict the representation V E0
−µ to

the subgroup ĜIF oWF ⊂ ĜoWF . Let χ be a weakly unramified character of T (F ); by (3.3.2) we

can view χ ∈ (T̂ IF )ΦF . The only T̂ IF -weight spaces of (V E0
−µ )1oIF which contribute to (7.0.4) are

indexed by the ΦF -fixed weights, i.e. by those in X∗(T̂ IF )ΦF . (It is important to note that it is the

weight spaces for the diagonalizable group T̂ IF , and not for the maximal torus (T̂ IF )◦, which come

in here.) This is consistent with Theorem 11.10.1 of the Appendix, and may be expressed as follows.

Proposition 7.2.1. In the general quasisplit situation, Z
V
Ej0
−µ,j
∗ 1Kpr is the unique function in

Z(G(Qpr ),Kpr ) which acts on the left on each weakly unramified principal series representation

iGB(χ)KF by the scalar (7.0.4), and thus is a certain linear combination of Bernstein functions z−λ,j

where −λ ∈ X∗(T̂ IF )ΦF ranges over the W (G,A)-orbits of ΦF -fixed T̂ IF -weights in V E0
−µ .

It is an interesting exercise to write out the linear combinations of Bernstein functions explicitly

in each given case. Once this is done, the result can be used to find explicit descriptions of test

functions for inner forms of quasi-split groups. This is the subject of the next subsection.

7.3. Passing from quasisplit to general cases via transfer homomorphisms.
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7.3.1. Test function conjecture via transfer homomorphisms. We use freely the notation and set-

up explained in the Appendix §11.12. Let G∗ be a quasi-split F -group with an inner twisting

ψ : G→ G∗. Let J∗ ⊂ G∗(F ) resp. J ⊂ G(F ) be parahoric subgroups and consider the normalized

transfer homomorphism t̃ : Z(G∗(F ), J∗)→ Z(G(F ), J) from Definition 11.12.5.

The following conjecture indicates that test functions for the quasisplit group G∗ should determine

test functions for G. This is compatible with the global considerations which led to Theorem 6.3.2.

Conjecture 7.3.1. Let Kpr resp. K∗pr be parahoric subgroups of G(Qpr ) resp. G∗(Qpr ), with

corresponding normalized transfer homomorphism t̃ : Z(G∗(Qpr ),K∗pr ) → Z(G(Qpr ),Kpr ). If

φ∗r ∈ Z(G∗(Qpr ),K∗pr ) is the function prd/2(ZG
∗

V
Ej0
−µ,j

∗ 1K∗
pr

) described in Proposition 7.2.1 for the

data (G∗Qpr , {−µ},K
∗
pr ), then φr := t̃(φ∗r) ∈ Z(G(Qpr ),Kpr ) is a test function satisfying (6.1.1) for

the original data (GQpr , {−µ},Kpr ).

Assuming Conjecture 6.1.1 holds, another way to formulate this is that the normalized transfer

homomorphism t̃ takes the function ZG
∗

V
Ej0
−µ,j

∗1K∗
pr
∈ Z(G∗(Qpr ),K∗pr ) to the function ZG

V
Ej0
−µ,j

∗1Kpr ∈

Z(G(Qpr ),Kpr ). But the point of Conjecture 7.3.1 is to provide an explicit test function for the

non-quasisplit data (GQpr , {−µ},Kpr ) which can be compared with direct geometric calculations of

the nearby cycles attached to this data, and thus to provide a method to prove an unconditional

analogue of Conjecture 6.1.1 for such data. This is illustrated in §7.3.3 below.

The next two paragraphs show that Conjecture 7.3.1 is indeed reasonable.

7.3.2. A calculation for GL2. Take G∗ = GL2,F and G = D×, where D is the central simple division

algebra over F of dimension 4.

Here we will explicitly calculate and compare the test functions associated to (GL2,F , {−µ}, IF )

and (D×, {−µ},O×D), where µ = (1, 0), and where IF ⊂ GL2(F ) and O×D ⊂ D× are the standard

Iwahori subgroups. This calculation will show that the normalized transfer homomorphism takes

one test function to the other. This is required in order for both Conjectures 6.1.1 and 7.3.1 to hold

true.

Write z∗−µ = ZGL2

V−µ
∗ 1IF ∈ Z(GL2(F ), IF ) and z−µ = ZD

×

V−µ
∗ 1O×D

∈ H(D×,O×D) ∼= C[Z]. The

last isomorphism is induced by the Kottwitz homomorphism, which in this case is the normalized

valuation valF ◦ NrdD : D× � Z, where valF is the normalized valuation for F and NrdD : D → F

is the reduced norm.

Write µ̄ = (0, 1) and let B∗ denote the Borel subgroup of lower triangular matrices in GL2. Then

z∗−µ acts on the left on iGL2

B∗ (χ)IF by the scalar

tr(χo ΦF , V−µ) = (−µ− µ̄)(χ),

for any unramified character χ ∈ Hom(T ∗(F )/T ∗(F )1,C×). We may view χ as a diagonal 2 × 2

complex matrix χ = diag(χ1, χ2).

To calculate z−µ we need a few preliminary remarks. First we parametrize unramified characters

η ∈ Hom(D×/O×D,C×) by writing η = η0 ◦ NrdD, where η0 ∈ C× is viewed as the unramified

character on F× which sends $F 7→ η0. The map NrdD : D× → F× is Langlands dual to the

diagonal embedding Gm(C) → GL2(C), and it follows that the cocycles zη and zη0 attached by
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Langlands duality to the quasicharacters η and η0 satisfy

zη =

[
zη0 0

0 zη0

]
, and thus, zη(ΦF ) =

[
η0 0

0 η0

]
.

On the other hand, if 1 denotes the trivial 1-dimensional representation of D×, then its Langlands

parameter ϕD
×

1 satisfies ϕD
×

1 (ΦF ) = diag(q−1/2, q1/2) (see, e.g., [PrRa, Thm. 4.4]). So using (4.0.5),

we obtain

tr(ϕD
×

η (ΦF ), V−µ) = tr
([η0q

−1/2 0

0 η0q
1/2

]
, V−µ

)
= (δ

−1/2
B∗ ($−µ) · −µ|Ẑ + δ

−1/2
B∗ ($−µ̄) · −µ̄|Ẑ)

([η0 0

0 η0

])
.

Here Ẑ is the center of Ĝ∗. Using the definition of t̃ we deduce the following result.

Proposition 7.3.2. The normalized transfer homomorphism t̃ : Z(GL2(F ), IF ) → H(D×,O×D)

sends z∗−µ to z−µ.

7.3.3. Compatibility with nearby cycles in some anisotropic cases. Suppose we are in a situation

where E = Qp. As before, write F = Qpr . Suppose GF = (D ⊗ F )× × Gm, where D is a central

division algebra over E of degree n2, for n > 2. This situation arises in the setting of “fake unitary”

simple Shimura varieties (see, e.g. [H01, §5]). Let G∗ = GLn ×Gm, a split inner form of G over Qp.
Suppose that V−µ = ∧m(Cn) for 0 < m < n, i.e. the representation of Ĝ∗ = GLn(C)×C× where

the first factor acts via the irreducible representation with highest weight (1m, 0n−m) and the second

factor acts via scalars.

Consider the local models M∗loc = Mloc(G∗, {−µ},K∗p ) and Mloc = Mloc(G, {−µ},Kp), where

K∗p ⊂ G∗(F ) and Kp ⊂ G(F ) are Iwahori subgroups. We can choose the inner twist G → G∗ and

the subgroups K∗p and Kp so that

M∗loc(Fp) = Mloc(Fp)

and where the action of geometric Frobenius Φp on the right hand side is given by Φp = Ad(cΦp) ·Φ∗p
where Φ∗p is the usual Frobenius action (on the left hand side) and where τ 7→ Ad(cτ ) represents the

class in H1(Qp,PGLn) corresponding to the inner twist G→ G∗.

Assume (r, n) = 1 and set q = pr. Then Mloc(G, {−µ},Kp)(Fq) consists of a single point. To

understand the corresponding test function we may ignore the Gm-factor and pretend that G = D×

and G∗ = GLn. Then the Kottwitz homomorphism κG : G(F )→ Z induces an isomorphism

H(G(Qpr ),Kpr ) ∼= C[Z].

The test function for the Shimura variety giving rise to the local Shimura data (G, {−µ},Kp) should

be calculated by understanding the function trace of Frobenius on nearby cycles on Mloc, similarly

to Conjecture 7.1.3 in the unramified case. The test function should be of the form Cq ·1m ∈ C[Z] =

H(G(Qp),Kpr ) for some scalar Cq.

Proposition 7.3.3. In the above situation, Conjecture 7.3.1 predicts that the coefficient Cq is given

by Cq = #Gr(m,n)(Fq), the number of Fq-rational points on the Grassmannian variety Gr(m,n)

parametrizing m-planes in n-space.
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This is compatible with calculations of Rapoport of the trace of Frobenius on nearby cycles of

the local models for such situations, see [Ra90]. Thus the normalized transfer homomorphism gives

a group-theoretic framework with which we could make further predictions about nearby cycles on

the local models attached to non-quasiplit groups G, assuming we know explicitly the corresponding

test function for a quasisplit inner form of G.

Proof. By the final sentence of Proposition 11.12.6, we simply need to integrate the function prd/2z∗−µ ∈
Z(GLn(Qpr ),K∗pr ) over the fiber of the Kottwitz homomorphism val ◦ det over 1m ∈ C[Z]. This is

a combinatorial problem which could be solved since we know prd/2z∗−µ explicitly. However, it is

easier to use geometry. Translating “integration over the fiber of the Kottwitz homomorphism” in

terms of local models gives us the equality

Cq =
∑

x∈M∗loc(Fq)

Tr(Φrp, RΨM∗loc(Q`)x).

(Here ` is a rational prime with ` 6= p.) But the special fiber of M∗loc embeds into the affine flag

variety FlGLn for GLn/Fp, and under the projection p : FlGLn → GrGLn to the affine Grassmannian,

M∗loc maps onto Gr(m,n) and Rp∗(RΨM∗loc(Q`)) = Q`, the constant `-adic sheaf on Gr(m,n) in

degree 0. Thus we obtain

Cq =
∑

x∈Gr(m,n)(Fq)

Tr(Φrp, (Q`)x) = #Gr(m,n)(Fq)

as desired. (The reader should note the similarity with Prop. 3.17 in [Ra90], which is justified in a

slightly different way.) �

8. Overview of evidence for the test function conjecture

8.1. Good reduction cases. In case GQp is unramified and Kp is a hyperspecial maximal compact

subgroup of G(Qp), we expect Sh(G, h−1,KpKp) to have good reduction over OEp
. In PEL cases

this was proved by Kottwitz [Ko92a]. In the same paper for PEL cases of type A or C, it is proved

that the function φr = 1Kprµ(p−1)Kpr satisfies (6.1.1), which can be viewed as verifying Conjecture

6.1.1 for these cases.

8.2. Parahoric cases. Assume Kp is a parahoric subgroup. We will discuss only PEL Shimura

varieties.

Here the approach is via the Rapoport-Zink local model Mloc
Kp

for a suitable integral modelMKp

for ShKp and the main ideas are due to Rapoport. We refer to the survey articles [Ra90], [Ra05], and

[H05] for more about how local models fit in with the Langlands-Kottwitz approach. For much more

about the geometry of local models, we refer the reader to the survey article of Pappas-Rapoport-

Smithing [PRS] and the references therein.

Using local models, the first step to proving Conjecture 6.1.2 is to prove Conjecture 7.1.3. The

first evidence was purely computational: in [H01], z−µ,j was computed explicitly in the Drinfeld

case and the result was compared with Rapoport’s computation of the nearby cycles in that setting,

proving Conjecture 7.1.3 directly. This result motivated Kottwitz’ more general conjecture and also

inspired Beilinson and Gaitsgory to construct the center of an affine Hecke algebra via a nearby

cycles construction, a feat carried out in [Ga]. Then in [HN02a] Gaitsgory’s method was adapted to

prove Conjecture 7.1.3 for the split groups GLn and GSp2n. This in turn was used to demonstrate
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Conjecture 7.1.2 for certain special Shimura varieties in [H05], and then to prove the analogue of

Theorem 6.3.2 for those special Shimura varieties with parahoric level structure at p. The harmonic

analysis ingredient needed for the latter was provided by [H09].

In his 2011 PhD thesis, Sean Rostami proved Conjecture 7.1.3 when G is an unramified unitary

group. In a recent breakthrough, Pappas and Zhu defined group-theoretic local models Mloc
Kp

when-

ever G splits over a tamely ramified extension, and for unramified groups G proved Conjecture 7.1.3,

see [PZ], esp. Theorem 10.16.

8.3. Deeper level cases. We again limit our discussion to PEL situations, where progress to date

has occurred.

It is again natural to study directly the nearby cycles relative to a suitable integral model for

the Shimura variety and hope that it gives rise to a test distribution in the Bernstein center. For

Shimura varieties in the “Drinfeld case” withKp a pro-p Iwahori subgroup of G(Qp) = GLn(Qp)×Q×p
(“Γ1(p)-level structure at p”), one may use Oort-Tate theory to define suitable integral models and

prove Conjectures 6.1.2 and 6.1.1 for them. This was done by the author and Rapoport [HRa] (and

[H12] provided the harmonic analysis ingredient needed to go further and prove Theorem 6.3.2 in

this case).

Around the same time as [HRa], Scholze studied in [Sch1] nearby cycles on suitable integral

models for the modular curves with arbitrarily deep full level structure at p. In this way he proved

Conjectures 6.1.2 and 6.1.1 in these cases, taking the compactifications also into account, and thereby

proved the analogue of Theorem 6.3.2 for the compactified modular curves at nearly all primes of

bad reduction. The nearby cycles on his integral models naturally gave rise to some remarkable

distributions in the Bernstein center, for which he gave explicit formulae (see §10).

Then in [Sch2] Scholze generalized the approach of [Sch1] to compact Shimura varieties in the

Drinfeld case, again finding an explicit description of nearby cycles. In this case, he was still able to

produce a test function to plug into (6.1.1), or rather, simultaneously incorporating the base-change

transfer results he needed in precisely this case, he found a test function that goes directly into the

pseudostabilization of (6.1.1). This allowed him to prove Theorem 6.3.2. In contrast to the modular

curve situation, in higher rank the nearby cycles on Scholze’s integral models do not directly produce

distributions in the Bernstein center, and an explicit description of his test functions seems hopeless.

But nevertheless Scholze was able to prove by indirect means Conjecture 6.1.1 in this case.

The description of the nearby cycles in [Sch2] provided one ingredient for Scholze’s subsequent

paper [Sch3] which gave a new and streamlined proof of the local Langlands conjecture for general

linear groups.

In later work Scholze [Sch4] formalized his method of producing test functions in many cases,

using deformation spaces of p-divisible groups, and this is used to give a nearly complete description

of the cohomology groups of many compact unitary Shimura varieties in his joint work [SS] with

S.W. Shin; their main assumption at p is that GQp is a product of Weil restrictions of general

linear groups. The advantage of what we could call the Langlands-Kottwitz-Scholze approach in

this situation is that it yields in [SS] a new construction of the Galois representations constructed

earlier by Shin [Sh], in a shorter way that avoids Igusa varieties.

In these later developments, Conjecture 6.1.1 does not play a central part, but the stable Bernstein

center does nevertheless still play a clarifying role in the pseudostabilization process (e.g. in [SS]).

It seems that only certain integral models, such as those we see in many parahoric or pro-p Iwahori
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level cases, have the favorable property that their nearby cycles naturally give rise to distributions in

the Bernstein center. It remains an interesting problem to find such integral models in more cases,

and to better understand the role of the Bernstein center in the study of Shimura varieties.

9. Evidence for conjectures on transfer of the Bernstein center

Here we present some evidence for the general principle that the (stable/geometric) Bernstein cen-

ter is particularly well-behaved with respect to (twisted) endoscopic transfer. The primary evidence

thus far consists of some unconditional analogues of Conjecture 6.2.3.

Let G/F be an unramified group, and let Fr/F be the degree r unramified extension of F in some

algebraic closure of F . In [H09, H12], the author defined base change homomorphisms

br : Z(G(Fr), Jr)→ Z(G(F ), J),

where J ⊂ G(F ) is either a parahoric subgroup or a pro-p Iwahori subgroup, and where Jr is the

corresponding subgroup of G(Fr). Then we have “base-change fundamental lemmas” of the following

form.8

Theorem 9.0.1. For any φr ∈ Z(G(Fr), Jr), the function br(φr) is a base-change transfer of φr in

the sense of (6.2.1).

By Kottwitz [Ko86], the function 1J is a base-change transfer of 1Jr . Hence for any Vr ∈
Rep( L(GFr )), Conjecture 6.2.3 predicts that bFr/F (ZVr ) ∗ 1J is a base-change transfer of ZVr ∗ 1Jr .

This is a consequence of Theorem 9.0.1, because of the following compatibility between the base-

change operations in [H09, H12] and in the context of stable Bernstein centers (cf. Prop. 5.4.1).

Lemma 9.0.2. In the above situations, br(ZVr ∗ 1Jr ) = bFr/F (ZVr ) ∗ 1J .

Proof. First assume J is a parahoric subgroup. Let χ be any unramified character of T (F ). It

is enough to show that the two functions act on the left by the same scalar on every unramified

principal series representation iGB(χ)J .

Let Nr : T (Fr)→ T (F ) be the norm homomorphism. By the definition of br in [H09], br(ZVr ∗1Jr )
acts by the scalar by which ZVr ∗ 1Jr acts on iGrBr (χ ◦Nr)Jr . This is the scalar by which ZVr acts on

iGrBr (χ ◦Nr), which in view of LLC+ is

(9.0.1) trss(ϕTrχ◦Nr (Φ
r
F ), Vr) = trss(ϕTχ (ΦrF ), Vr).

But the right hand side is the scalar by which bFr/F (ZVr ) ∗ 1J acts on iGB(χ)J .

The equality ϕTrχ◦Nr (Φ
r
F ) = ϕTχ (ΦrF ) we used in (9.0.1) follows from the commutativity of the

diagram of Langlands dualities for tori

Homconts(T (F ),C×) //

Nr

��

H1
conts(WF ,

LT )

Res

��
Homconts(T (Fr),C×) // H1

conts(WFr ,
LTr)

which was proved in [KV, Lemma 8.1.3].

8Relating to pro-p Iwahori level, a much stronger result is proved in [H12] concerning the base change transfer of

Bernstein centers of Bernstein blocks for depth-zero principal series representations.
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Now suppose J = I+ is a pro-p Iwahori subgroup. Then the same argument works given the

following fact: for any depth-zero character χ : T (F )1 → C× and any extension of it to a character

χ̃ on T (F ), and any zr ∈ Z(G(Fr), I
+
r ), the function br(zr) acts on iGB(χ̃)I

+

by the scalar by which

zr acts on iGrBr (χ̃ ◦Nr)I
+
r . This follows from the definition of br given in Definition 10.0.3 of [H12],

using [H12, Lemma 4.2.1]. �

Let us also mention again Scholze’s Theorem C in [Sch2], which essentially proves Conjecture

6.2.3 for GLn (see Proposition 6.2.4).

10. Explicit computation of the test functions

10.1. Parahoric cases. Conjecture 6.1.1 implies that test functions are compatible with change of

level. Therefore for the purposes of computing them for parahoric level, the key case is where Kp is an

Iwahori subgroup. Thus, for the rest of this subsection we consider only Iwahori level structure. Since

test functions attached to quasisplit groups should determine, in a computable way, those for inner

forms (by Conjecture 7.3.1 and Proposition 11.12.6), it is enough to understand quasisplit groups.

Via Proposition 7.2.1 this boils down to giving explicit descriptions of the Bernstein functions z−λ,j ,

assuming we have already expressed the test function explicitly in term of these – this is automatic

for unramified groups using the Kottwitz Conjecture (Conjecture 7.1.2).

Let us therefore consider the problem of explicitly computing Bernstein functions zµ attached

to any group G/F and an Iwahori subgroup I ⊂ G(F ) (F being any local non-archimedean field).

For simplicity consider the case where G/F is unramified, and regard µ as a dominant coweight in

X∗(A). The µ which arise in Conjecture 7.1.2 are minuscule; however, we consider µ which are not

necessarily minuscule here. Let W̃ denote the extended affine Weyl group of G over F (cf. §11).

Attached to µ is an the µ-admissible set Adm(µ) ⊂ W̃ , defined by

Adm(µ) = {x ∈ W̃ | x ≤ tλ, for some λ ∈W (G,A) · µ},

where ≤ denotes the Bruhat order on W̃ determined by the Iwahori subgroup I and where tλ denotes

the translation element in W̃ corresponding to λ ∈ X∗(A). The µ-admissible set has been studied

for its relation to the stratification by Iwahori-orbits in the local model Mloc
Kp

; for much information

see [KR], [HN02b], [Ra05]. The strongest combinatorial results relating local models and Adm(µ)

are due to Brian Smithling, see e.g. [Sm1, Sm2, Sm3].

For our purposes, the set Adm(µ) enters because it is the set indexing the double cosets in the

support of zµ.

Proposition 10.1.1. The support of zµ is the union
⋃
x∈Adm(µ) IxI.

Proof. This was proved using the theory of alcove walks as elaborated by Görtz [G], in the Appendix

to [HRa]. It applies to affine Hecke algebras with arbitrary parameters, hence the corresponding

result holds for arbitrary groups, not just unramified groups. �

The following explicit formula was proved in [H01] and in [HP]. Let Tx = 1IxI for x ∈ W̃ . In the

formulas here and below, q = pr is the cardinality of the residue field of F .

Proposition 10.1.2. Assume µ is minuscule. Assume the parameters for the Iwahori Hecke algebra

are all equal. Then

q`(tµ)/2zµ = (−1)`(tµ)
∑

x∈Adm(µ)

(−1)`(x)Rx,tλ(x)(q)Tx,
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where x decomposes as x = tλ(x)w ∈ X∗(A) oW = W̃ and where Rx,y(q) denotes the R-polynomial

of Kazhdan-Lusztig [KL], and ` the length function, for the quasi-Coxeter group W̃ . A similar

formula holds in the context of affine Hecke algebras with arbitrary parameters. In the Drinfeld case

G = GLn and µ = (1, 0n−1), the coefficient of Tx is (1− q)`(tµ)−`(x).

There are also explicit formulas for Bernstein functions zµ when µ is not minuscule, but they

tend to be much more complicated. For related computations see [HP] and [GH].

10.2. A Pro-p Iwahori level case. In the Drinfeld case where GQp = GLn × Gm and µ =

(1, 0n−1) × 1, and where Kp is a pro-p Iwahori subgroup, an explicit formula for the test function

φr for Sh(G, h−1,KpKp) was found by the author and Rapoport. We shall rephrase this slightly

by ignoring the Gm factor and giving the formula for G = GLn.

Proposition 10.2.1. ([HRa, Prop. 12.2.1]) Let q = pr. Let I+
r denote the standard pro-p Iwahori

subgroup of Gr := GLn(Qpr ). Let T denote the standard diagonal torus in GLn. In terms of natural

embeddings T (Fq) ↪→ Gr, and w ∈ W̃ ↪→ Gr giving elements tw−1 ∈ Gr representing I+
r \Gr/I+

r , we

have

(10.2.1) φr(I
+
r tw

−1 I+
r ) =


0, if w /∈ Adm(µ)

0, if w ∈ Adm(µ) but Nr(t) /∈ TS(w)(Fp)

(−1)n (p− 1)n−|S(w)| (1− q)|S(w)|−n−1, otherwise.

Here S(w) is the set of critical indices for w, equivalently S(w) is the set of standard basis vectors

ej ∈ Zn such that w ≤ tej in the Bruhat order on W̃ determined by the standard Iwahori subgroup

of GLn.

10.3. Deeper level structures. Here the known explicit descriptions pertain only to G = GL2

and first were proved by Scholze [Sch1]. It remains an interesting question whether one can find

explicit descriptions of test functions in higher rank groups with arbitrary level structure: even the

Drinfeld case G = GLn, µ = (1, 0n−1) looks difficult, cf. [Sch2].

To state Scholze’s result, we need some notation. As usual let F be a nonarchimedean local

field with ring of integers O, uniformizer $, and residue field cardinality q. Let B denote the O-

subalgebra M2(O) of M2(F ). For any j ∈ Z set Bj = $jB. Let K = B×, the standard maximal

compact subgroup of G = GL2(F ). For n ≥ 1, let Kn = 1 + Bn; so Kn is a principal congruence

subgroup and is a normal subgroup of K.

Scholze defines a (compatible) family of functions φn ∈ H(G,Kn) for n ≥ 1. His definition uses

two functions, ` : G→ Z ∪ {∞} and k : G→ Z. Let `(g) = val ◦ det(1− g). Let k(g) be the unique

integer k such that g ∈ Bk and g /∈ Bk+1. By definition φn is 0 unless val ◦ det(g) = 1, tr(g) ∈ O,

and g ∈ B1−n. Assume these conditions, in which case one can check that 1 − n ≤ k(g) ≤ 0 and

`(g) ≥ 0. Now define

φn(g) :=


−1− q, if tr(g) ∈ $O,
1− q2`(g), if tr(g) ∈ O× and `(g) < n+ k(g),

1 + q2(n+k(g))−1, if tr(g) ∈ O× and `(g) ≥ n+ k(g).

Proposition 10.3.1. (Scholze [Sch1]) For each n ≥ 1, the function zn := q−1
[K:Kn] · φn belongs

to the center Z(GL2(F ),Kn), and the family (zn)n is compatible with change of level and thus
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defines a distribution in the sense of (3.2.1). This distribution is q1/2ZV where V is the standard

representation C2 of the Langlands dual group GL2(C).

In an unpublished work, Kottwitz gave another proof of this proposition and also described the

same distribution in terms of a family (Φn)n of functions Φn ∈ Z(GL2(F ), In) where In ranges over

the “barycentric” Moy-Prasad filtration in the standard Iwahori subgroup I ⊂ GL2(F ).

By a completely different technique, in [Var] Sandeep Varma extended both the results of Scholze

and Kottwitz stated above, by describing the distributions attached to V = Symr(C2) where r is

any odd natural number less than p, the residual characteristic of F .

11. Appendix: Bernstein isomorphisms via types

11.1. Statement of Purpose. Alan Roche proved the following beautiful result in [Roc], Theorem

1.10.3.1.

Theorem 11.1.1 (Roche). Let e be an idempotent in the Hecke algebra H = H(G(F )). View H
as a smooth G(F )-module via the left regular representation, and write e =

∑
s∈S es according to

the Bernstein decomposition H =
⊕

s∈SHs. Let Se = {s ∈ S | es 6= 0}, and consider the category

RSe(G(F )) =
∏

s∈Se Rs(G(F )) and its categorical center ZSe =
∏

s∈Se Zs. Let Z(eHe) denote the

center of the algebra eHe.
Then the map z 7→ z(e) defines an algebra isomorphism ZSe →̃ Z(eHe).

Roche’s proof is decidedly non-elementary: besides the material developed in [Roc], it relies

on some deep results of Bernstein cited there, most importantly Bernstein’s Second Adjointness

Theorem and the construction of an explicit progenerator for each Bernstein block Rs(G(F )).

In this chapter we use only the very special case of Roche’s theorem where e = eJ for a parahoric

subgroup J ⊂ G(F ). We will explain a more elementary approach to this special case. It will

rely only on the part of Bernstein’s theory embodied in Proposition 11.7.3 below. Formally, the

inputs needed are, first, the existence of Bernstein’s categorical decomposition R(G) =
∏

s Rs(G),

which is proved for instance in [Roc, Thm. 1.7.3.1] in an elementary way, and, second, the internal

structure of the Bernstein block Rs(G) associated to a cuspidal pair s = [(M(F ), χ̃]G where M is a

minimal F -Levi subgroup of G and χ̃ is a character on M(F ) which is trivial on its unique parahoric

subgroup. For such components, progenerators can be constructed in an elementary way, without

using Bernstein’s Second Adjointness Theorem. In fact in what follows we describe this internal

structure using a few straightforward elements of the theory of Bushnell-Kutzko types, all of which

are contained in [BK].

For e = eJ Roche’s theorem gives the identification of the center of the parahoric Hecke algebra,

in other words a Bernstein isomorphism for the most general case, where G/F is arbitrary and

J ⊂ G(F ) is an arbitrary parahoric subgroup. However we will provide a proof only for the crucial

case of J = I, an Iwahori subgroup of G(F ). The general parahoric case should follow formally

from the Iwahori case, following the method of Theorem 3.1.1 of [H09], provided one is willing to

rely on some basic properties of intertwiners for principal series representations (a purely algebraic

theory of such intertwiners was detailed for split resp. unramified groups in [HKP] resp. [H07], and

the extension to arbitrary groups should be similar to [H07]).
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The Iwahori case is approached in a different way by S. Rostami [Ro]. Rostami’s proof yields more

information, describing the Iwahori-Matsumoto and Bernstein presentations for the Iwahori-Hecke

algebra and deducing the description of its center from its Bernstein presentation.

11.2. Some notation. The notation will largely come from [HRo]. Recall L = F̂ un and let

σ ∈ Aut(L/F ) the Frobenius automorphism, which has fixed field F . We use the symbol ΛG as an ab-

breviation for X∗(Z(Ĝ))σIF . Moreover, if S denotes a maximal L-split torus in G which is defined over

F , with centralizer T = CentG(S), then ΩG will denote the subgroup of W̃ un = NG(S)(L)/T (L)1,

the extended affine Weyl group for G/L, which preserves the alcove a in the apartment S corre-

sponding to S, in the building B(G,L) of G over L.

As always, we let I be the Iwahori subgroup I = G◦\a (OF ), which we recall we have chosen to be

in good position relative to A: the corresponding alcove aσ ⊂ B(G,F ) is required to belong in the

apartment A corresponding to A.

Let vF ∈ aσ be a special vertex with corresponding special maximal parahoric subgroup K =

G◦\vF (OF ). Thus K ⊃ I.

Recall M is a minimal F -Levi subgroup of G. Further, if I is an Iwahori subgroup of G(F ), then

IM := M(F ) ∩ I = M(F )1 is the corresponding Iwahori subgroup of M(F ) (cf. [HRo, Lem. 4.1.1]).

Use the symbol 1 to denote the trivial 1-dimensional representation of any group.

11.3. Preliminary structure theory results. Several of the results discussed here were proved

independently by S. Rostami and will appear with somewhat different proofs in [Ro].

11.3.1. Iwahori-Weyl group over F . The following lemma concerns variations on well-known results,

and were first proved by Timo Richarz [Ri].

Let G1 denote the subgroup of G(F ) generated by all parahoric subgroups of G(F ). By [HRa1,

Lem. 17] and [Ri], we have G1 = G(F )1. Let N1 = NG(A)(F ) ∩ G1, and let S denote the set of

reflections through the walls of a. Then by [BT2, Prop. 5.2.12], the quadruple (G1, I,N1,S) is a

(double) Tits system with affine Weyl group Waff = N1/I ∩ N1, and the inclusion G1 → G(F ) is

BN -adapted9 of connected type.

Lemma 11.3.1 (T. Richarz [Ri]). (a) Let M1 = M(F )1. Define the Iwahori-Weyl group as

W̃ := NG(A)(F )/M1. Then there is an isomorphism W̃ = Waff o ΛG, which is canonical

given the choice of base alcove a. This gives W̃ the structure of a quasi-Coxeter group.

(b) If S ⊂ G is a maximal L-split torus which is F -rational and contains A, and if we set T :=

CentG(S) and W̃ un := NG(S)(L)/T (L)1, then the natural map NG(S)(L)σ → NG(A)(F )

induces an isomorphism (W̃ un)σ →̃ W̃ .

Thus, in light of (b) we may reformulate the Bruhat-Tits decomposition of [HRa1, Prop. 8,

Rem. 9], as follows.

Lemma 11.3.2. The map NG(A)(F )→ G(F ) induces a bijection

(11.3.1) W̃ ∼= I\G(F )/I.

9In [BT2] the symbol B is used in place of I.
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Further, the Bruhat order ≤ and length function ` on Waff extend in the usual way to W̃ , and

we have for w ∈ W̃ and s ∈Waff representing a simple affine reflection, the usual BN-pair relations

(11.3.2) IsIwI =

IswI, if w < sw

IwI ∪ IswI, if sw < w.

11.3.2. Iwahori factorization. Let P = MN be an F -rational parabolic subgroup with Levi factor

M , unipotent radical N and opposite unipotent radical N . LetIH = I ∩H for H = N, N, or M .

Lemma 11.3.3. In the above situation, we have the Iwahori factorization

(11.3.3) I = IN · IM · IN .

Proof. We use the notation of [BT2]. By [BT2, 5.2.4] with Ω := a, we have

G◦a(O\) = U+\
a U−\a N◦\a ,

where N◦\a := N \ ∩ Z◦(O\)U\
a. Since Z◦(O\)U\

a ⊂ G◦a(O\), we have

N◦\a = N \ ∩G◦a(O\) = Z◦(O\).

The key inclusion here, N \∩G◦a(O\) ⊆ Z◦(O\), translates in our notation to NG(A)(F )∩I ⊆M(F )1,

which can be deduced from Lemma 11.3.1(a).

Translating again back to our notation we get I = IN · IN · IM which is the desired equality since

IM normalizes IN . �

11.3.3. On M(F )1/M(F )1.

Lemma 11.3.4. The following basic structure theory results hold:

(a) In the notation of [HRo], we have M(F )1/M(F )1 = K̃/K, which injects into G(F )1/G(F )1.

Thus M(F )1 = M(F )1 ∩G(F )1.

(b) The Weyl group W (G,A) acts trivially on M(F )1/M(F )1.

(c) Let a ⊂ B(G,L) denote the alcove invariant under the group Aut(L/F ) ⊃ 〈σ〉 which

corresponds to the Iwahori I ⊂ G(F ). We assume I ⊂ K. Then the naive Iwahori

Ĩ := G(F )1 ∩ Fix(aσ) has the following properties

• M(F )1/M(F )1 = Ĩ/I = K̃/K.

• Ĩ = I ·M(F )1.

Proof. Part (a): in the notation of [HRo], we know that ΛM,tors = K̃/K ([HRo, Prop. 11.1.4]).

Applying this to G = M we get ΛM,tors = M(F )1/M(F )1. So M(F )1/M(F )1 = K̃/K. By (8.0.1)

and Lemma 8.0.1 in [HRo], the latter injects into G(F )1/G(F )1. The final statement follows.

Part (b): By [HRo, Lemma 5.0.1], W (G,A) has representatives in K ∩ NG(A)(F ). Thus it is

enough to show that if n ∈ K ∩ NG(A)(F ) and m ∈ M(F )1, then nmn−1m−1 ∈ M(F )1. This

follows from (a), since we clearly have nmn−1m−1 ∈M(F )1 ∩G(F )1.

Part (c): First note that M(F )1 ⊂ Ĩ and M(F )1 ⊂ I. Thus there is a commutative diagram

Ĩ/I // K̃/K

M(F )1/M(F )1

OO 88
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The oblique arrow is bijective by (a). We claim the horizontal arrow is injective, that is, Ĩ ∩K = I.

But Ĩ ∩ K = G(F )1 ∩ Fix(aσ) ∩ G(F )1 ∩ Fix(vF ), where vF is the special vertex in B(Gad, F )

corresponding to K (cf. [HRo, Lem. 8.0.1]). Thus Ĩ ∩K = G(F )1 ∩Fix(aσ) = I by Remark 8.0.2 of

[HRo]. It now follows that all arrows in the diagram are bijective. This implies both statements in

(c). �

Remark 11.3.5. Let P = MN be as above. We deduce from (c) and (11.3.3) the Iwahori factor-

ization for Ĩ

(11.3.4) Ĩ = IN ·M(F )1 · IN ,

using the fact that M(F )1 normalizes IN and IN .

11.3.4. Iwasawa decomposition. Next we need to establish a suitable form of the Iwasawa decompo-

sition. Let P = MN be as above.

Lemma 11.3.6. The inclusion NG(A)(F ) ↪→ G(F ) induces bijections

W̃ := NG(A)(F )/M(F )1 →̃ M(F )1N(F )\G(F )/I(11.3.5)

W (G,A) = NG(A)(F )/M(F ) →̃ P (F )\G(F )/I.(11.3.6)

Proof. In view of the decomposition W̃ = ΩσM o W (G,A) (cf. Lemma 3.0.1(III) of [HRo] plus

Lemma 11.3.1(b)) and the Kottwitz isomorphism ΩσM →̃ M(F )/M(F )1 (cf. Lemma 3.0.1 of [HRo]),

it suffices to prove (11.3.5).

For x ∈ B(G,F ), let Px ⊂ G(F ) denote the subgroup fixing x. By [Land], Proposition 12.9, we

have

G(F ) = N(F ) ·NG(A)(F ) · Px.
For sufficiently generic points x ∈ aσ, we have Px = Ĩ, which is M(F )1I by Lemma 11.3.4(c). Since

M(F )1 ⊂ NG(A)(F ), we have G(F ) = N(F ) ·NG(A)(F ) · I and the map (11.3.5) is surjective.

To prove injectivity, assume n1 = um0 · n2 · j for u ∈ N(F ), m0 ∈ M(F )1, n1, n2 ∈ NG(A)(F ),

and j ∈ I. There exists z ∈ Z(M)(F ) such that zuz−1 ∈ IN (cf. e.g. [BK, Lem. 6.14]). Then

zn2 = (zuz−1)m0 · zn2 · j ∈ Izn2I,

and so by (11.3.1), zn2 ≡ zn2 modulo M(F )1. �

Lemma 11.3.7. If x, y ∈ W̃ and M(F )1N(F )xI ∩ IyI 6= ∅, then x ≤ y in the Bruhat order on W̃

determined by I.

Proof. This follows from the BN-pair relations (11.3.2) as in the proof of the Claim in Lemma 1.6.1

of [HKP]. �

11.3.5. The universal unramified principal series module M. Define

M = Cc(M(F )1N(F )\G(F )/I).

The subscript “c” means we are considering functions supported on finitely many double cosets.

Some basic facts about M were given in [HKP] for the special case where G is split, and here we

need to state those facts in the current general situation.

Abbreviate by setting H = H(G(F ), I) and R = C[ΛM ]. Then f ∈ H acts on the left on M

by right convolutions by f̆ , which is defined by f̆(g) = f(g−1). The same goes for the normalized
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induced representation iGP (χ̃)I = IndGP (δ
1/2
P χ̃)I , where χ̃ is a character on M(F )/M(F )1. Moreover,

R acts on the left on M by normalized left convolutions: for r ∈ R and φ ∈M, m ∈M(F ),

(r · φ)(m) =

∫
M(F )

r(y)δ
1/2
P (y)φ(y−1m) dy

where voldy(M(F )1) = 1. The actions of R and H commute, so M is an (R,H)-bimodule.

Lemma 11.3.8. The following statements hold.

(a) Any character χ̃−1 : M(F )/M(F )1 → C× extends to an algebra homomorphism χ̃−1 : R →
C, and there is an isomorphism of left H-modules

C⊗R,χ̃−1 M = iGP (χ̃)I .

(b) For w ∈ W (G,A) =: W , set vw = 1M(F )1N(F )wI ∈ M. Then M is free of rank 1 over H

with canonical generator v1.

(c) M is free as an R-module, with basis {vw}w∈W .

Proof. The proofs for (a-b) are nearly identical to their analogues for split groups in [HKP]. Part

(a) is formal. Part (b) relies on the Bruhat-Tits decomposition (11.3.1), the Iwasawa decomposition

(11.3.5), and Lemma 11.3.7.

Part (c) was not explicitly mentioned in [HKP]. But it can be proved using (11.3.5) along with

the relations analogous to [HKP, (1.6.1-1.6.2)], for which the Iwahori factorization (11.3.3) is the

main ingredient. �

11.4. Why (M(F )1, 1) is an SM -type. We let χ range over the characters of M(F )1/M(F )1. Let

χ̃ denote any extension to a character of the finitely generated abelian group M(F )/M(F )1. Fix one

such extension χ̃0. Note that the inertial class [M(F ), χ̃0]M consists of all pairs (M(F ), χ̃), since

M(F )-conjugation does not introduce any new characters on M(F ). Therefore we may abuse nota-

tion and denote this inertial class by [M(F ), χ̃]M =: sMχ . Let SM := {[M(F ), χ̃]M | χ ranges as above}.
This is a finite set of inertial classes, in bijective correspondence with M(F )1/M(F )1.

Proposition 11.4.1. The pair (M(F )1, 1) is a Bushnell-Kutzko type for SM .

Note: This proposition simply makes precise the last paragraph of [BK, (9.2)].

Proof. Let σ be an irreducible smooth representation of M(F ). We must show that σ = χ̃ for some

χ̃ iff σ|M(F )1 ⊃ 1.

(⇒): Obvious.

(⇐): We see that σ 3 v 6= 0 on which M(F )1 acts trivially. Since σ is irreducible, it coincides with

the smallest M(F )-subrepresentation containing v, and then since M(F )1/M(F ), we see that M(F )1

acts trivially on all of σ; further, σ is necessarily finite-dimensional over C. Since M(F )/M(F )1 is

abelian, σ contains an M(F )-stable line, since a commuting set of matrices can be simultaneously

triangularized. This line is all of σ since σ is irreducible. Thus σ is 1-dimensional, and so σ = χ̃ for

some χ̃. �
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11.5. Why (I, 1) is an SG-type. We define SG = {[t]G | [t]M ∈ SM}. The map [M, χ̃]M 7→
[M, χ̃]G is injective: if [M, χ̃1]G = [M, χ̃2]G, then there exists n ∈ NG(A)(F ) such that n(χ̃1) = χ̃2η

for some character η on M(F )/M(F )1. Restricting to M(F )1 and using n(χ1) = χ1 (Lemma

11.3.4(b)), we see χ1 = χ2. So SM
∼= SG via [t]M 7→ [t]G.

We saw above that (M(F )1, 1) is an SM -type. The fact that (I, 1) is an SG-type follows from

[BK, Thm. 8.3], once we check the following proposition.

Proposition 11.5.1. The pair (I, 1) is a G-cover for (M(F )1, 1) in the sense of [BK, Definition 8.1].

Proof. We need to check the three conditions (i-iii) of Definition 8.1. First (i), the fact that (I, 1) is

decomposed with respect to (M,P ) in the sense of [BK, (6.1)], follows from the Iwahori factorization

I = IN · IM · IN discussed in Remark 11.3.5. The equality I ∩M(F ) = M(F )1 gives condition (ii).

Finally we must prove (iii): for every F -parabolic P with Levi factor M , there exists an invertible

element of H(G(F ), I) supported on IzP I, where zP belongs to Z(M)(F ) and is strongly (P, I)-

positive. The existence of elements zP ∈ Z(M)(F ) which are strongly (P, I)-positive is proved in

[BK, Lemma 6.14]. Any corresponding characteristic function 1IzP I is invertible in H(G(F ), I), as

follows from the Iwahori-Matsumoto presentation of H(G(F ), I). (This presentation itself is easy to

prove using (11.3.2).) �

11.6. Structure of the Bernstein varieties. Let R(G) denote the category of smooth representa-

tions of G(F ), and let Rχ(G) denote the full subcategory corresponding to the inertial class [M, χ̃]G.

That is, a representation (π, V ) ∈ R(G) is an object of Rχ(G) if and only if for each irreducible

subquotient π′ of π, there exists an extension χ̃ of χ such that π′ is a subquotient of IndGP (δ
1/2
P χ̃).

We review the structure of the Bernstein varieties XGχ and XMχ . In this discussion, for each χ we

fix an extension χ̃ of χ once and for all – the structures we define will be independent of the choice

of χ̃, i.e. uniquely determined by (M,χ) up to a unique isomorphism.

As a set XGχ (resp. XMχ ) consists of the elements (M, χ̃η)G (resp. (M, χ̃η)M ) belonging to the

inertial equivalence class [M, χ̃]G (resp. [M, χ̃]M ) as η ranges over the set X(M) of unramified

C×-valued characters on M(F ) (unramified means it factors through M(F )/M(F )1).

The map X(M)→ XMχ , η 7→ (M, χ̃η)M , is a bijection. Since X(M) is a complex torus, this gives

XMχ the structure of a complex torus. More canonically, XMχ is just the variety of all extensions χ̃

of χ, and it is a torsor under the torus X(M).

Now fix χ̃ again. There is a surjective map

XMχ → XGχ

(M, χ̃η)M 7→ (M, χ̃η)G.

Since W := W (G,A) acts trivially on M(F )1/M(F )1 (Lemma 11.3.4), one can prove that the fibers

of this map are precisely the W -orbits on XMχ . Thus as sets

W\XMχ = XGχ ,

and this gives XGχ the structure of an affine variety over C. Having chosen the isomorphism X(M) ∼=
XMχ as above, we can transport the W -action on XMχ over to an action on X(M). This action depends

on the choice of χ̃ and is not the usual action unless χ̃ is W -invariant. We obtain XGχ = W\χ̃X(M),

where the latter denotes the quotient with respect to this unusual action on X(M).
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Let C[XGχ ] denote the ring of regular functions on the variety XGχ . The algebraic morphism

XMχ → XGχ induces an isomorphism of algebras

(11.6.1) C[XGχ ] →̃ C[XMχ ]W .

11.7. Consequences of the theory of types. Let us define convolution in H(G(F ), I) using the

Haar measure dx on G(F ) which gives I volume 1. Let Z(G(F ), I) denote the center of H(G(F ), I).

We define for each χ ∈ (M(F )1/M(F )1)∨ a function eχ ∈ H(G(F ), I) by requiring it to be

supported on Ĩ, and by setting eχ(y) = voldx(Ĩ)−1 χ(ȳ)−1 if y ∈ Ĩ. Here we regard χ as a character

on Ĩ/I (cf. Lemma 11.3.4) and let ȳ ∈ Ĩ/I denote the image of y. If y = n+ ·m1 ·n− ∈ IN ·M(F )1 ·IN ,

then eχ(y) = voldx(Ĩ)−1 χ(m1)−1.

Lemma 11.7.1. The functions {eχ}χ give a complete set of central orthogonal idempotents for

H(G(F ), I):

(a) eχ ∈ Z(G(F ), I);

(b) eχeχ′ = δχ,χ′eχ, there δχ,χ′ is the Kronecker delta function;

(c) 1I =
∑
χ eχ.

Proof. The proof is a straightforward exercise for the reader. For parts (a-b), use the fact thatM(F )1

normalizes I, that G(F ) = I ·NG(A)(F ) · I, and that W (G,A) acts trivially on M(F )1/M(F )1 (cf.

Lemma 11.3.4). �

Proposition 11.7.2. The idempotents eχ are the elements in the Bernstein center which project

the category R(G) onto the various Bernstein components Rχ(G). That is, there is a canonical

isomorphism of algebras

H(G(F ), I) =
∏
χ

eχH(G(F ), I)eχ

and, for any smooth representation (π, V ) ∈ R(G), the G(F )-module spanned by the χ-isotypical

vectors V χ = π(eχ)V is the component of V lying in the subcategory Rχ(G). Finally,

eχH(G(F ), I)eχ = H(G(F ), Ĩ, χ),

the right hand side being the algebra of I-bi-invariant C-valued functions f ∈ Cc(G(F )) such that

f (̃i1gĩ2) = χ(̃i1)−1f(g)χ(̃i2)−1 for all g ∈ G(F ) and ĩ1, ĩ2 ∈ Ĩ.

The following records the standard consequences of the fact that (I, 1) is an SG-type (see [BK,

Thm. 4.3]). Let RI(G) denote the full subcategory of R(G) whose objects are generated as G-

modules by their I-invariant vectors.

Proposition 11.7.3. As subcategories of R(G), we have the equality RI(G) =
∏
χRχ(G). In

particular, an irreducible representation (π, V ) ∈ R(G) belongs to RI(G) if and only if π ∈ Rχ(G)

for some χ. Furthermore, there is an equivalence of categories

RI(G) →̃ H(G(F ), I)-Mod

(π, V ) 7→ V I .

Finally, Z(G(F ), I) is isomorphic with the center of the category
∏
χRχ(G), which according to

Bernstein’s theory is the ring
∏
χ C[XGχ ].
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Concretely, the map Z(G(F ), I)→
∏
χ C[XGχ ], z 7→ ẑ, is characterized as follows: for every χ and

every (M, χ̃)G ∈ XGχ , z ∈ Z(G(F ), I) acts on IndGP (δ
1/2
P χ̃)I by the scalar ẑ(χ̃).

Let us single out what happens in the special case of G = M . We can identifyH(M(F ),M(F )1) =

C[ΛM ]. Let eMχ denote the idempotent in H(M(F ),M(F )1) analogous to eχ, for the case G = M .

By Propositions 11.7.2 and 11.7.3 for G = M , we have

(11.7.1) H(M(F ),M(F )1) =
∏
χ

eMχ H(M(F ),M(F )1)eMχ =
∏
χ

C[XMχ ],

the last equality holding since H(M(F ),M(F )1) is already commutative. Thus, the ring

eMχ H(MF ),M(F )1)eMχ

can be regarded as the ring of regular functions on the variety XMχ of all extensions χ̃ of χ.

11.8. The embedding of C[ΛM ]W into Z(G(F ), I). We make use of the following special case of

a general construction of Bushnell-Kutzko [BK]: for any F -parabolic P with Levi factor M , there

is an injective algebra homomorphism

tP : H(M(F ),M(F )1)→ H(G(F ), I)

which is uniquely characterized by the property that for each (π, V ) ∈ RI(G), v ∈ V I , and h ∈
H(M(F ),M(F )1), we have the identity

(11.8.1) qπ(tP (h) · v) = h · qπ(v).

Here qπ : V I →̃ V
M(F )1
N is an isomorphism, which is induced by the canonical projection V → VN

to the (unnormalized) Jacquet module. See [BK, Thm. 7.9].

It turns out that it is better to work with a different normalization. We define another injective

algebra homomorphism

θP : H(M(F ),M(F )1) → H(G(F ), I)

h 7→ tP (δ
−1/2
P h).

Then using (11.8.1) θP satisfies

(11.8.2) qπ(θP (h) · v) = (δ
−1/2
P h) · qπ(v).

We view χ̃ as a varying element of the Zariski-dense subset S of the variety of all characters on the

finitely-generated abelian group M(F )/M(F )1, consisting of those regular characters χ̃ such that

V (χ̃) := iGP (χ̃) := IndGP (δ
1/2
P χ̃) is irreducible as an object of R(G). We apply the above discussion

to the representations V := V (χ̃) with χ̃ ∈ S. By a result of Casselman [Cas], we know that as

M(F )-modules

VN =
⊕
w∈W

δ
1/2
P (wχ̃)

and that M(F )1 acts trivially on this module. Now suppose h ∈ C[ΛM ]W . Then δ
−1/2
P h acts on

VN = V
M(F )1
N by the scalar h(χ̃) (viewing h as a regular function on XMχ ). It follows from (11.8.2)

that

θP (h) acts by the scalar h(χ̃) on iGP (χ̃)I , for χ̃ ∈ S.
Now let f ∈ H be arbitrary, and set ε := f ∗ θP (h)− θP (h) ∗ f ∈ H. We see that

(11.8.3) ε acts by zero on iGP (χ̃)I for every χ̃ ∈ S.
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We claim that ε = 0. Recall that ε ∈ H gives an R-linear endomorphism of M, hence by

Lemma 11.3.8(c) may be represented by an |W | × |W | matrix E with entries in R. Now Spec(R) =

Spec(C[ΛM ]) is a diagonalizable group scheme over C with character group ΛM . Hence R is a

reduced finite-type C-algebra and its maximal ideals are precisely the kernels of the C-algebra

homomorphisms χ̃−1 : R → C coming into Lemma 11.3.8(a). By that Lemma and (11.8.3), we see

that E ≡ 0 (modm) for a Zariski-dense set of maximal ideals m in Spec(R). Since R is reduced

and finite-type over C, this implies that the entries of E are identically zero. This proves the claim

because M is free of rank 1 over H (Lemma 11.3.8(b)).

Since f was arbitrary, we get θP (h) ∈ Z(G(F ), I), as desired. We have proved the following

result.

Lemma 11.8.1. The map θP : C[ΛM ] → H(G(F ), I) restricts to give an embedding C[ΛM ]W →
Z(G(F ), I).

11.9. The center of the Iwahori-Hecke algebra.

Theorem 11.9.1. The map θP gives an algebra isomorphism C[ΛM ]W →̃ Z(G(F ), I). Further,

this isomorphism is independent of the choice of parabolic P containing M as a Levi factor.

Proof. The description of θP above, and the preceding discussion, show that we have a commutative

diagram

C[ΛM ]W
∼ //

θP

��

∏
χC[XMχ ]W

Z(G(F ), I)
∼ // ∏

χC[XGχ ] .

OO

The left vertical arrow is bijective because the right vertical arrow is, by (11.6.1). �

11.10. Bernstein isomorphisms and functions. Putting together Roche’s theorem 11.1.1 with

Theorem 11.9.1, we deduce a more general result that holds for any parahoric subgroup J ⊇ I.

Theorem 11.10.1. The composition

(11.10.1) C[ΛM ]W
θP // Z(G(F ), I)

−∗I1J // Z(G(F ), J)

is an isomorphism. We call this map the Bernstein isomorphism.

Definition 11.10.2. Given µ ∈ ΛM , we define the Bernstein function zµ ∈ Z(G(F ), J) to be the

image of the symmetric monomial function
∑
λ∈W ·µ λ ∈ C[ΛM ]W under the Bernstein isomorphism

(11.10.1).

11.11. Compatibility with constant terms. RecallM = CentG(A) is a minimal F -Levi subgroup

of G and P = MN is a minimal F -parabolic subgroup with Levi factor M and unipotent radical

N . Let Q = LR be another F -parabolic subgroup with F -Levi factor L and unipotent radical R.

Assume Q ⊇ P ; then L ⊇ M and R ⊆ N . Further L contains a minimal F -parabolic subgroup

L ∩ P = M · (L ∩N), and N = L ∩N ·R.

If J ⊂ G(F ) is a parahoric subgroup corresponding to a facet in the apartment of the Bruhat-Tits

building of G(F ) corresponding to A, then JL := J ∩ L is a parahoric subgroup of L(F ) (by [HRo,

Lem. 4.1.1]).
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Given f ∈ H(G(F ), J), define f (Q) ∈ H(L(F ), JL) by

f (Q)(l) = δ
1/2
Q (l)

∫
R

f(lr) dr = δ
−1/2
Q (l)

∫
R

f(rl) dr,

where voldr(J ∩ R) = 1. An argument similar to Lemma 4.7.2 of [H09] shows that f 7→ f (Q) sends

Z(G(F ), J) into Z(L(F ), JL), and determines a map cGL making the following diagram commute:

(11.11.1) C[ΛM ]W (G,A) ∼ //
� _

��

Z(G(F ), J)

cGL
��

C[ΛM ]W (L,A) ∼ // Z(L(F ), JL).

The diagram shows that cGL is indeed an (injective) algebra homomorphism and, as the notation

suggests, is independent of the choice of parabolic subgroup Q having L as a Levi factor. We call

cGL the constant term homomorphism.

By its very construction, the map θM : C[ΛM ] →̃ H(M(F ),M(F )1) has its inverse induced by the

Kottwitz isomorphism κM (F ) : M(F )/M(F )1 →̃ ΛM . By taking L = M in (11.11.1), this remark

allows us to write down the inverse of θP in general.

Corollary 11.11.1. The composition κM (F ) ◦ cGM takes values in C[ΛM ]W (G,A) and is the inverse

of the Bernstein isomorphism θP .

11.12. Transfer homomorphisms.

11.12.1. Construction. Transfer homomorphisms were defined for special maximal parahoric Hecke

algebras in [HRo]. By virtue of the Bernstein isomorphisms (11.10.1), we can now define these

homomorphisms on the level of centers of arbitrary parahoric Hecke algebras.

Let us recall the general set-up from [HRo, §11.2]. Let G∗ be a quasi-split group over F . Let

F s denote a separable closure of F , and set Γ = Gal(F s/F ). Recall that an inner form of G∗ is a

pair (G,Ψ) consisting of a connected reductive F -group G and a Γ-stable G∗ad(F s)-orbit Ψ of F s-

isomorphisms ψ : G→ G∗. The set of isomorphism classes of pairs (G,Ψ) corresponds bijectively to

H1(F,G∗ad).

Fix once and for all parahoric subgroups J ⊂ G(F ) and J∗ ⊂ G∗(F ). Choose any maximal F -split

tori A ⊂ G and A∗ ⊂ G∗ such that the facet fixed by J (resp. J∗) is contained in the apartment of

the building B(G,F ) (resp. B(G∗, F )) corresponding to the torus A (resp. A∗). Let M = CentG(A)

and T ∗ = CentG∗(A
∗), a maximal F -torus in G∗.

Now choose an F -parabolic subgroup P ⊂ G having M as Levi factor, and an F -rational Borel

subgroup B∗ ⊂ G∗ having T ∗ as Levi factor. Then there exists a unique parabolic subgroup P ∗ ⊂ G∗

such that P ∗ ⊇ B∗ and P ∗ is G∗(F s)-conjugate to ψ(P ) for every ψ ∈ Ψ. Let M∗ be the unique

Levi factor of P ∗ containing T ∗. Then define

ΨM = {ψ ∈ Ψ | ψ(P ) = P ∗, ψ(M) = M∗}.

The set ΨM is a nonempty Γ-stable M∗ad(F s)-orbit of F s-isomorphisms M →M∗, and so (M,ΨM )

is an inner form of M∗. Choose any ψ0 ∈ ΨM . Then since ψ0|A is F -rational, ψ0(A) is an F -split

torus in Z(M∗) and hence ψ0(A) ⊆ A∗.
Now ψ0 induces a Γ-equivariant map Z(M̂) →̃ Z(M̂∗) ↪→ T̂ ∗ and hence a homomorphism

tA∗,A : C[X∗(T̂ ∗)
Φ∗F
I∗F

]W (G∗,A∗) −→ C[X∗(Z(M̂))ΦF
IF

]W (G,A),
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where (·)∗ designates the Galois action on G∗ (for Weyl-group equivariance see [HRo, §12.2]). Since

ΨM is a torsor for M∗ad this homomorphism does not depend on the choice of ψ0 ∈ ΨM . Further, it

depends only on the choice of A∗ and A, and not on the choice of the parabolic subgroups P ⊃ M

and B∗ ⊃ T ∗ we made in constructing it.

Definition 11.12.1. Let J ⊂ G(F ) and J∗ ⊂ G∗(F ) be any parahoric subgroups and choose

compatible maximal F -split tori A resp. A∗ as above. Then we define the transfer homomorphism

t : Z(G∗(F ), J∗) → Z(G(F ), J) to be the unique homomorphism making the following diagram

commute

Z(G∗(F ), J∗)
t //

o
��

Z(G(F ), J)

o
��

C[X∗(T̂ ∗)
Φ∗F
I∗F

]W (G∗,A∗)
tA∗,A // C[X∗(Z(M̂))ΦF

IF
]W (G,A),

where the vertical arrows are the Bernstein isomorphisms.

By [BT2, 4.6.28], any two choices for A (resp. A∗) are J-(resp. J∗-)conjugate. Using Corollary

11.11.1 it follows that t is independent of the choice of A and A∗ and is a completely canonical

homomorphism.

Remark 11.12.2. The map

tA∗,A : X∗(T̂ ∗)
Φ∗F
I∗F
→ X∗(Z(M̂))ΦF

IF

is surjective. Via the Kottwitz homomorphism we may view this as the composition

(11.12.1) T ∗(F )/T ∗(F )1
// M∗(F )/M∗(F )1

ψ−1
0

∼
// M(F )/M(F )1

where the first arrow is induced by the inclusion T ∗ ↪→M∗. It is enough to observe that M∗(F ) =

T ∗(F ) ·M∗(F )1, which in turn follows from the Iwasawa decomposition (cf. (11.3.6)) for M∗(F ),

which states that M∗(F ) = T ∗(F ) ·U∗M∗(F ) ·KM∗ for an F -rational Borel subgroup B∗M∗ = T ∗ ·U∗M∗
and a special maximal parahoric subgroup KM∗ in M∗, and from the vanishing of the Kottwitz

homomorphism on U∗M∗(F ) ·KM∗ .

11.12.2. Normalized transfer homomorphism. The transfer homomorphism is slightly too naive, and

it is necessary to normalize it in order to get a homomorphism which has the required properties. We

need to define normalized homomorphisms t̃A∗,A on Weyl-group invariants, for which the following

lemma is needed.

Lemma 11.12.3. Recall that T ∗ = CentG∗(A
∗) is a maximal torus in G∗ defined over F ; let S∗

be the F un-split component of T ∗, a maximal F un-split torus in G∗ defined over F and containing

A∗. We have T ∗ = CentG∗(A
∗) = CentG∗(S

∗). Choose a maximal F un-split torus S ⊂ G which

is defined over F and which contains A, and set T = CentG(S). Choose ψ0 ∈ ΨM such that ψ0 is

defined over F un and satisfies ψ0(S) = S∗ and hence ψ0(T ) = T ∗. Then the diagram

W (G,A)
ψ\0

∼
//

o
��

W (G∗, A∗)/W (M∗, A∗)

o
��[

W (G,S)/W (M,S)
]ΦF ψ0

∼
//
[
W (G∗, S∗)/W (M∗, S∗)

]Φ∗F



Stable Bernstein center and test functions 47

defines a bijective map ψ\0. It depends on the choice of the data P,B∗ used to define ΨM and M∗,

but it is independent of the choices of S and ψ0 ∈ ΨM with the stated properties.

Proof. The left vertical arrow is [HRo, Lemma 6.1.2]. The right vertical arrow is described in [HRo,

Proposition 12.1.1]. The proof of the latter justifies the lower horizontal arrow. Indeed, given

w ∈ W (G,A) we may choose a representative n ∈ NG(S)(L)ΦF (cf. [HRo]). We have ψ−1
0 ◦ Φ∗F ◦

ψ0 ◦ Φ−1
F = Int(mΦ) for some mΦ ∈ NM (S)(F s). Since n is ΦF -fixed, we get

Φ∗F (ψ0(n)) = ψ0(n) ·
[
ψ0(n)−1ψ0(mΦ)ψ0(n)ψ0(mΦ)−1

]
.

As n normalizes M and hence ψ0(n) normalizes M∗, this shows that ψ0(n)W (M∗, S∗) is Φ∗F -fixed.

There exists m∗n ∈ NM∗(S∗)(L) such that ψ0(n)m∗n ∈ NG∗(A∗)(F ). Then ψ\0(w) is the image of

ψ0(n)m∗n in W (G∗, A∗)/W (M∗, A∗). The independence statement is proved using this description.

�

Via the Kottwitz homomorphism we can view tA∗,A as induced by the composition (11.12.1). We

now alter this slightly.

Lemma 11.12.4. Given the choices of P ⊃ M and B∗ ⊃ T ∗ needed to define ΨM and given any

F un-rational ψ0 ∈ ΨM , we define an algebra homomorphism

C[T ∗(F )/T ∗(F )1] −→ C[M(F )/M(F )1](11.12.2) ∑
t∗

at∗t
∗ 7−→

∑
m

( ∑
t∗ 7→m

at∗δ
−1/2
B∗ (t∗)δ

1/2
P (m)

)
·m,

where t∗ ranges over T ∗(F )/T ∗(F )1 and m ranges over M(F )/M(F )1 and t∗ 7→ m means that

ψ−1
0 (t∗) ∈ mM(F )1, (cf. (11.12.1)).

Then (11.12.2) takes W (G∗, A∗)-invariants to W (G,A)-invariants, and the resulting homomor-

phism

t̃A∗,A : C[T ∗(F )/T ∗(F )1]W (G∗,A∗) → C[M(F )/M(F )1]W (G,A)

is independent of the choices of P , B∗, and F un-rational ψ0 ∈ ΨM .

Proof. To check the Weyl-group invariance, we may fix P and B∗, and choose S and ψ0 as in

Lemma 11.12.3. Suppose
∑
t∗ at∗t

∗ is W (G∗, A∗)-invariant. We need to show that the function on

M(F )/M(F )1

(11.12.3) m 7→
∑
t∗ 7→m

at∗δ
−1/2
B∗ (t∗)δ

1/2
P (m)

is W (G,A)-invariant, and independent of the choice of P and B∗.

For w ∈W (G,A) choose n and m∗n as in the proof of Lemma 11.12.3, and define n′ by ψ0(n′) =

ψ0(n)m∗n. Thus ψ0(n′) ∈ NG∗(A∗)(F ) and hence it normalizes T ∗(F ).

We claim that (11.12.3) takes the same values on mM(F )1 and on nmM(F )1. First we observe

that nmM(F )1 = n′mM(F )1. Setting mn := ψ−1
0 (m∗n), it is enough to prove mnmM(F )1 =

mM(F )1. But as ψ0 is L-rational we have mn ∈ M(L) and so conjugation by mn induces the

identity map on M(L)/M(L)1 and hence on its subset M(F )/M(F )1 as well.

Now we write the value of (11.12.3) on n′mM(F )1 as∑
t∗∗ 7→ n′mM(F )1

at∗∗ δ
−1/2
B∗ (t∗∗)δ

1/2
P ( n

′
m).
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Setting t∗ = ψ0(n′)−1

t∗∗ and using at∗ = at∗∗ (which follows from W (G∗, A∗)-invariance), we write

the above as ∑
t∗ 7→m

at∗ δ
−1/2
B∗ ( ψ0(n′)t∗) δ

1/2
P ( n

′
m).

The index set is stable under the W (M∗, A∗)-action on T ∗(F )/T ∗(F )1. If we look at the sum over

the W (M∗, A∗)-orbit of a single element t∗0, with stabilizer group Stab(t∗0), we get

(11.12.4)
1

|Stab(t∗0)|
· at∗0 ·

∑
y

δ
−1/2
B∗
M∗

( ψ0(n′)yt∗0),

where y ranges over W (M∗, A∗). Now n ∈ NG(S)(L)ΦF ⊆ NG(A)(F ) = NG(M)(F ). Hence

ψ0(n)m∗n = ψ0(n′) normalizes M∗ as well as T ∗, and thus conjugation by ψ0(n′) takes B∗M∗ to

another F -rational Borel subgroup of M∗ containing T ∗. Using this it is clear that (11.12.4) is

unchanged if the superscript ψ0(n′) is omitted, and this proves our claim. For the same reason

(11.12.3) is independent of the choice of P and B∗, and similarly t̃A∗,A is independent of the choice

of P and B∗, and of the choice of F un-rational ψ0 ∈ ΨM . �

Now we give a normalized version of Definition 11.12.1.

Definition 11.12.5. We define the normalized transfer homomorphism t̃ : Z(G∗(F ), J∗)→ Z(G(F ), J)

to be the unique homomorphism making the following diagram commute

Z(G∗(F ), J∗)
t̃ //

o
��

Z(G(F ), J)

o
��

C[X∗(T̂ ∗)
Φ∗F
I∗F

]W (G∗,A∗)
t̃A∗,A // C[X∗(Z(M̂))ΦF

IF
]W (G,A),

where the vertical arrows are the Bernstein isomorphisms.

As was the case for t, the homomorphism t̃ is independent of the choice of A and A∗, and it is a

completely canonical homomorphism.

The following shows it is compatible with constant term homomorphisms.

11.12.3. Normalized transfer homomorphisms and constant terms. We use the notation of §11.11.

Write L = CentG(AL) for some torus AL ⊆ A. Let L∗ = CentG∗(A
∗
L∗) for a subtorus A∗L∗ ⊆ A∗.

Without loss of generality, we may assume that our inner twist G → G∗ restricts to give an inner

twist L→ L∗.

Proposition 11.12.6. In the above situation, the following diagram commutes:

(11.12.5) Z(G∗(F ), J∗)

cG
∗

L∗

��

t̃ // Z(G(F ), J)

cGL
��

Z(L∗(F ), J∗L∗)
t̃ // Z(L(F ), JL).

Taking L = M , the diagram shows in order to compute t̃ it is enough to compute it in the case where

Gad is anisotropic. In that case if z ∈ Z(G∗(F ), J∗), the function t̃(z) is given by integrating z over

the fibers of the Kottwitz homomorphism κG∗(F ).
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Proof. The commutativity boils down to the fact that the quantities (11.12.4) do not depend on the

ambient group G. �

Remark 11.12.7. The final sentence in Proposition 11.12.6 is the key to explicit computation

of t̃(z) given z, and is illustrated in §7.3.3. This final sentence was incorrectly asserted to hold

for the unnormalized transfer homomorphisms (for special maximal parahoric Hecke algebras) in

Prop. 12.3.1 of [HRo].
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