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ABSTRACT

Filtering methods based on the Fourier transform are routinely 

used in the processing of geophysical data.  Because of the nature 

of the Fourier transform, the data must be prepared before the 

transform is calculated.  This preparation usually takes the form of 

the removal of any trend from the data, combined with the padding 

of the data to 2N points between the data edges.  However, no data 

preparation procedure is perfect, and the result is that problems 

(in the form of edge effects) appear in the filtered data.  When 

high-pass filters (such as derivatives or downward continuation) 

are subsequently used, then these edge effects become particularly 

apparent.

This paper suggests three methods for the stable downward 

continuation of geophysical data (two of which may be combined).  

The first method is applied to an integrated horizontal derivative 

of the data rather than to the data itself.  Since the horizontal 

derivative can be calculated in the space domain where fast Fourier 

transform (FFT) edge effects are not present, this reduces the 

enhancement of the data at frequencies near the Nyquist, resulting 

in smaller edge effect problems.  The second method measures the 

FFT-induced noise by comparing data that has been downward 

continued using both the space- and frequency-domain methods.  

The data is then compensated accordingly, and the compensated 

data may be downward continued to arbitrary distances that are not 

possible using space-domain operators.  The final method treats 

downward continuation as an inverse problem, which allows the 

control of both FFT-induced noise and other noise that is intrinsic 

to the dataset.  This method is computationally slow compared to 

the first two methods because of the inversion of large matrices 

that is required.  The methods are demonstrated on synthetic 

models and on aeromagnetic data from the Bushveld igneous 

complex, South Africa.

INTRODUCTION

The Fourier transform F(k) of a dataset f(x) is given by

 (1)

where k is wavenumber (Bracewell, 1978).  The combination of 

the Fourier transform and modern computing power is extremely 

powerful, allowing many now indispensable filtering operations 

to be readily applied to geophysical data.  However, there are 

certain practical problems that are associated with its application.  
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Geophysical data is limited spatially, but the limits on the integral 

in equation (1) are ±∞ .  Processing a finite dataset using a discrete 

version of the Fourier transform is mathematically equivalent to 

processing an infinite number of copies of the finite dataset.  If 

the finite dataset has any trend present then this will result in 

discontinuities at the copy boundaries that will introduce high-

frequency edge effects into the processed data.  Some form of trend 

removal is therefore usually undertaken before the calculation of 

the Fourier transform.

The fast Fourier transform (FFT) reduced the computational 

requirements of the Fourier transform from an O(n2) to an 

O(n log n) process (Press et al., 1992, p498) at the cost of requiring 

a dataset with 2N data points.  (Variations on the algorithm exist 

that are based on prime factors of n rather than 2, but these are not 

in common geophysical use.)  This improvement was sufficient 

to make the Fourier transform a useful tool even on the primitive 

computers of the 1960s.  Because of this restriction, datasets may 

be padded out to 2N points prior to FFT processing.  Edge effects 

can be further reduced by mirroring the data at the boundaries of 

the original dataset, while reducing the amplitude of the mirrored 

data to zero at the boundaries of the padded dataset (using a 

smooth function such as a cosine or exponential).  Many variations 

on this process of data preparation exist, but none of them is able to 

produce a perfect result that yields a result exactly as would have 

been obtained with equation (1) and an infinite data series.

Many geophysical filters (such as derivatives or downward 

continuation) emphasise the high-frequency content of the data, 

and are used to bring out fine detail.  Unfortunately, not only is any 

high-frequency noise originally present in the data also enhanced 

by this process, but new high-frequency noise is introduced by 

Fourier transform edge effect problems.

Fig. 1. The frequency responses of different downward continuation 
filters.
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DOWNWARD CONTINUATION

Downward continuation calculates the potential field that 

would have been measured if the survey had been conducted closer 

to the sources of the field than it actually was.  It is used to enhance 

subtle features, and to compare aeromagnetic and ground magnetic 

surveys.  However, it is unstable and will enhance noise as well as 

detail.  In the frequency domain the operator is

 (2)

where A(k) is the amplitude at a wavenumber k, and ∆z is the 

downward continuation distance (a negative number) (Blakely, 

1995, p320).  As can be seen from equation (2) the power at high 

wavenumbers is boosted compared to that at low wavenumbers.  

One way to reduce the enhancement of FFT-induced noise is to 

perform as much as possible of the downward continuation in 

the space domain.  High-pass filters that are easily calculated in 

the space domain include horizontal derivatives of any integer 

order, and the second vertical derivative.  The derivatives may be 

downward continued in the frequency domain, and simultaneously 

integrated to yield an approximation to the downward-continued 

total field.

The operator is therefore

 (3)

because the frequency-domain horizontal derivative operator is

 (4)

Fig. 3. Aeromagnetic data from the Eastern Bushveld complex, 
downward continued by 5 sample intervals (25 m) using:
a) the standard algorithm (equation (2),
b) the first horizontal derivative,
c) the second horizontal derivative,
d) the third horizontal derivative.

Fig. 2. Aeromagnetic data from the Eastern Bushveld complex, 
downward continued by 3 sample intervals

a) Aeromagnetic data.  The sample interval is 5 m.
b) Digital terrain model (DTM) and aircraft flight height along the 

flight line
Data downward continued by 15 m using:
c) the standard algorithm (equation (2),
d) the first horizontal derivative,
e) the second horizontal derivative,
f) the third horizontal derivative.

Fig. 4. Downward continuation of Bushveld aeromagnetic data.
a) TMI Data.  The grid interval was 15 m, and the area shown covers 

3 km by 3 km.  The flight height varied from 40–50 m depending 
on the terrain.

b) Dataset in Figure 4a downward continued by 37.5 m using the 
standard method.

c) Dataset in Figure 4a downward continued by 37.5 m using the 
improved method.

Cooper Stable Downward Continuation
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where n is the order of horizontal derivative used (Blakely, 1995, 

p324).  Equation (3) only produces an approximation to the 

downward-continued total field because the use of horizontal 

derivatives loses the long-wavelength information in the data.  For 

example, the first horizontal derivative loses the average value of 

the data, since equation (3) cannot be evaluated for k = 0 .  This 

problem may be partly solved by comparing the output of equation 

(3) when ∆z = 0 with the original data, and correcting the processed 

data accordingly.  In this case the long-wavelength components of 

the data from zero frequency upwards (depending on the degree 

of the derivative used) are not downward continued.  However, as 

can be seen from equation (2), this is not so much a problem as it 

may at first appear because the low-wavenumber components of 

the data are much less altered by the downward-continuation filter 

than are the high-wavenumber components.

The form of the modified downward-continuation filter in 

the wavenumber domain is shown in Figure 1 and it can be seen 

that the power at the high wavenumbers is boosted considerably 

less than it is by equation (2).  If the horizontal derivative were 

initially calculated in the wavenumber domain using equation (4), 

then nothing would be gained by this process. However, as it is 

computed in the space domain, the result is to reduce FFT-induced 

edge effects in the filtered data.

Figure 2a shows an aeromagnetic flight line over a portion of 

the Eastern Bushveld igneous complex, South Africa.  The data has 

been interpolated to a sample interval of 5 m.  The flight height 

varied from 40–50 m depending on the terrain, as shown in Figure 

2b.  Figure 2c shows the result of downward continuing the data 

by three sample intervals (i.e., 15 m) using the standard method, 

and Figures 2d–2f show the result of using the first, second, and 

third horizontal derivative (computed in the space domain) with 

equation (3).  As the order of derivative used is increased, the 

downward continuation becomes increasingly stable.  Edge effects 

can clearly be seen in the standard downward-continued data.  

Figure 3 shows the result of downward continuing the data by 

five sample intervals (i.e., 25 m).  In this case, even the downward 

continuation based on the third horizontal derivative (Figure 3d) 

has begun to get almost unusably noisy, but is still preferable to the 

output from the standard method (shown in Figure 3a).

Application to Map Data

When map data is to be filtered using this approach, the direction 

of the horizontal derivative used becomes important, and artefacts 

appear in the filtered data at 90° to the derivative direction.  In this 

case it is better to use the second vertical derivative of the data, 

calculated in the space domain from the space-domain horizontal 

derivatives using Laplace’s equation, as the basis for the downward 

continuation filter.  So, equation (3) becomes

 (5)

because the second vertical derivative operator in the wavenumber 

domain is given by

 (6)

(Blakely 1995, p.324).

Figure 4a shows a small portion of an aeromagnetic dataset 

over the Eastern Bushveld complex.  Figure 4b shows the data 

downward continued by 37.5 m (the grid interval was 15 m) using 

the standard method, and Figure 4c shows the data downward 

continued by the same distance using the improved method.  The 

FFT edge-effect induced noise which severely affects Figure 

4b is almost completely absent from Figure 4c, enabling the 

dyke anomalies to become more clearly visible.  The dykes are 

important in this area because their presence can affect mining.

A COMPENSATION APPROACH TO DOWNWARD 

CONTINUATION

If the high-frequency content of the data is primarily noise, 

and if its frequency content does not overlap with that of the 

geophysical signal of interest, then it may be smoothed with a 

low-pass filter of some type prior to downward continuation.  

However, this will not help with noise that is introduced into the 

data by the necessarily imperfect data preparation used prior to the 

application of the FFT, as discussed briefly above.  An alternative 

approach to that of the minimisation of edge effect problems is to 

accept that they will never be perfectly removed, and instead try to 

Fig. 5. A compensation approach to the minimisation of FFT edge 
effects.
a) Synthetic data from two dipole sources of depths 15 and 22.5 

units, with uniformly distributed random noise of amplitude 1% 
of the maximum data amplitude added.

b) A comparison of the downward continuation of the data in Figure 
5a by one sample interval in the frequency domain (solid line) and 
the space domain (dashed line).

c) Difference between the datasets in Figure 5b.
d) Dataset in Figure 5c upward continued by one sample interval.

e) Comparison of the original data and the compensated data 
(computed by adding the dataset in Figure 5d to the original 
data).

f) A comparison of the downward continuation of the original data 
(solid line) and the compensated data (dashed line), by one sample 
interval.  Both continuations were performed in the frequency 
domain.

g) A comparison of the downward continuation of the original data 
(+ symbols) in the space domain and the compensated data (solid 
line) in the frequency domain, by one sample interval.

h) The original dataset downward continued by 2.25 sample intervals 
(thin line), and the compensated data downward continued by the 
same distance (heavy line).  Both continuations were performed in 
the frequency domain.
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measure and then compensate for them.  This can be done if there 

is a space-domain analogue to the desired frequency-domain filter.  

Of course, if the appropriate space-domain filter can be used in all 

of the same circumstances in which the frequency-domain filter 

can be used then the compensation method is not needed, and the 

data may simply be filtered in the space domain.  However in many 

cases it is only simple to apply a space-domain filter in a limited 

set of circumstances: e.g., integer-order horizontal derivatives 

may be calculated trivially in the space domain, but the filter size 

becomes very large (several hundred coefficients) if non-integer 

derivatives are required.

For downward continuation, the situation is similar.  If the 

data is approximated as the sum of a set of sinc functions, then 

for multiples of the data spacing interval it may be vertically 

continued in the space domain using

 (7)

where the data spacing is a, g
i
 is the ith measured potential field 

value, and ∆z is the continuation distance (Oldham, 1967).  The 

compensation procedure is then as follows, and is illustrated in 

Figure 5 for a synthetic data profile:

a) Downward continue the data by an integer number of data 

sample intervals (one in this case) in both the space and 

frequency domains (Figure 5b),

b) Subtract one dataset from the other (Figure 5c), and upward 

continue the difference (Figure 5d),

c) Add the upward continued difference to the original dataset 

(Figure 5e), and use the compensated dataset as the basis for 

further frequency-domain filtering.

The frequency-domain downward-continued original data (still 

only by one sample interval) and the frequency-domain downward-

continued compensated data are compared in Figure 5f, and the 

latter is clearly less noisy.  In fact, the frequency-domain downward-

continued compensated dataset is now almost exactly the same as 

the space-domain downward-continued original dataset (see Figure 

5g).  Figure 5h compares the result of downward continuing the 

original and the compensated datasets (in the frequency domain) 

by 2.25 sample intervals.  The downward-continued compensated 

Fig. 6. Comparison of different downward continuation methods:
a) Result of downward continuing the data in Figure 4a by 50 m (3.25 

sample intervals) using the standard method.
b) Result of downward continuing the data in Figure 4a by 50 m using 

the integrated second vertical derivative method (equation (5).
c) Result of downward continuing the data in Figure 4a by 50 m using 

the compensated integrated second vertical derivative method.

Fig. 7. A comparison of downward continuation using the Fourier and 
the inverse approaches with a noise-free synthetic dataset.
a) 2.5D synthetic model.  The susceptibilities of the bodies are shown 

upon them (in c.g.s. units).
b) Original data overlain with the upward-continued downward-

continued data (solid line), and the result of upward continuing the 
original data (dashed line).

c) Result of downward continuing the data using the standard FFT 
method (solid line) overlain on the correct result (× symbols) 
produced from the model in Figure 7a.  Note the edge effects.

d) Result of downward continuing the data using the inverse approach 
(solid line) overlain on the correct result (× symbols).

Cooper Stable Downward Continuation
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data clearly suffers less from edge-effect noise than does the 

downward-continued original data.  Note that this compensation 

is not necessarily a smoothing process; the modifications that are 

applied to the original data can take any form.  All that is required 

is that the FFT-induced noise be minimised.

Combination of the Derivative and Compensation 

Approaches to Downward Continuation

The two methods described above are not exclusive, and can 

be combined to achieve optimal results.  That is to say, the data 

after downward continuation in the space domain (by an integer 

number of data grid intervals) is compared with the result of 

downward continuing the integrated second vertical derivative 

in the frequency domain.  The compensated data is then used 

as a basis for further filtering, in the manner described above.  

Figure 6 compares the results of downward continuing the 

Bushveld aeromagnetic survey from Figure 4a by 50 m (3.33 

sample intervals) using the standard method (Figure 6a) with the 

integrated second vertical derivative method (Figure 6b), and the 

compensated integrated second vertical derivative method (Figure 

6c).  It should be noted that the computations required by the 

compensation process do slightly more than double the processing 

time involved in the downward continuation of the data, but it is 

felt that a comparison of the signal-to-noise ratio in Figures 6a and 

6c more than justifies the time spent.

DOWNWARD CONTINUATION AS AN INVERSE 

PROBLEM

Equation (8) relates three functions f
A
, f

B
, and f

C
 of a dataset y 

together:

 (8)

In this application, f
A
 and f

C
 are known functions while f

B
 is to be 

established.  For example, if f
C
 is the third horizontal derivative of 

the data and f
A
 is the first horizontal derivative, then f

B
 must be the 

second horizontal derivative since the first horizontal derivative of 

the second horizontal derivative is the third horizontal derivative.  

More usefully however, if f
A
 represents the upward continuation of 

the data by a distance h, and f
C
 leaves the data unchanged, then f

B
 

is the downward continuation of the data by h.  Since the upward 

continuation process is stable, as discussed above, there are no 

problems with its computation using equation (2).  The downward 

continuation is then achieved by least squares inversion using 

equation (9):

 (9)

where e is the misfit between the original data y and the upward 

continued modified data.  A is the gradient matrix, I is the identity 

matrix, and the constant k is a damping factor.  A is calculated by 

a numerical differencing operation; i.e., each point on the profile is 

perturbed slightly and the change in the upward continued profile 

is noted.  The inversion process (which is linear for k = 0) then 

modifies the data so that when upward continued it becomes the 

original measured data.  The inversion process is even-determined 

since each data point is a parameter.  This means that the downward 

continuation of an N point dataset requires the inversion of an N×N 

matrix, and so the process is slower than the FFT based methods 

described previously.

Figure 7 compares the downward continuation of noise-free 

profile data over a synthetic 2D model (shown in Figure 7a) using 

this method and the standard frequency-domain approach.  Figure 

7b shows the original data after upward continuation by four data 

sample intervals and the result of upward continuing the modified 

data by the same distance.  The upward-continued modified 

data is almost identical to the original data (the average error is 

approximately 10-16 of the data amplitude in magnitude).  A value of 

k = 0.0 (equation (9)) was used, and a single inversion iteration was 

required.  Figure 7c compares the result of the Fourier transform 

based downward-continuation method (using equation (8)) with the 

correct magnetic response of the model at that altitude.  Noise is 

visibly present, particularly at the edges of the dataset where any 

problems in the data preparation prior to the application of the fast 

Fourier transform have been accentuated.  Figure 7d shows the 

result of the new downward continuation filter (i.e., the data which 

when upward continued by four sample intervals is almost identical 

to the original data) overlain on the correct magnetic response.  The 

two are almost identical.  The same approach may also be used to 

calculate stable horizontal and vertical gradients; in this case, f
C
 

would be the original data and f
A
 becomes the horizontal or vertical 

integral of the same order as that of the required derivative.

The use of equation (8) is successful in reducing noise in 

downward-continued datasets that is due to FFT edge effects.  

Unfortunately, noise that is present in the original data is ‘real’ and 

will be increased in amplitude (perhaps significantly) by downward 

continuation both by the standard FFT method and by the inversion 

method.  The inversion method however allows the stability of 

Fig. 8. Downward continuation of noisy data using the inversion 
method.
a) Data from the model in Figure 7a with 1% of uniformly distributed 

random noise added to it (× symbols), overlain with the upward-
continued downward-continued data (solid line), and the result of 
upward continuing the original data (dashed line)

Result of downward continuing the data 4 sample intervals using:
b) the standard FFT method (solid line) overlain on the correct result 

(× symbols) produced from the model in Figure 7a
c) the inverse approach (solid line) with k = 0 overlain on the correct 

result (× symbols).
d) the inverse approach using k = 10-5 .The correct magnetic response 

is not overlain, for clarity.
e) the inverse approach using k = 10-3

f) the inverse approach using k = 10-1

Cooper Stable Downward Continuation
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the downward continuation process to be controlled.  The greater 

the value of the constant k in equation (8), the more the inversion 

process will be damped, and the smoother the resulting downward-

continued data will be.  The damped inversion process will now 

take several iterations to converge (depending on the value of k), 

compared to the single iteration required when k = 0 .

Figure 8 compares the results of the downward continuation of 

the data from the same model as shown in Figure 7a, which this 

time has had uniformly distributed random noise of amplitude 

equal to 1% of the data added to it.  The noise demonstrates the 

instability of the downward continuation process quite clearly.  

The overlain actual response from the model has no noise added.  

The value of k used in Figures 8c to 8f increases from 0.0 to 10-1 

(the elements of the matrix ATA had values ranging from 0.18 to 

1.1×10-6).  Attempts at smoothing the results of the frequency-

domain downward continuation process produced unsatisfactory 

results in this case, as did the smoothing of the data before the 

frequency-domain downward continuation operator was applied.

Figure 9 shows how effective the inversion method of downward 

continuation can be.  Figure 9a shows an aeromagnetic data profile 

from the Eastern Bushveld igneous complex (× symbols) overlain 

with the upward-continued downward-continued data (solid line).  

Figure 9b shows the aircraft flight path and the terrain.  The 

flight height is approximately 50 m.  Figure 9c shows the data 

when downward continued by 50 m (10 sample intervals) using 

the standard Fourier method.  The amplitude at the edges of the 

profile is 1011 nT, and the result is unusable.  Figure 9d shows 

the data when downward continued by 50 m using the inverse 

method (k = 10-1).  While significant edge effects are present, the 

anomalies in the centre of the profile are well resolved and still 

interpretable.

Fig. 9. Downward continuation of data from the Bushveld igneous 
complex using the inversion method.
a) Original data (× symbols, interpolated to 5-m sample interval) 

overlain with upward-continued downward-continued data (solid 
line).

b) Terrain and flight path of the aircraft.
c) Data downward continued by 50 m (10 sample intervals) using the 

standard Fourier method.  Note the scale on the y axis.
d) Data downward continued by 50 m (10 sample intervals) using the 

inversion method.

CONCLUSIONS

Three new methods for the reduction of FFT-induced noise in 

the downward continuation process were introduced, and the results 

of their application were shown to be more robust with respect to 

noise than the standard algorithm.  A combination of the first two 

techniques was particularly effective, and was demonstrated both 

on synthetic and real data.  The third method not only minimised 

the FFT-induced noise, but allowed the stabilising of the downward 

continuation process and the smoothing of high-frequency noise 

that was present in the original data.  Because the latter method 

involved the inversion of large matrices, it is slow when applied to 

large datasets.
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