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Abstract The associated prime ideals of powers of polymatroidal ideals are studied,
including the stable set of associated prime ideals of this class of ideals. It is shown
that polymatroidal ideals have the persistence property and for transversal polyma-
troids and polymatroidal ideals of Veronese type the index of stability and the stable
set of associated ideals is determined explicitly.
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1 Introduction

Let I be an ideal in a Noetherian ring R. It is customary to denote by Ass(I ) the set
of associated prime ideals of R/I . Brodmann [3] showed that Ass(I k) = Ass(I k+1)

for all k � 0. One calls the smallest number k0 for which this happens the index of
stability and Ass(I k0) is called the stable set of associated prime ideals of I . It is
denoted by Ass∞(I ). Several natural questions arise in the context of Brodmann’s
theorem.
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(1) Is there an upper bound for the index of stability depending only on R?
(2) What can be said about the set Ass∞(I )? Can Ass∞(I ) be computed in case that

R is a polynomial ring and I is a graded ideal?
(3) Is it true that Ass(I ) ⊂ Ass(I 2) ⊂ · · · ⊂ Ass(I k) ⊂ · · ·?
All these questions are widely open, even for monomial ideals, though in several
interesting special cases, including edge ideals and vertex cover ideals of perfect
graphs, these questions have been answered quite comprehensively, see [5, 9] and
[18]. A nice survey on what is known about the stability of associated prime ideals of
powers of edge ideals is given in [19]. Question (3) does not have a positive answer
in general, see [13] and [18] for counterexamples. The ideals which provide these
counterexamples are monomial ideals, but not squarefree. An ideal I for which (3)
holds true is said to satisfy the persistence property. It is an open question whether
all squarefree monomial ideals satisfy the persistence property. However, even in the
case of vertex cover ideals of graphs the conjecture has not been settled.

Suppose now that (R,m) is local or a standard graded K-algebra with graded
maximal ideal m. We say that an ideal I ⊂ R has non-increasing depth functions, if
for all prime ideals P in the support V (I) of R/I , one sees that depthRP /IkRP is
a non-increasing function of k, and I is said to have strictly decreasing depth func-
tions, if the depth functions of all its localizations are strictly decreasing until they
reach their limit value. In the case that I is a graded ideal, respectively, a monomial
ideal, we require the defining property of non-increasing (strictly decreasing) depth
functions only for localizations with respect to prime ideals P ∈ V ∗(I ), where V ∗(I )

denotes the set of graded, respectively, monomial prime ideals containing I .
It is easily seen that for an ideal which has non-increasing depth functions the

persistence property holds, see Proposition 2.1. Moreover, if an ideal has strictly de-
creasing depth functions, then its index of stability is bounded by dimR − 1. We
do not know of any example of a squarefree monomial ideal which does not have
non-increasing depth functions. On the other hand it is shown in [13, Theorem 4.1]
that, given any non-decreasing function f : N → N, there exists a monomial ideal in
a polynomial ring S (with sufficiently many variables) such that depthS/Ik = f (k)

for all k. This shows that among the monomial ideals, non-increasing depth functions
can be expected in general only for squarefree monomial ideals.

There is at least one case known to us in which Ass∞(I ) can be computed ef-
ficiently. Namely, if I is a monomial ideal in a polynomial ring S = K[x1, . . . , xn]
whose Rees algebra R(I ) is Cohen–Macaulay. By a result of Huneke [17] it fol-
lows that the associated graded ring of I is Cohen–Macaulay, and this implies that
limk depthS/Ik = n − �(I ), where �(I ) denotes the analytic spread of I , that is, the
Krull dimension of the fiber ring R(I )/mR(I ), see Eisenbud and Huneke [8, Propo-
sition 3.3]. This theorem allows us to identify the elements of Ass∞(I ) in terms of
the exponent matrix associated with the unique minimal monomial set G(I) of gener-
ators of I . All this is explained in detail in Sect. 2. There we also define the invariants
dstab(I ) and astab(I ). The first of them is the smallest integer k with the property
that depth I k = depth I � for all � ≥ k, while the second is the smallest integer with
Ass(I k) = Ass(I �) for all � ≥ k. One may ask whether there is any relation between
these numbers. At the end of Sect. 2 we show that either one may be smaller than
the other. However we show in Proposition 2.1 that astab(I ) is bounded below and
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above by local data of dstab provided it has non-increasing depth functions, which is
for example the case if all powers of I have a linear resolution, see Proposition 2.2.
These facts are used to compute the index of stability for Stanley–Reisner ideal of the
natural triangulation of the projective plane.

In Sect. 3 the strategies discussed in Sect. 2 are applied to study the associated
prime ideals of powers of polymatroidal ideals. Two general properties of polyma-
troidal ideals are crucial: (1) all powers of polymatroidal ideals have a linear res-
olution, as shown in [7, Theorem 5.3], (2) localizations of polymatroidal ideals at
monomial prime ideals are again polymatroidal, see Corollary 3.2. These two facts
combined with Proposition 2.1 immediately yield that polymatroidal ideals have the
persistence property, see Proposition 3.3. We recall in Theorem 3.4 the result of Vil-
larreal [20, Proposition 3.11], which says that the Rees ring of a polymatroidal ideal
is normal, and consequently Cohen–Macaulay. Applying then the Huneke–Eisenbud
result, the limit depth of a polymatroidal ideal can be expressed by its analytic spread.
From this one easily deduces an algorithm, described at the end of the section, to com-
pute Ass∞(I ) for any polymatroidal ideal I . All data required to compute Ass∞(I )

are given by the exponent matrix of the minimal set of monomial generators of I .
In the remaining two sections we consider special classes of polymatroidal ide-

als where the questions concerning associated prime ideals of powers of ideals have
complete answers. The ideals considered in Sect. 4 are the polymatroidal ideals of
transversal polymatroids. Algebraically speaking, ideals of this type are simply ar-
bitrary (finite) products of monomial prime ideals. In [7, Lemma 3.2] a primary de-
composition of products of ideals generated by linear forms is given. However this
decomposition is not at all irredundant and it is not easy to obtain an irredundant
decomposition from that given in [7, Lemma 3.2].

Our first result (Lemma 4.1) asserts that the presentation of a transversal polyma-
troidal ideal as product of monomial prime ideals is unique. The key result of Sect. 4
is Theorem 4.3 where it is shown that the graded maximal ideal m is associated to the
transversal polymatroidal ideal I = PF1 · · ·PFr if and only if

⋃r
i=1 Fi = [n] and the

intersection graph GI is connected. Here GI is the graph with vertex set {1, . . . , r}
and for which {i, j} is an edge of GI if and only if Fi ∩Fj 
= ∅. By using this result we
conclude in Corollary 4.6 that Ass(I ) = Ass∞(I ) for any transversal polymatroidal
ideal. Furthermore we show in Theorem 4.7 that Ass(I ) is determined by the trees of
the graph GI . As nice consequences of all this we classify in Corollary 4.9 all sub-
sets S = {F1, . . . ,Fr} of 2[n] for which there exists a transversal polymatroidal ideal
I with Ass(I ) = {PF1, . . . ,PFr }, and in Corollary 4.10 we give an irredundant pri-
mary decomposition of all powers I k of I . We conclude this section with two results
concerning the depth of S/I . In Theorem 4.12 it is shown that depthS/I is essen-
tially determined by the number of components of GI , and Corollary 4.14 says that
dstab(I ) = 1. Thus for any transversal polymatroidal ideal, dstab(I ) = astab(I ) = 1.

The situation for ideals Id;a1,...,an
of Veronese type, which is the class of polyma-

troidal ideals considered in Sect. 5, is completely different. Here Ass∞(I ) = V ∗(I ),
as shown in Proposition 5.3, and the invariant astab(I ) can be any number be-
tween 1 and n − 1 determined by an explicit formula given in terms of the num-
bers d and a1, . . . , an, see Corollary 5.6. Moreover it is shown in Corollary 5.7 that
astab(I ) = dstab(I ) and limk→∞ depthS/Ik and �(I ) are computed for any Veronese
type ideal.
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The common feature to transversal polymatroidal ideals and to ideals of Veronese
type is that astab(I ) = dstab(I ). It would be interesting to know whether this equal-
ity holds for any other polymatroidal ideal. As we have seen in Sect. 2, arbitrary
monomial ideals, even when they are squarefree, do not satisfy this equality.

2 Generalities about the depth and the associated primes of powers of an ideal

Let (R,m) denote a Noetherian local ring or standard graded K-algebra with graded
maximal ideal m, and I ⊂ R an ideal. In the graded case we assume that I is graded
ideal.

We are going to relate the index of stability and the persistence property of I to
the property of I to have non-increasing depth functions. We say that P ∈ V (I) is
a persistent prime ideal of I , if whenever P ∈ Ass(I k) for some exponent k, then
P ∈ Ass(I k+1). If this happens to be so for k, then of course we have P ∈ Ass(I �)

for all � ≥ k. The ideal I is said to have the persistence property if all prime ideals
P ∈ ⋃

k Ass(I k) are persistent prime ideals.
By a famous theorem of Brodmann [2] it is known that depthR/Ik is constant for

all k � 0. We call the smallest number k0 such that depthR/Ik = depthR/Ik0 for all
k ≥ k0, the index of depth stability of I , and denote this number by dstab(I ).

Brodmann also showed [3] that there exists an integer k1 such that Ass(I k) =
Ass(I k1) for all k ≥ k1. The smallest such number is called the index of stability of I .
We denote this number by astab(I ).

At the end of this section we show by examples that the invariants dstab(I ) and
astab(I ) are unrelated. In other words, either one of these numbers may be smaller
than the other one or they may also be equal. However we have

Proposition 2.1 (a) Suppose the depth function depthR/Ik is non-increasing, then
m is a persistent prime ideal.

(b) If I has non-increasing depth functions, then I satisfies the persistence prop-
erty.

(c) maxP∈Ass∞(I ){dstab(IRP )} ≤ astab(I ). In addition, if I has non-increasing
depth functions, then astab(I ) ≤ maxP∈V (I){dstab(IRP )}.

Proof (a) Let m ∈ Ass(I k), then depthR/Ik = 0. Thus our assumption implies that
depthR/I� = 0 for all � ≥ k. Hence m ∈ Ass(I �) for all � ≥ k.

(b) One has P ∈ Ass(I k) if and only if PRP ∈ AssRP
(I kRP ). By part (a) this

implies that PRP ∈ AssRP
(I �RP ) for all � ≥ k. Thus P ∈ Ass(I �) for all � ≥ k.

(c) Let r = astab(I ). Then, whenever P ∈ Ass∞(I ), we have P ∈ Ass(I �) for all
� ≥ r . This implies that depthRP /I�RP = 0 for all � ≥ r . Hence dstab(IRP ) ≤ r ,
which yields the first inequality.

Now let s = maxP∈V (I){dstab(IRP )}, and suppose that r > s. Then there exists
P ∈ Ass∞(I ) such that P ∈ Ass(I r ), but P 
∈ Ass(I s). Indeed, otherwise we would
find that depthRP /I sRP = 0 for all P ∈ Ass∞(I ). Since I has non-increasing depth
functions it would follow that astab(I ) ≤ s < r , a contradiction.

It follows that depthRP /I sRP > depthRP /I rRP = 0, in contradiction to the def-
inition of s. �
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The next result generalizes [13, Proposition 2.1] and provides cases where we have
non-increasing depth functions.

Proposition 2.2 Suppose I ⊂ S = K[x1, . . . , xn] is a graded ideal generated in de-
gree d with the property that there exists an integer k0 such that I k has a linear
resolution for all k ≥ k0. Then depth I k ≥ depth I k+1 for all k ≥ k0.

Proof Let f ∈ I be a homogeneous polynomial of degree d . Then f Ik is generated
in degree (k + 1)d and f Ik ⊂ I k+1. The short exact sequence

0 −→ f Ik −→ I k+1 −→ I k+1/f Ik −→ 0

induces the long exact sequence

· · · → Tori+1
(
K,Ik+1/f Ik

)
i+1+(j−1)

→ Tori
(
K,f Ik

)
i+j

→ Tori
(
K,Ik+1)

i+j
→ ·· · ,

where for a graded S-module, Tori (K,M)j denotes the j th graded component of
Tori (K,M).

Both f Ik and I k+1 have a (k + 1)d-linear resolution. Thus

Tori
(
K,f Ik

)
i+j

= Tori
(
K,Ik+1)

i+j
= 0

for j 
= (k + 1)d and all i. Moreover, Tori+1(K, I k+1/f Ik)i+1+(j−1) = 0 for
j = (k + 1)d , because the module I k+1/f Ik is generated in degree (k + 1)d .
This shows that the natural maps Tori (K,f Ik) −→ Tori (K, I k+1) are injective for
all i. It follows that proj dim I k = proj dimf Ik ≤ proj dim I k+1, and consequently,
depthS/Ik+1 ≤ depthS/Ik , by the Auslander–Buchsbaum formula (see for example
[4, Theorem 1.3.3]). �

Let I ⊂ S be a monomial ideal. Throughout this paper S stands for the polynomial
ring K[x1, . . . , xn] where K is a field. We denote by G(I) the unique minimal set of
monomial generators of I . In the case that G(I) ⊂ T = K[xi1 , . . . , xik ] we denote by
an abuse of notation the ideal G(I)T again by I . Observe that by using this notation
it follows that AssS(I ) = AssT (I ).

Let u = ∏
i∈L xi be a squarefree monomial in S. Then

(S/I)u ∼= S′[{x±1
j : j ∈ L

}]
/ILS′[{x±1

j : j ∈ L
}]

,

where S′ = K[{xi : i /∈ L}] and where IL ⊂ S′ is the ideal which is obtained from I

by applying the K-algebra homomorphism S → S′ with xi �→ 1 for all i ∈ L.
Let P = (xi1, . . . , xir ) be a monomial prime ideal, and I ⊂ S any monomial

ideal. We denote by I (P ) the monomial ideal in the polynomial ring S(P ) =
K[xi1 , . . . , xir ] where I (P ) = IL with L = [n] \ {i1, . . . , ir }.

In the later proofs we need the following simple facts.

Lemma 2.3 Let I ⊂ S be a monomial ideal. Then

(a) P ∈ Ass(I ) if and only if depthS(P )/I (P ) = 0;
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(b) Ass(IL) = {P ∈ Ass(I ): xi 
∈ P for all i ∈ L} for all subsets L ⊂ [n].

Proof (a) has been observed in [9, Lemma 2.11].
(b) As before let S′ = K[{xi : i /∈ L}] and set T = S′[{x±1

j : j ∈ L}]. Then T =
Su where u = ∏

i∈L xi . Thus by using the basic rules concerning the behavior of
associated prime ideals with respect to localization and polynomial ring extension
we obtain

AssT (ILT ) = AssT (IT ) = {
PT : P ∈ AssS(I ), xi /∈ P for all i ∈ L

}
.

On the other hand,

AssT (ILT ) = {
PT : P ∈ AssS(IL)

}
.

Since the assignment P �→ PT establishes a bijection between the set AssS′(IL) and
{PT : P ∈ AssS(IL)}, the desired conclusion follows. �

If I is a monomial ideal, we say that I has non-increasing depth functions if
depthS(P )/I (P )k is a non-increasing function of k for all P ∈ V ∗(I ).

Since the associated prime ideals of a monomial ideal are monomial prime ideals,
it follows (in analogy to Proposition 2.1(b)) that a monomial ideal has the persistence
property if I has non-increasing depth functions as defined for monomial ideals.

For monomial ideals, the corresponding statement of Proposition 2.1(c) reads as
follows:

Proposition 2.4 Let I ⊂ S be a monomial ideal which has non-increasing depth
functions. Then

max
P∈Ass∞(I )

{
dstab

(
I (P )

)} ≤ astab(I ) ≤ max
P∈V ∗(I )

{
dstab

(
I (P )

)}
.

In particular, if Ass∞(I ) = V ∗(I ), one has astab(I ) = maxP∈V ∗(I ){dstab(I (P ))}.

As a consequence, in the case of a monomial ideal which has non-increasing depth
functions we need to compute the depth stability only for a finite number of monomial
prime ideals in order to obtain bounds for its index of stability. The following example
demonstrates this strategy.

Let I be the Stanley–Reisner ideal that corresponds to the natural triangulation of
the projective plane. Then

I = ( x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6,

x3x4x5, x3x4x6).

The following table displays in the j th row and the kth column the depth of
S(P )/I (P )k where P ∈ V ∗(I ) is of height j .

I 1 2 3 4
3 0 0 0 0
4 1 1 1 1
5 2 2 0 0
6 3 0 0 0
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The ideal I is of height 3, so depthS(P )/I (P )k = dimS(P )/I (P )k = 0 for all k

and all P ∈ V ∗(I ) of height 3. For P ∈ V ∗(I ) of height 4 the ideal I (P ) is a mono-
mial ideal complete intersection of height 3. Therefore depthS(P )/I (P )k = 1 for
all k ≥ 1. This explains the first two rows of the table. If P ∈ V ∗(I ) is of height
5, then I (P ) is the edge ideal of a 5-cycle. It follows from [5, Lemma 3.1] that
Ass∞(I (P )) = Ass(I (P )) ∪ {m} and astab(I (P )) = 3, which explains the third row
of the table. In particular, we have depthS(P )/I (P )k = 0 for all P ∈ V ∗(I ) of
height 5 and for all k ≥ 3. Finally, by using CoCoA [6] we find that depthS/I = 3,
depthS/I 2 = 0 and depthS/I 3 = 0. Borna [1, Corollary 3.3] has shown that I k has
a linear resolution for k ≥ 3 and when char(K) = 0. Applying Proposition 2.2, we
see that depthS/Ik = 0 for all k ≥ 3. It follows also that I is an ideal with non-
increasing depth functions and consequently I satisfies the persistence property, by
Proposition 2.1(b). By applying the second inequality of Proposition 2.4 we obtain
astab I ≤ 3. By using Singular [11], we find that all prime ideals of height 5 are in
Ass(I 3). Since I satisfies persistence property we see that all prime ideals of height
5 are in Ass∞(I ). It follows then that maxP∈Ass∞(I ){dstab(ISP )} ≥ 3. Finally, by
applying again Proposition 2.4 we obtain astab(I ) = 3. As a byproduct of comput-
ing the astab(I ) we obtain Ass∞(I ) = Ass(I 3). Calculations with Singular show that
Ass(I 3) consists of all prime ideals of height 3,5 and 6 which belong to V ∗(I ),
altogether 17. Moreover we see that in this example, dstab(I ) < astab(I ).

As a second example we consider the ideal I = (xyz, ytu, xzv, tuv, xtv) ⊂ S =
K[x, y, z, t, u, v]. Then I = ⋂

F∈F (Δ) PF where Δ is the simplicial complex with
facets F = {{z, t}, {x, t}, {x,u}, {y, v}, {z,u, v}} and where PF is the monomial
prime ideal whose generators correspond to the vertices of F . The simplicial com-
plex Δ has no special odd cycles in the sense of [16]. Thus as a consequence of
[16, Theorem 2.2.] it follows that the vertex cover algebra of Δ is standard graded
which implies that Ass(I ) = Ass∞(I ). Thus astab(I ) = 1. On the other hand one
can check with CoCoA that depthS/I = depthS/I 2 = 3 and depthS/I 3 = 2. Thus
astab(I ) < 3 ≤ dstab(I ).

As a last topic of this section we want to recall a few facts about the limit depth
of an ideal. As we mentioned already, the function f (k) = depthR/Ik is constant for
k � 0. We call limk→∞ depthR/Ik the limit depth of I , see [13]. This limit depth
can be computed under certain conditions that we are going to describe now.

Recall that the analytic spread of an ideal I is the Krull dimension of the fiber ring
R(I )/mR(I ). It is known by Brodmann [2] that

lim
k→∞ depthR/Ik ≤ n − �(I ).

Thus in particular, if the analytic spread of I is equal to n, then

lim
k→∞ depthR/Ik = 0.

Eisenbud and Huneke [8, Proposition 3.3] showed that equality holds in Brodmann’s
inequality if the associated graded ring grI (R) is Cohen–Macaulay, which by Huneke
[17] is the case if R and R(I ) are Cohen–Macaulay.

In the case that I is a monomial ideal generated in a single degree, the analytic
spread of I is the rank of the integer matrix whose rows correspond to the monomial
generators of I .
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3 Polymatroidal ideals and the persistence property

Discrete polymatroids were introduced in [12] and represent a natural generalization
of matroids. In the following we recall some basic facts about discrete polymatroids
(for more details see [12, 14]).

Let ε1, . . . , εn denote the canonical basis vectors of R
n. Let R

n+ denote the set of
vectors u = (u(1), . . . , u(n)) ∈ R

n with each u(i) ≥ 0. If u = (u(1), . . . , u(n)) and
v = (v(1), . . . , v(n)) are two vectors belonging to R

n+, then we write u ≤ v if all
components v(i) − u(i) of v − u are nonnegative. Moreover, we write u < v if u ≤ v

and u 
= v. The modulus of u = (u(1), . . . , u(n)) ∈ R
n+ is |u| = u(1) + · · · + u(n).

Also, let Z
n+ = R

n+ ∩ Z
n.

A discrete polymatroid on the ground set [n] is a non-empty finite set P ⊂ Z
n+

satisfying the following conditions:

(1) if u ∈ P and v ∈ Z
n+ with v ≤ u, then v ∈ P ;

(2) if u = (u(1), . . . , u(n)) ∈ P and v = (v(1), . . . , v(n)) ∈ P with |u| < |v|, then
there is i ∈ [n] with u(i) < v(i) such that u + εi ∈ P .

A base of P is a vector u ∈ P such that u < v for no v ∈ P . The set of all bases
of P is denoted by B(P ). It follows from (2) that if u1 and u2 are bases of P , then
|u1| = |u2|. The modulus of any base of P is called the rank of P and denoted by
rank P . For later proofs it is very useful to have the following characterization of
discrete polymatroids.

Let P be a non-empty finite set of integer vectors in R
n+ which contains with each

u ∈ P all its integral subvectors, that is, vectors v with v ≤ u, and let B(P ) be the
set of vectors u ∈ P with u < v for no v ∈ P . Then (see [14, Theorem 12.2.4]) P
is a discrete polymatroid with B(P ) its set of bases if and only if the following are
satisfied:

(i) all u ∈ B(P ) have the same modulus;
(ii) if u = (u(1), . . . , u(n)) ∈ B(P ) and v = (v(1), . . . , v(n)) ∈ B(P ) with u(i) >

v(i), then there is j ∈ [n] with u(j) < v(j) such that u − εi + εj ∈ B(P ).

Let P be a discrete polymatroid on [n] with B(P ) the set of bases. The polyma-
troidal ideal I attached to P is the monomial ideal of S = K[x1, . . . , xn] whose set
of minimal monomial generators is the set G(I) = {xu: u ∈ B(P )}. Observe that I is
generated in degree rank P .

Recall from Sect. 2 that for any monomial ideal I ⊂ S and any i ∈ [n] we have

Ixi
= I{i}Sxi

,

where I{i} ⊂ S{i} = K[x1, . . . , xi−1, xi+1, . . . , xn] is the monomial ideal which is ob-
tained from I by applying the substitution xi �→ 1.

Proposition 3.1 Let I ⊂ S be a polymatroidal ideal. Then for every i ∈ [n] the ideal
I{i} is again polymatroidal.

Proof Let P be the polymatroid of rank d on the ground set [n] defining the polyma-
troidal ideal I . Then I = (xu: u ∈ B(P )) is a monomial ideal in S = K[x1, . . . , xn]
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which is generated in degree d . It follows that I{i} = (xu′
: u ∈ B(P )) ⊂ S{i}, where

for all u ∈ B(P ) we set xu′ = xu/x
u(i)
i .

We first show that I{i} is generated in one degree. More precisely, if

ai = max
{
u(i) : u ∈ B(P )

}
,

then we show that

G(I{i}) = {
xu/x

ai

i : u ∈ B(P ), u(i) = ai

}
.

Indeed, let v ∈ B(P ). Then v(i) ≤ ai . We show that there exists w ∈ B(P ) with
w(i) = ai and such that xw′

divides xv′
. This will then yield the desired conclusion.

To show this we proceed by induction on ai − v(i). If ai − v(i) = 0, then there
is nothing to show. Suppose now that v(i) < ai , and let u ∈ B(P ) with u(i) = ai .
Applying the symmetric exchange property (see [14, Theorem 12.4.1]), there exists
an integer j ∈ [n] with u(j) < v(j) and such that u − εi + εj ∈ B(P ) and v1 :=
v − εj + εi ∈ B(P ). Hence we see that xv′

1 divides xv′
. Since ai − v1(i) < ai − v(i),

our induction hypothesis implies that there exists w ∈ B(P ) with w(i) = ai and such
that xw′

divides xv′
1 . It follows that xw′

divides xv′
as well, as desired.

It remains to be shown that the set B ′ := {u′ : xu′ ∈ G(I{i})} is the set of bases of
a discrete polymatroid P ′ of rank d − ai on the ground set [n] \ {i}. First notice that
for all u′ ∈ B ′ we have |u′| = d − ai . In order to verify the exchange property, let
u′, v′ ∈ B ′ with u′(k) > v′(k). Then we have k 
= i. We may apply now the exchange
property for u,v ∈ B(P ): u(k) = u′(k) > v′(k) = v(k) then there exists l ∈ [n] such
that u(l) < v(l) and such that the vector t = u− εk + εl ∈ B(P ). Since u(i) = v(i) =
ai , it follows that l 
= i and t (i) = ai . Therefore we obtain t ′ ∈ B ′, where t ′ = u′ −
εk + εl , as desired. �

Corollary 3.2 If I is a polymatroidal ideal, then I (P ) is a polymatroidal ideal for
all P ∈ V ∗(I ).

Proposition 3.3 Let I ⊂ S be a polymatroidal ideal. Then I has the persistence
property.

Proof Let k ≥ 1 be an integer. According to Lemma 2.3 we have P ∈ Ass(I k) if and
only if depthS(P )/I k(P ) = 0. Note that I j (P ) = I (P )j for all j ≥ 1. Moreover, we
know from Corollary 3.2 that I (P ) is again a polymatroidal ideal. Since powers of
polymatroidal ideals are again polymatroidal, see [14, Theorem 12.6.3], and since by
[14, Theorem 12.6.2] polymatroidal ideals have linear resolutions, we conclude that
all powers of I (P ) have a linear resolution. Now we apply Proposition 2.2 and we
obtain depthS(P )/I j (P ) = 0 for all j ≥ k. But this implies that P ∈ Ass(I j ) for all
j ≥ k, as desired. �

Our next goal is to describe the stable set of associated prime ideals of a poly-
matroidal ideal. For that purpose we first recall the following result of Villarreal [20,
Proposition 3.11]. For the convenience of the reader we present here an alternative
proof of it.
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Theorem 3.4 Let I ⊂ S be a polymatroidal ideal. Then R(I ) is a normal ring.

Proof It is a well-known fact that R(I ) is a normal ring if and only if I is a normal
ideal (see [15, Proposition 2.1.2]). By definition, I is normal if all powers of I are in-
tegrally closed. Since a product of polymatroidal ideals is again a polymatroidal ideal
(see [7, Theorem 5.3]), it is enough to prove that polymatroidal ideals are integrally
closed. Since I is in particular a monomial ideal, it follows from [14, Theorem 1.4.2]
that I is integrally closed if and only if the following condition is satisfied: for every
monomial u ∈ S and every integer k such that uk ∈ I k we have u ∈ I .

Let u ∈ S be a monomial of degree t and k an integer such that uk ∈ I k . Since I

is generated in one degree, say d , it follows from uk ∈ I k that tk ≥ dk, that is, t ≥ d .
Let Il be the K-subspace of I spanned by all monomials of degree l. Then

(
I k

)
tk

= Stk−dk

(
I k

)
dk

= (St−d)k(Id)k = (St−dId)k.

Observe that St−dId = Jt where J = mt−dI is a polymatroidal ideal generated in
degree t . Therefore, we obtain

uk ∈ (
I k

)
tk

= (Jt )
k.

Consequently, we see that u belongs to the integral closure of the base ring K[J ].
Applying now the normality of K[J ] (see [14, Theorem 12.5.1]) we obtain u ∈ K[J ].
It follows that u ∈ J . Therefore u ∈ I , as desired. �

Corollary 3.5 Let I ⊂ S = K[x1, . . . , xn] be a polymatroidal ideal. Then

lim
k→∞ depthS/Ik = n − �(I ).

Combining Corollary 3.2 with the preceding corollary one obtains the following
algorithm to determine Ass∞(I ) for any polymatroidal ideal.

Algorithm 3.6 Let I be a polymatroidal ideal with G(I) = {xu1, . . . , xum}, and let
A be the m × n integer matrix with entries aij = ui(j).

Let F be a non-empty subset of [n], and v1, . . . , vm be the row vectors of the
submatrix (aij )i∈[m], j∈F of A. Furthermore, let {vi1, . . . , vir } be the set of minimal
elements among the vectors v1, . . . , vm with respect to the partial order given by com-
ponentwise comparison. Then PF ∈ Ass∞(I ) if and only if rank(aik,j )k=1,...,r, j∈F =
|F |.

Thus Ass∞(I ) can be determined in finitely many steps.

4 Transversal polymatroids

Let F be a non-empty subset of [n]. As before we denote by PF the monomial prime
ideal ({xi : i ∈ F }). A transversal polymatroidal ideal is an ideal I of the form

I = PF1PF2 · · ·PFr , (1)

where F1, . . . ,Fr is a collection of non-empty subsets of [n] with r ≥ 1. It follows
from the definition that the product of transversal polymatroidal ideals is again a
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transversal polymatroidal ideal. By taking powers of the prime ideal factors of I

which appear several times in (1), we get

I =
s∏

j=1

P
aj

Gj
with aj ≥ 1, (2)

where Gj 
= Gk for j 
= k.

Lemma 4.1 Let I be a transversal polymatroidal ideal. Then I has a unique presen-
tation as in (2).

Proof We proceed by induction on s, the number of different prime factors in the
presentation of I . So let s = 1 and I = P

a1
G1

. We identify G1 as the set of all indices i

for which Ixi
= Sxi

. The exponent a1 is the degree of the generators of I .
Now let s > 1 and assume that I has a presentation as in (2). We may further

assume that
⋃s

j=1 Gj = [n]. Then for each i = 1, . . . , n the ideal Ixi
determines

I{i} =
s∏

j=1
i 
∈Gj

P
aj

Gj
.

The transversal polymatroidal ideal I{i} has less different prime ideal factors than I

since
⋃s

j=1 Gj = [n]. Thus our induction hypothesis implies that the presentation of
I{i} in the form (2) is unique. For each j such that Gj 
= [n] there exists an integer
i ∈ [n] such that P

aj

Gj
is a factor of I{i}. Thus we identified all factors P

aj

Gj
with Gj 
=

[n]. The factor P[n] appears with the exponent

d −
s∑

j=1
Gj 
=[n]

aj ,

where d is the degree of the generators of I . �

In order to characterize the set of associated prime ideals of I we will introduce a
graph GI associated with I as follows: the set of vertices V (GI ) is the set {1, . . . , r}
and {i, j} is an edge of GI if and only if Fi ∩ Fj 
= ∅.

Example 4.2 Let F1 = {1,2}, F2 = {1,2,3,4}, F3 = {3,5}, F4 = {4,5} and I =
PF1 · · ·PF4 be the transversal polymatroidal ideal of K[x1, . . . , x5]. Notice that I =
(x1, x2)(x1, x2, x3, x4)(x3, x5)(x4, x5). Then in Fig. 1 we have depicted the graphs
GI and GI 2 . One can notice that for any transversal polymatroidal ideal I the graph
GIk is just the kth expansion of GI (see [9, Definition 4.2]).

Now we are ready to decide whether the maximal ideal is an associated prime of
the transversal polymatroidal ideal I from the connectedness of the graph GI . More
precisely, we have

Theorem 4.3 Let I = PF1 · · ·PFr ⊂ S be a transversal polymatroidal ideal. Then
m ∈ Ass(I ) if and only if

⋃r
i=1 Fi = [n] and GI is connected.



300 J Algebr Comb (2013) 37:289–312

Fig. 1 The graph
of a transversal polymatroidal
ideal

Proof Let us first assume that m ∈ Ass(I ). Then it follows that
⋃r

i=1 Fi = [n]. In-
deed, let F := ⋃r

i=1 Fi � [n]. Then there exists an ideal J ⊂ S(PF ) such that I = JS.
Therefore we have

depthS S/I = depthS(PF ) S(PF )/J + n − |F | > 0,

a contradiction.
Assume that GI is disconnected. It follows from the definition of GI that after an

eventual relabeling of the vertices there exists an integer l such that 1 ≤ l < r and
(

l⋃

i=1

Fi

)

∩
(

r⋃

i=l+1

Fi

)

= ∅. (3)

This implies that there exist integers s, t ∈ [n] such that

s ∈
(

l⋃

i=1

Fi

)

and t ∈
(

r⋃

i=l+1

Fi

)

. (4)

Since m ∈ Ass(I ) then there exists a monomial z ∈ S \ I such that m = I : (z). From
this it follows in particular that xsz ∈ I and xtz ∈ I . By using that I = PF1 · · ·PFr we
obtain

xsz = xi1 · · ·xir and xtz = xj1 · · ·xjr , (5)

where ik, jk ∈ Fk for all k. It follows now from (4) and (5) that s ∈ {i1, . . . , il} and
t ∈ {jl+1, . . . , jr}. Hence z ∈ PFl+1 · · ·PFr and z ∈ PF1 · · ·PFl

. Consequently

z ∈ PF1 · · ·PFl
∩ PFl+1 · · ·PFr = PF1 · · ·PFl

· PFl+1 · · ·PFr = I,

where the first equality is implied by (3). This yields z ∈ I , a contradiction.
Conversely, assume that

⋃r
i=1 Fi = [n] and GI is connected. We will prove that

m ∈ Ass(I ) by explicitly constructing a monomial z ∈ S \ I such that I : z = m. Since
GI is connected and has r vertices, we may consider a spanning tree T for GI , that
is, a collection of r − 1 edges, say e1, . . . , er−1 which cover all vertices of GI (see
the trees T1, T2 and T3 from Example 4.4).

For k = 1, . . . , r − 1 let ek = {ik, jk}. Then by the definition of GI we have Fik ∩
Fjk


= ∅. For any such k we choose an element lk ∈ Fik ∩ Fjk
. We define now the

monomial z as being

z = xl1 · · ·xlr−1 .
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We claim that for any i ∈ [r] we have z ∈ ∏
j 
=i PFj

. If our claim is true then
we obtain at once that I : z = m. Indeed, since deg(z) = r − 1 we obtain first that
z 
∈ I . It remains to be shown that mz ⊂ I . Let i ∈ [n] be an arbitrary integer. By our
assumption, we have

⋃r
i=1 Fi = [n], hence there exists an integer k such that i ∈ Fk .

By the claim we have z ∈ ∏
j 
=k PFj

. Therefore, we obtain

xiz ∈ PFk
·
∏

j 
=k

PFj
= I,

as desired.
In order to prove our claim let i ∈ [r] be an integer. We will reformulate our claim

in terms of certain numerical functions on trees and prove it by induction on r . In-
deed, it follows from the definition of z that z ∈ ∏

j 
=i PFj
if there exists a function

f : {e1, . . . , er−1} → [r] with Imf = [r] \ {i} and such that f (ek) ∈ {ik, jk}.
The case r = 2 is obvious. Since T is a tree, there exists a vertex of degree 1.

For simplicity, we may assume that this vertex is 1, his only adjacent vertex is 2 and
e1 = {1,2}. The graph T \ {1} is a tree with the r − 1 vertices {2, . . . , r} and edges
{e2, . . . , er−1}. It follows from the induction hypothesis that for every i ∈ {2, . . . , r}
there exists a function fi : {e2, . . . , er−1} → {2, . . . , r} such that Imfi = {2, . . . , r} \
{i}. We may extend these functions to

f̃i : {e1, . . . , er−1} �→ {1, . . . , r},
by setting f̃i (e1) = 1 and f̃i (ej ) = fi(ej ) for all j ≥ 2 and obtain Im f̃i = [r] \ {i} for
all i ≥ 2. Finally consider f̃1 : {e1, . . . , er−1} �→ {1, . . . , r} to be the function defined
by f̃1(e1) = 2 and f̃1(ej ) = f2(ej ) for all j ≥ 2. It follows that Im f̃1 = [r] \ {1} and
we are done. �

Example 4.4 In the case that m ∈ Ass(I ) the proof of Theorem 4.3 allows us to com-
pute a monomial z such that I : z = m. However we may have several possibilities
for choosing z since its choice depends on the spanning tree of GI and on the inter-
sections of the sets Fi corresponding to the adjacent vertices of the tree. Indeed, let
us return to the ideal I from the Example 4.2. The graph GI is connected with the
three spanning trees T1, T2 and T3 depicted below.

The spanning tree T1 gives rise to two such monomials, x1x3x4 and x2x3x4, since
F1 ∩F2 = {1,2}, F2 ∩F3 = {3} and F2 ∩F4 = {4}. Analogously T2 and T3 determine
the monomials x1x4x5, x2x4x5, respectively, x1x3x5, x2x3x5.

Corollary 4.5 Let I ⊂ S be a transversal polymatroidal ideal. Then m ∈ Ass(I ) if
and only if m ∈ Ass∞(I ).
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Proof By Proposition 3.3, I satisfies the persistence property. Therefore m ∈
Ass∞(I ) if m ∈ Ass(I ). For the converse, let I = PF1 · · ·PFr and m ∈ Ass∞(I ). Then
there exists an integer k ≥ 1 such that m ∈ Ass(I k). Since I k is again a transver-
sal polymatroidal ideal, it follows from Theorem 4.3 that GIk is connected and⋃r

i=1 Fi = [n]. One easily notices that GIk is connected if and only if GI is con-
nected. Applying again Theorem 4.3 we get the desired conclusion. �

By using the fact that the localization of a transversal polymatroidal ideal is again
a transversal polymatroidal ideal we obtain the following.

Corollary 4.6 Let I ⊂ S be a transversal polymatroidal ideal. Then astab(I ) = 1,
that is,

Ass(I ) = Ass∞(I ).

Proof It follows from Proposition 3.3 that Ass(I ) ⊂ Ass∞(I ). For the converse in-
clusion, let P ∈ Ass∞(I ). Then there exists k ≥ 1 such that P ∈ Ass(I k). Applying
Lemma 2.3 we obtain P ∈ Ass(S(P )/I k(P )). Notice now that I k(P ) = I (P )k and
that I (P ) is also a transversal polymatroidal ideal. Since P is the maximal ideal of
S(P ), it follows from Corollary 4.5 that P ∈ Ass(S(P )/I (P )). Therefore, by apply-
ing again Lemma 2.3 we obtain P ∈ Ass(I ). �

In particular, in the case when I = PF1 · · ·PFr is the transversal polymatroidal
ideal such that the sets F1, . . . ,Fr are pairwise disjoint we recover the previously
known fact that Ass(I ) = Ass∞(I ), see [10, Theorem 4.6] and [10, Corollary 4.26].
Next we want to describe the set of associated prime ideals of a transversal polyma-
troidal ideal I . In [7, Lemma 3.2] the authors gave a primary decomposition of such
a transversal polymatroidal ideal, but unfortunately this primary decomposition is in
general far from being irredundant, see also [7, Proposition 3.4]. Therefore we can-
not read off from their primary decomposition the set of associated prime ideals of
a transversal polymatroidal ideal. However, by using the graph GI this can be done.
For this, to each subgraph H of GI we associate the prime ideal PH = ∑

i∈V (H) PFi
.

Theorem 4.7 Let I ⊂ S be a transversal polymatroidal ideal. Then

Ass(I ) = {PT : T is a tree in GI }.

Proof Let I = PF1 · · ·PFr . We prove the statement by induction on r . The case r = 1
is trivial, since in that case GI is just a vertex. We may assume that GI is connected.
Indeed, let G1, . . . ,Gk be the connected components of GI , with k ≥ 2. Then I =
I1 · · · Ik , where

Ij =
∏

i∈V (Gj )

PFi
.

Furthermore, Gj = GIj
for all j . Notice that I = I1 · · · Ik = I1 ∩ · · · ∩ Ik , since

the ideals Ij are generated in pairwise disjoint sets of variables. Hence we obtain
Ass(I ) = Ass(I1) ∪ · · · ∪ Ass(Ik), where Ij is a transversal polymatroidal ideal with
the associated connected graph GIj

.
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Obviously we may assume that
⋃r

j=1 Fj = [n].
Let P ∈ Ass(I ). If P = m, then by Theorem 4.3 we have P = PT , where T is a

spanning tree of GI . Otherwise there exists an integer i ∈ [n] such that xi 
∈ P . Then
P ∈ Ass(I{i}) where

I{i} =
r∏

j=1
i 
∈Fj

PFj
.

The number of prime factors appearing in I{i} is less than r , since
⋃r

j=1 Fj = [n].
Applying now the induction hypothesis, we obtain P = PT for some tree T in GI{i} .
Since GI{i} is a subgraph of GI , we obtain the desired conclusion.

Conversely, let T be a tree in GI . If T is a spanning tree, then we know from the
proof of Theorem 4.3 that PT = m ∈ Ass(I ). Therefore we may assume that T is
a tree in GI with |V (T )| < r and PT 
= m. This implies that there exists an integer
i ∈ [n] such that xi 
∈ PT . Then T remains a tree in GI{i} since all vertices of T
belong to GI{i} . Moreover, the number of prime factors appearing in I{i} is less than
r . Therefore, by induction hypothesis we obtain PT ∈ Ass(I{i}) and consequently
PT ∈ Ass(I ). �

Example 4.8 Consider again the ideal I given in the Example 4.2, that is,

I = (x1, x2)(x1, x2, x3, x4)(x3, x5)(x4, x5).

The trees of GI have one, two, three, or four vertices. The one-vertex trees, that is,
the vertices, correspond to the associated primes PF1, . . . ,PF4 . The two-vertex trees
correspond to the associated primes PF1 +PF2,PF2 +PF3,PF2 +PF4,PF3 +PF4 . All
trees with three and four vertices generate the same associated prime m. Consequently
we obtain

Ass(I ) = {
(x1, x2), (x1, x2, x3, x4), (x3, x5), (x4, x5), (x3, x4, x5), (x1, x2, x3, x4, x5)

}
.

In particular, we also find that the minimal associated primes correspond to vertices
of GI . However, as this example shows, in general not all the vertices give rise to
minimal prime ideals.

As a consequence of the above theorem we obtain a description of all possible
sets of associated prime ideals of a transversal polymatroidal ideal. More precisely
we have

Corollary 4.9 Let F be a subset of 2[n] such that ∅ 
∈ F . Assume that F satisfies the
following condition:

A ∪ B ∈ F for all A,B ∈ F with A ∩ B 
= ∅. (6)

Then there exists a transversal polymatroidal ideal I such that

Ass(I ) = {PA: A ∈ F }.
Conversely, given any transversal polymatroidal ideal I , the set

{
A: A ⊂ [n] and PA ∈ Ass(I )

}

satisfies condition (6).
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Proof Consider F = {A1, . . . ,Ar} to be a set of non-empty subsets of [n] which
satisfies condition (6). We define the transversal polymatroidal ideal I ⊂ S to be
I = ∏r

i=1 PAi
. Then since we consider the vertices of GI as trees as well, we obtain

from Theorem 4.7 that

Ass(I ) = {PT : T is a tree in GI } ⊃ {PA1 , . . . ,PAr }.
We prove the converse inclusion by showing that PT ∈ {PA1, . . . ,PAr } for any tree
T of GI . This will be shown by induction on k, the number of vertices of a tree of
GI . The case k = 1 is obvious, since the vertices of GI correspond to all PAi

with
i = 1, . . . , r . Assume now that T is a tree of GI with the set of vertices V (T ) =
{i1, . . . , ik}. Since T is a tree, there exists a vertex of degree 1. We may assume that
this vertex is i1 and furthermore that {i1, i2} is an edge of T . Therefore Ai1 ∩Ai2 
= ∅.
For the tree T ′ = T \ {i1} we apply the induction hypothesis and obtain PT ′ = PA,
where A = ⋃k

j=2 Aij ∈ F . Hence Ai1 ∩ A 
= ∅, and by using the fact that Ai1,A ∈ F
we obtain via (6) that Ai1 ∪ A ∈ F . The conclusion follows at once from the equality
PT = PB , where B = Ai1 ∪ A.

Conversely, let I = PF1 · · ·PFr be a transversal polymatroidal ideal. Consider now
two subsets A,B of [n] such that A ∩ B 
= ∅ and PA,PB ∈ Ass(I ). By Theorem 4.7
we know that there exist two trees T , T ′ of GI such that PA = PT and PB = PT ′ .
Therefore, we obtain A = ⋃

i∈V (T ) Fi and B = ⋃
i∈V (T ′) Fi . Thus A∩B 
= ∅ implies

that there exist two vertices i ∈ V (T ) and j ∈ V (T ′) such that Fi ∩ Fj 
= ∅. Conse-
quently, the subgraph H of GI , whose set of vertices V (H) is V (T ) ∪ V (T ′) and the
edges of H are the edges of T and T ′, is connected. A spanning tree T ′′ of H is a
tree of GI and has the property that

PT ′′ =
∑

i∈V (T ′′)
PFi

=
∑

i∈V (H)

PFi
=

∑

i∈V (T )∪V (T ′)
PFi

= PA∪B.

Therefore, by applying again Theorem 4.7 we obtain PA∪B ∈ Ass(I ), as desired. �

We obtain also from the Theorem 4.7 an irredundant primary decomposition for
any power of a transversal polymatroidal ideal. This improves [7, Lemma 3.2], where
the authors could give only a primary decomposition of a transversal polymatroidal
ideal, which in general was far from being irredundant. Our proof uses their primary
decomposition.

Corollary 4.10 Let I ⊂ S be a transversal polymatroidal ideal with the set of asso-
ciated prime ideals Ass(I ) = {P1, . . . ,Pl}. Consider T1, . . . , Tl maximal trees of GI

such that Pj = PTj
for all j = 1, . . . , l. Then

I k =
l⋂

j=1

P
kaj

j ,

is an irredundant primary decomposition of I k for any k ≥ 1, where aj = |V (Tj )| for
all j .

Proof First we recall that for the transversal polymatroidal ideal I = PF1 · · ·PFr we
have the following primary decomposition (see [7, Lemma 3.2]):
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I =
⋂

A⊂[r]
A
=∅

(∑

i∈A

PFi

)|A|
. (7)

Since (
∑

i∈A PFi
)|A| is

∑
i∈A PFi

-primary and Ass(I ) = {P1, . . . ,Pl} it follows that

I =
l⋂

j=1

(
⋂

A⊂[r]∑
i∈A PFi

=Pj

P
|A|
j

)

.

In order to obtain the desired irredundant primary decomposition it remains to be
shown that aj ≥ |A| for all A with

∑
i∈A PFi

= Pj . To see this, let H be the induced
subgraph of GI with vertex set V (H) = {i: i ∈ V (GI ) and PFi

⊂ Pj }. Then we have
A ⊂ V (H). Since Pj = ∑

i∈V (Tj ) PFi
it follows that Tj is also a tree of H.

We show that H is connected. Indeed, let i, s be two vertices of H. Since
PFi

⊂ ∑
i∈V (Tj ) PFi

, it follows that there exists an integer i0 such that Fi ∩ Fi0 
= ∅.
Therefore, {i, i0} is an edge of H. Similarly, we see that there exists an integer s0 such
that {s, s0} is an edge of H. Hence there exists a path from i to s and this yields the
desired conclusion.

It follows that V (Tj ) = V (H). Therefore, |A| ≤ |V (Tj )| = aj .
The irredundant primary decomposition for I k follows at once, since the maximal

trees in GIk that realize Pj have kaj vertices. �

Example 4.11 For the ideal I introduced in Example 4.2 we have computed in Ex-
ample 4.8 the set of associated prime ideals

Ass(I )={P1, . . . ,P6}
={

(x1, x2), (x1, x2, x3, x4), (x3, x5), (x4, x5), (x3, x4, x5), (x1, x2, x3, x4, x5)
}
.

We noticed there that different trees may determine the same associated prime ideal.
For example, P6 = m is determined by all spanning trees of GI , all trees of GI

with three vertices and the following trees with two vertices: {2,4}, {2,3}. There-
fore a6 = 4, and for T6 we can choose any spanning tree of GI . For each of the
trees T1, . . . , T5 there is only one choice. These trees are determined by their sets of
vertices:

V (T1) = {1}, V (T2) = {1,2}, V (T3) = {3},
V (T4) = {4}, V (T5) = {3,4}.

Associated with these trees we have a1 = 1, a2 = 2, a3 = 1, a4 = 1 and a5 = 2. It
follows now from Corollary 4.10 that the corresponding irredundant primary decom-
position of I is

I = P1 ∩ P 2
2 ∩ P3 ∩ P4 ∩ P 2

5 ∩ P 4
6 .

By using the graph GI of a transversal polymatroidal ideal I we get also a formula
for depthS/I . More precisely we have
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Theorem 4.12 Let I = PF1 · · ·PFr ⊂ S be a transversal polymatroidal ideal. Then

depthS/I = c(GI ) − 1 + n −
∣
∣
∣
∣
∣

r⋃

i=1

Fi

∣
∣
∣
∣
∣
,

where by c(GI ) we denote the number of connected components of the graph GI .

Proof We may assume that
⋃r

i=1 Fi = [n]. Indeed, let A = ⋃r
i=1 Fi . Since I = JS

for the polymatroidal ideal J ⊂ S(PA) with G(J ) = G(I), we have

depthS/I = depthS(PA)/J + n − |A|.
The graphs GI and GJ are identical, therefore c(GI ) = c(GJ ). Consequently,
depthS(PA)/J = c(GJ ) − 1 implies the desired formula for depthS/I .

Let k = c(GI ). We prove the statement by induction on k. If k = 1, then GI is
connected. By applying Theorem 4.3 we obtain m ∈ Ass(I ). Hence depthS/I = 0,
as desired. Assume now that k ≥ 2, and let G1, . . . ,Gk be the connected components
of GI . As in the proof of Theorem 4.7 we denote by I1, . . . , Ik the transversal poly-
matroidal ideals for which the associated graphs are the connected components of
GI . Hence I = I1 · · · Ik = I1 ∩ · · · ∩ Ik . Without loss of generality we may assume
that 1 ≤ l1 ≤ · · · ≤ lk , where for all j

lj =
∣
∣
∣
∣

⋃

i∈V (Gj )

Fi

∣
∣
∣
∣,

and that
⋃

i∈V (G1)
Fi = {1, . . . , l1}. Observe that l1 + · · · + lk = n.

We have two cases to analyze. First we treat the case l1 = 1. This implies that the
ideal I1 is generated by x1. If for all j = 1, . . . , k we have lj = 1 then k = n and the
ideal I is principal. Therefore, depthS/I = n − 1, as desired. Otherwise lk ≥ 2 and
k ≤ n − 1. Consider the short exact sequence

0 −→ S/
(
I : (x1)

) −→ S/I −→ S/
(
I + (x1)

) −→ 0.

Since S/(I + (x1)) = S/(x1) it follows that depthS/(I + (x1)) = n−1. We also have
I : (x1) = I2 · · · Ik . By induction hypothesis depthS/(I : (x1)) = k −1−1+n− (n−
1) = k − 1 ≤ n− 2. By applying Depth Lemma (see [4, Proposition 1.2.9]) we obtain
depthS/I = k − 1, as desired.

Consider now the second case, that is, l1 ≥ 2. We use the following short exact
sequence:

0 −→ S/I −→ S/I1 ⊕ S/(I2 ∩ · · · ∩ Ik) −→ S/(I1 + I2 ∩ · · · ∩ Ik) −→ 0.

By induction hypothesis we have depthS/I1 = n − l1 and depthS/(I2 ∩ · · · ∩ Ik) =
k − 2 + l1, since I2 ∩ · · · ∩ Ik = I2 · · · Ik . It follows from

⋃r
i=1 Fi = [n] that l1 + · · ·

+ lk = n and consequently that kl1 ≤ n. Therefore we have n− l1 ≥ k and k−2+ l1 ≥
k. This implies that

depth
(
S/I1 ⊕ S/(I2 ∩ · · · ∩ Ik)

) = min
{
depthS/I1,depthS/(I2 ∩ · · · ∩ Ik)

} ≥ k.

Since the ideals I1 and I2 · · · Ik = I2 ∩ · · · ∩ Ik are generated in disjoint sets of vari-
ables we obtain

S/(I1 + I2 · · · Ik) ∼= S1/I1 ⊗K S2/(I2 · · · Ik),
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where S1 = K[x1, . . . , xl1 ] and S2 = K[xl1+1, . . . , xn]. Therefore, by the additivity of
depth and using the induction hypothesis we have

depthS/(I1 + I2 · · · Ik) = depthS1/I1 + depthS2/(I2 · · · Ik) = 0 + (k − 2) = k − 2.

By applying again Depth Lemma we find that depthS/I = k − 1, as desired. �

Remark 4.13 In [14, Theorem 12.6.7] the authors classify all Cohen–Macaulay poly-
matroidal ideals, which turn out to be the principal ideals, the Veronese ideals and the
squarefree Veronese ideals. In the special case of transversal polymatroidal ideal one
may derive as a consequence of Theorem 4.12 and Theorem 4.7 the above result and
obtains that the Cohen–Macaulay transversal polymatroidal ideals are the principal
ideals and the Veronese ideals. Indeed, notice that Theorem 4.7 implies

dimS/I = n − min
{|Fi |: i = 1, . . . , r

}
.

We denote by a the minimal cardinality of a set Fi , where i = 1, . . . , r . Hence
dimS/I = n − a. We may assume that

⋃r
i=1 Fi = [n], and then it follows from

Theorem 4.12 that S/I is Cohen–Macaulay if and only if n − a = k − 1, where k

represents the number of connected components of GI . Since n ≥ ka it follows that
k−1 = n−a ≥ ka−a = (k−1)a. Therefore we see that this inequality is valid either
if k = 1 or a = 1. If k = 1, then a = n and consequently |Fi | = n, for all i = 1, . . . , r .
This implies that Fi = [n] for all i and hence I = mr , the Veronese ideal. Otherwise
a = 1 and then k = n. In this case GI has n connected components. Hence we obtain
r = n and |Fi | = 1 for all i = 1, . . . , n. This yields that I is a principal ideal.

As a consequence of Theorem 4.12 we find that depthS/Ik , as a function of k, is
constant for any transversal polymatroidal ideal and hence we may also compute the
analytic spread of I .

Corollary 4.14 Let I ⊂ S be a transversal polymatroidal ideal. Then depthS/I =
depthS/Ik for all k ≥ 1. In particular, we have depthS/I = limk→∞ depthS/Ik and
�(I ) = n − depthS/I .

Proof Since c(GI ) = c(GIk ) for any k ≥ 1, then by applying Theorem 4.12 we ob-
tain depthS/I = depthS/Ik for all k ≥ 1. Therefore we also have

lim
k→∞ depthS/Ik = depthS/I.

By Corollary 3.5 we get the desired formula for �(I ). �

5 Ideals of Veronese type

Fix a positive integer d and non-negative integers a1, . . . , an with a1 + · · · + an ≥ d .
Let B ⊂ Z

n+ be the set of vectors u ∈ Z
n+ with u(i) ≤ ai for all i = 1, . . . , n and

with |u| = d . Then B represents the set of bases of a discrete polymatroid P on the
ground set [n], of rank d , which is called a discrete polymatroid of Veronese type. Its
polymatroidal ideal I ⊂ S is called an ideal of Veronese type and will be denoted by
Id;a1,...,an

. The following result is an immediate consequence of the definition of an
ideal of Veronese type and of Proposition 3.1.
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Lemma 5.1 Let I = Id;a1,...,an
⊂ S be an ideal of Veronese type. Then we have

(a) I k = Ikd;ka1,...,kan
for every integer k ≥ 1;

(b) I{i} = Id−bi ;a1,...,0,...,an
⊂ K[{xj : j 
= i}], where bi is the maximal degree of the

variable xi in a minimal generator of I .

There are three particular cases of ideals of Veronese type that we will con-
sider first. The first case is when d = ∑n

i=1 ai , that is, I = Id;a1,...,an
is a prin-

cipal ideal. Then Ass∞(I ) = Ass(I ) = {(xi1), . . . , (xir )}, where ai1, . . . , air are
all the nonzero integers from a1, . . . , an. Moreover, we have depthS/I = n − 1,
limk→∞ depthS/Ik = n − 1, �(I ) = 1 and dstab(I ) = astab(I ) = 1.

The second case is when d = 1. Then I = I1;a1,...,an
is a monomial prime ideal.

Therefore Ass∞(I ) = Ass(I ) = {I }. Furthermore, we have depthS/I = n−height I ,
limk→∞ depthS/Ik = n − height I , �(I ) = height I and dstab(I ) = astab(I ) = 1.

The third case to be considered is when there exists i ∈ [n] such that ai = 0. Let
A be the subset of [n] defined as A = {j : aj 
= 0}. Then A 
= ∅ and G(I) ⊂ S(PA),
where I = Id;a1,...,an

. By the convention made before Lemma 2.3 we identify I with
G(I)S(PA). For simplicity of notation we denote by J ⊂ S(PA) the ideal of Veronese
type G(I)S(PA). It follows then that

Ass∞
S (I ) = Ass∞

S(PA)(J ).

Furthermore, we have astab(I ) = astab(J ) and depthS/I = depthS(PA)/J + n −
|A|. In addition, since I k can be identified with J k , we also have limk→∞ depthS/Ik

= limk→∞ depthS(PA)/J k + n − |A|, �(I ) = �(J ) and dstab(I ) = dstab(J ).
Due to these considerations we may assume throughout the rest of this section that

I = Id;a1,...,an
⊂ S is a Veronese type ideal satisfying

d <

n∑

i=1

ai and d > 1 and a1, . . . , an ≥ 1. (8)

We recall that for such ideals of Veronese type there is a precise description of the
associated prime ideals given in [21, Proposition 3.1].

Proposition 5.2 Let I = Id;a1,...,an
⊂ S be an ideal of Veronese type satisfying (8)

and A a subset of [n]. Then

PA ∈ Ass(I ) ⇐⇒
n∑

i=1

ai ≥ d − 1 + |A| and
∑

i 
∈A

ai ≤ d − 1.

By using this result we prove the following.

Proposition 5.3 Let I = Id;a1,...,an
⊂ S be an ideal of Veronese type satisfying (8).

Then Ass∞(I ) = V ∗(I ).
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Proof It is obvious that Ass∞(I ) ⊂ V ∗(I ). Conversely, let PA ∈ V ∗(I ) for some
subset A of [n]. Then there exists a minimal prime ideal PB ∈ Ass(I ) such that PB ⊂
PA. This implies that B ⊂ A and furthermore, by applying Proposition 5.2, we have

∑

i 
∈A

ai ≤
∑

i 
∈B

ai ≤ d − 1.

Consequently we get for any integer l ≥ 1
∑

i 
∈A

lai ≤ l(d − 1) ≤ ld − 1.

Since I satisfies (8) we have
∑n

i=1 ai ≥ d + 1. Then for k = |A| − 1 we have

k

(
n∑

i=1

ai − d

)

≥ |A| − 1.

Therefore, we get
∑n

i=1 kai > kd − 1 + |A|. Combining this inequality with∑
i 
∈A kai ≤ kd − 1 and applying Proposition 5.2, we obtain PA ∈ Ass(Ikd;ka1,...,kan

).

Therefore, by Lemma 5.1(a), we have PA ∈ Ass(I k). Thus we get PA ∈ Ass∞(I ), by
the persistence property, as desired. �

It follows immediately from Proposition 5.3 that Ass∞(I ) is determined by the
minimal prime ideals of I . According to Proposition 5.2 these minimal prime ideals
can be determined as follows: PF is a minimal prime ideal of I if and only if F is a
minimal subset of [n] with respect to inclusion satisfying the following inequalities:

∑

i 
∈F

ai +
∑

i∈F

(ai − 1) ≥ d − 1 and
∑

i 
∈F

ai ≤ d − 1.

We can say somewhat more about the set V ∗(I ) for I = Id;a1,a2,...,an
. Without any

loss of generality we may assume that a1 ≥ a2 ≥ · · · ≥ an. We will use the following
facts:

(i) ([21, Lemma 2.1])
√

I is squarefree strongly stable, that is, for all monomials
xF ∈ I and all integers 1 ≤ i < j ≤ n such that j ∈ F and i 
∈ F it follows that
x(F\{j})∪{i} ∈ I . Here xF = ∏

i∈F xi for F ⊂ [n].
(ii) ([21, Lemma 2.3]) Let J be a squarefree strongly stable ideal, then the Alexan-

der dual J∨ of J is also squarefree strongly stable.
(iii) PF ∈ V ∗(J ) if and only if xF ∈ J∨ for any monomial ideal J .

Combining (i), (ii) and (iii) we obtain

Proposition 5.4 Let I = Id;a1,...,an
be an ideal of Veronese type with a1 ≥ a2 ≥ · · · ≥

an. Then for all PF ∈ V ∗(I ) and 1 ≤ i < j ≤ n with j ∈ F and i 
∈ F it follows that
P(F\{j})∪{i} ∈ V ∗(I ).

It is not the case, as one might expect, that any set F of incomparable monomial
prime ideals can be realized as the set of minimal prime ideals of an ideal of Veronese
type. For example, let F = {(x1, x2), (x3, x4)}. No matter which order of the variables
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we choose, the ideal (x1, x2)(x3, x4) is never squarefree strongly stable with respect
to the given order of the variables.

We now characterize the ideals of Veronese type I ⊂ S satisfying (8) for which
astab(I ) = 1.

Corollary 5.5 Let I = Id;a1,...,an
⊂ S be an ideal of Veronese type satisfying (8).

Then the following conditions are equivalent:

(a) m ∈ Ass(I );
(b) Ass(I ) = Ass∞(I );
(c)

∑n
i=1 ai ≥ d − 1 + n.

Proof By applying Proposition 5.2 we obtain (a) ⇔ (c), since m = P[n]. The impli-
cation (b) ⇒ (a) follows from Proposition 5.3. For (a) ⇒ (b), let PA ∈ Ass∞(I ) for
some subset A of [n]. Since m ∈ Ass(I ) we obtain

∑n
i=1 ai ≥ d − 1 + n. Therefore∑n

i=1 ai ≥ d − 1 + |A|. The inequality
∑

i 
∈A ai ≤ d − 1 follows from the proof of
Proposition 5.3. Hence, by applying again Proposition 5.2, we obtain PA ∈ Ass(I ),
as desired. �

In the following we give an upper bound for the index of stability of any prime
P ∈ Ass∞(I ) which we define to be the smallest integer k such that P ∈ Ass(I k).

Corollary 5.6 Let I = Id;a1,...,an
⊂ S be an ideal of Veronese type satisfying (8) and

A a subset of [n] with PA ∈ Ass∞(I ). Then the index of stability of PA is equal to
� |A|−1∑n

i=1 ai−d
�. In particular,

astab(I ) =
⌈

n − 1
∑n

i=1 ai − d

⌉

,

and astab(I ) ≤ n − 1.

Proof Let k be the smallest integer such that PA ∈ Ass(I k). Then we have PA ∈
Ass(I k) \ Ass(I k−1). Therefore, by applying Lemma 5.1 and Proposition 5.2 this is
equivalent to saying that the following inequalities are fulfilled:

k

(
n∑

i=1

ai − d

)

≥ |A| − 1 > (k − 1)

(
n∑

i=1

ai − d

)

and
∑

i 
∈A

ai ≤ d − 1.

The first two inequalities imply the desired formula for the index of stability of PA.
For the second equality, it is enough to observe that astab(I ) is equal to the index of
stability of m = P[n]. The last inequality of the statement is obvious. �

The upper bound given in Corollary 5.6 is sharp since for every integer n ≥ 2
the ideal of Veronese type I = In−1;1,...,1 has astab(I ) = n − 1. Moreover, for an
ideal of Veronese type I satisfying (8) we have astab(Id;a1,...,an

) = n − 1 if and only
if

∑n
i=1 ai = d + 1. In addition, it follows from the discussion of the third particular

case (before Proposition 5.2) that, for a fixed integer k with 1 ≤ k ≤ n−1, the ideal of
Veronese type I = Id;a1,...,ak,0,...,0 ⊂ S with

∑k
i=1 ai = d + 1 satisfies astab(I ) = k.
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Therefore the index of stability of a Veronese type ideal can be any integer between
1 and n − 1.

It follows from [13, Theorem 3.3] and Lemma 5.1 that for an ideal I of Veronese
type we can compute depthS/I , the limit depth and dstab I . More precisely, we have

Corollary 5.7 Let I = Id;a1,...,an
⊂ S be an ideal of Veronese type satisfying (8).

Then we have

(a) depthS/I = max{0, d + n − 1 − ∑n
i=1 ai};

(b) depthS/Ik = max{0, kd + n − 1 − ∑n
i=1 kai};

(c) dstab(I ) = � n−1∑n
i=1 ai−d

�.

In particular, astab(I ) = dstab(I ), limk→∞ depthS/Ik = 0 and �(I ) = n.

Proof (a) was observed in [13, Theorem 3.3]. Notice that (b) follows at once from
(a) and Lemma 5.1(a). Finally, one can immediately see that (b) implies (c). The last
equalities are obvious. �
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