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Abstract

In this paper, we establish a mathematical model of two species with stage structure and the relation of
predator±prey, to obtain the necessary and su�cient condition for the permanence of two species and the
extinction of one species or two species. We also obtain the optimal harvesting policy and the threshold of
the harvesting for sustainable development. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

The competitive cooperative, and predator±prey models have been studied by many authors
(see monographs [1±8] and papers [9,10]). The permanence (or strong persistence) and extinction
are signi®cant concepts of those models which also show many interesting results and complicated
phenomena. However, the stage structure of species has been considered very little. In the real
world, almost all animals have the stage structure of immature and mature. Recently, papers [11±
13] studied the stage structure of species with or without time delays.

In this paper, we intend to consider the stage structure of two species. For the simplicity of our
model, we only consider the stage structure of immature and mature of the ®rst species (their sizes
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of population are written as x1; x2, respectively), and do not consider the stage structure of the
second species (its size of population is written as x3), and two species satisfy the following
assumptions:

H1: The birth rate of the immature population is proportional to the existing mature population
with a proportionality constant a (cf. the term ax2 in (1.1a)); for the immature population, the
death rate and transformation rate of mature are proportional to the existing immature popu-
lation with proportionality constants r1 and b (cf. the terms r1x1 and bx1 in (1.1a)); the immature
population is density restriction (cf. the term gx2

1 in (1.1a)).

H2: The death rate of the mature population is proportional to the existing mature population
with a proportionality constant r2 (cf. the term r2x2 in (1.1b)).

H3: The second species is a predator of the immature population of the ®rst species (cf. the terms
b1x1x3 and kb1x1x3 in (1.1a) and (1.1c)); the second species satis®es the logistic predator±prey
model.

According to H1, H2 and H3, we can set up the following stage-structured predator±prey
model.

_x1 � ax2 ÿ r1x1 ÿ bx1 ÿ gx2
1 ÿ b1x1x3; �1:1a�

_x2 � bx1 ÿ r2x2; �1:1b�
_x3 � x3�ÿr � kb1x1 ÿ g1x3�; �1:1c�

where a; r1; r2; b; b1; g; g1; r; k are positive constants, k is a digesting constant and _xi � dxi=dt.
Let

y1 � kb1

r2

x1; y2 � kb1

b
x2; y3 � g1

r2

x3; dt � 1

r2

ds:

Then (1.1a)±(1.1c) can be turned into

_y1 � ay2 ÿ by1 ÿ cy2
1 ÿ dy1y3;

_y2 � y1 ÿ y2;
_y3 � y3�ÿe� y1 ÿ y3�;

�1:2�

where _yi � dyi=ds; a � ab=r2
2; b � �r1 � b�=r2; c � g=�kb1�; d � b1=g1 and e � r=r2.

In Section 2, we shall consider the condition of permanence and extinction of system (1.2). At
®rst, we give the following notations and de®nitions

R3
� � fy � �y1; y2; y3� 2 R3 : yi P 0g; Int R3

� � fy � �y1; y2; y3� 2 R3 : yi > 0g:

De®nition 1.1. System (1.2) is said to be permanent if there are positive constants m and M such
that each positive solution y�t; y0� of (1.2) with initial condition y0 2 Int R3

� satis®es

m6 lim
t!1

inf yi�t; y0�6 lim
t!1

sup yi�t; y0�6M ; i � 1; 2; 3:

De®nition 1.2. (i) The ®rst species of system (1.2) is said to be extinctive if each positive solution
y�t; y0� of (1.2) with initial condition y0 2 Int R3

� satis®es
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lim
t!1

yi�t; y0� � 0; i � 1; 2:

(ii) The second species of system (1.2) is said to be extinctive if each positive solution y�t; y0� of
(1.2) with initial condition y0 2 Int R3

� satis®es

lim
t!1

y3�t; y0� � 0:

In Section 3, we shall consider the exploitation of the mature population. The optimal man-
agement of renewable resources, which has a direct relationship to sustainable development, has
been studied extensively by many authors. Economic and biological aspects of renewable re-
sources management have been considered by Clark [14] and other authors (cf. [15±17]). Generally
speaking, the exploitation of population should be the mature population, which is more ap-
propriate to the economic and biological views of renewable resources management. To our
knowledge, there have been no results on the optimal harvesting policies of species with stage
structure.

Since harvesting may lead to the extinction of one species of system (1.2), we give the de®nition
of threshold of the harvesting.

De®nition 1.3. A constant r0 is said to be a threshold of the harvesting if system (1.2) is permanent
as the harvesting yield h < r0, and at least one species of system (1.2) will be extinctive as the
harvesting h > r0.

In the end of this paper, we will depict the factors about the critically endangered animal (the
Chinese Alligator or Yangtzi Alligator) and the conservation measures with our results.

2. Permanence and extinction of system (1.2)

The possible non-negative equilibria of system (1.2) are

O�0; 0; 0�; E1��aÿ b�=c; �aÿ b�=c; 0�; E2��y1; �y2; �y3�;

where �y1 � �y2 � �aÿ b� de�=�c� d� and �y3 � �aÿ bÿ ce�=�c� d�.

Proposition 2.1. System (1.2) has a positive equilibrium E2��y1; �y2; �y3� if and only if a > b� ce.

Proposition 2.2. R3
� is invariant for system (1.2).

Propositions 2.1 and 2.2 are very obvious, we omit their proof.
In order to discuss the permanence and extinction of system (1.2), at ®rst, we analyze the local

geometric properties of the non-negative equilibria of system (1.2).
The Jacobian matrix of the equilibrium O�0; 0; 0� is
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J�O� �
ÿb a 0

1 ÿ1 0
0 0 ÿe

0@ 1A:
The characteristic equation of J�O� is

�k� e��k2 � �1� b�k� bÿ a� � 0:

Hence, O�0; 0; 0� is a saddle with dim W u�O� � 1, dim W s�O� � 2 for a > b, that is the dimensions
of the local unstable and stable manifold of the O�0; 0; 0� are 1 and 2, respectively; O�0; 0; 0� is
locally asymptotically stable for a < b.

The Jacobian matrix of the equilibrium E1��aÿ b�=c; �aÿ b�=c; 0� is

J�E1� �
ÿ2a� b a ÿd�aÿ b�=c

1 ÿ1 0
0 0 �aÿ bÿ ce�=c

0@ 1A:
The characteristic equation of J�E1� is

�kÿ �aÿ bÿ ce�=c��k2 � �2aÿ b� 1�k� aÿ b� � 0:

Hence, E1��aÿ b�=c; �aÿ b�=c; 0� is a saddle with dim W u�E1� � 1, dim W s�E1� � 2 for
a > b� ce; E1 is locally asymptotically stable for b < a < b� ce.

The Jacobian matrix of the equilibrium E2��y1; �y2; �y3� is

J�E2� �
ÿaÿ c�y1 a ÿd �y1

1 ÿ1 0
�y3 0 ÿ�y3

0@ 1A:
The characteristic equation of J�E2� is

k3 � Ak2 � Bk� C � 0; �2:1�
where

A � a� 1� c�y1 � �y3 > 0;

B � c�y1 � �y3�a� 1� c�y1 � d �y1�;
C � �c� d��y1�y3 > 0:

Obviously, ABÿ C > 0. According to Routh±Hurwitz theorem [2], E2 is locally asymptotically
stable for a > b� ce.

In the following lemma, we shall discuss the global properties of the non-negative equilibria.

Lemma 2.1. (i) If a > b� ce, then the positive equilibrium E2 of system (1.2) is globally asymp-
totically stable.

(ii) If b < a6 b� ce, then the non-negative equilibrium E1�ŷ1; ŷ2; 0� (where ŷ1 � ŷ2 � �aÿ b�=c� of
system (1.2) is globally asymptotically stable.

(iii) If a6 b, then the origin O�0; 0; 0� of system (1.2) is globally asymptotically stable.
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Proof. (i) We make use of the general Liapunov function

V1�y�t�� �
X3

i�1

ai�yi ÿ �yi ÿ �yi ln�yi=�yi��;

where ai; i � 1; 2; 3 are positive constants.
Calculating the derivative along each solution of system (1.2), we have

dV1=dt �
X3

i�1

ai��yi ÿ �yi�=yi�dyi=dt

� ÿ ca1�y1 ÿ �y1�2 ÿ a3�y3 ÿ �y3�2 � �a3 ÿ da1��y1 ÿ �y1��y3 ÿ �y3�
� aa1�y1 ÿ �y1����y1y2 ÿ �y2y1�=�y1�y1�� � a2�y2 ÿ �y2����y2y1 ÿ �y1y2�=�y2�y2��:

Let a3 � da1; a2 � aa1.

dV1=dt � ÿ ca1�y1 ÿ �y1�2 ÿ a3�y3 ÿ �y3�2 ÿ �a2y2=�y1�y1���y1 ÿ �y1�2

ÿ �a2y1=�y2�y1���y2 ÿ �y2�2 � �2a2=�y1��y1 ÿ �y1��y2 ÿ �y2�
� ÿ ca1�y1 ÿ �y1�2 ÿ a3�y3 ÿ �y3�2

ÿ �a2=�y1�
����������
y2=y1

p
�y1

h
ÿ �y1� ÿ

����������
y1=y2

p
�y2 ÿ �y2�

i2

6 0:

Set D1 � fy 2 Int R3
� : dV1=dt � 0g � fy 2 Int R3

� : y1 � �y1; y3 � �y3; y1 � y2g � E2: According
to LaSalle theorem [18], E2 is globally asymptotically stable for a > b� ce.

(ii) We construct the following Liapunov function

V2�y�t�� �
X2

i�1

ai�yi ÿ ŷi ÿ ŷi ln�yi=ŷi�� � a3y3:

Calculating the derivative of V2�y�t�� along each solution of system (1.2), we have

dV2=dt �
X2

i�1

ai��yi ÿ ŷi�=yi�dyi=dt � a3 dy3=dt

� ÿ ca1�y1 ÿ ŷ1�2 ÿ a3�y3 ÿ ŷ3�2 � �a3 ÿ da1��y1 ÿ ŷ1��y3 ÿ ŷ3�
ÿ �eÿ ŷ1�y3 � aa1�y1 ÿ ŷ1��ŷ1y2 ÿ ŷ2y1�=�y1ŷ1��
� a2�y2 ÿ ŷ2���ŷ2y1 ÿ ŷ1y2�=�y2ŷ2��:

Let a3 � da1, a2 � aa1.

dV2=dt � ÿ ca1�y1 ÿ �y1�2 ÿ a3�y3 ÿ ŷ3�2 ÿ �eÿ ŷ1�y3

ÿ �a2=�y1�
����������
y2=y1

p
�y1

h
ÿ �y1� ÿ

����������
y1=y2

p
�y2 ÿ �y2�

i2

6 0;

where eÿ ŷ1 � �ce� bÿ a�=c P 0. Hence, D2 � fy 2 R3
� : dV2=dt � 0g � E1. According to

LaSalle theorem, E1 is globally asymptotically stable for b < a6 b� ce.
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(iii) We construct the following Liapunov function

V3 �
X3

i�1

aiyi:

Calculating th derivative of V2�y�t�� along each solution of system (1.2), we have

dV3=dt � �aa1 ÿ a2�y2�a2 ÿ ba1�y1 ÿ ca1y2
1 ÿ ea3y3 ÿ a3y3 ÿ a3y3

3 � �a3 ÿ da1�y1y3:

Let a3 � da1; a2 � aa1.

dV3=dt � ÿ�bÿ a�a1y1 ÿ ea3y3 ÿ ca1y2
1 ÿ a3y2

3 6 0:

Hence,

D3 � fy 2 R3
� : dV3=dt � 0g � fy 2 R3

� : y1 � y3 � 0; y2 P 0g:
If D3 is an invariant set of system (1.2), by the ®rst equation of system (1.2), we have y2 � 0,
D3 � O�0; 0; 0�. Hence, O�0; 0; 0� is globally asymptotically stable for a6 b.

Remark 2.1. In Lemma 2.1:
(i) Condition a > b� ce () a > �1� r1=b� �gr�=�kb1b��r2.
(ii) Condition b < a6 b� ce () �1� r1=b�r2 < a6 �1� r1=b� �gr�=�kb1b��r2.
(iii) Condition a6 b () a6 �1� r1=b�r2.

Therefore, the birth rate of the mature determines the persistence and extinction of two species.
We have the following theorem.

Theorem 2.1. (i) Two species of system (1.1a)±(1.1c) are permanent if and only if the reproduction
rate of the first mature species satisfies

a > �1� r1=b� �gr�=�kb1b��r2:

(ii) The second species (predator) of system (1.1a)±(1.1c) is extinctive and the first species is not
extinctive if and only if the reproduction rate of the first mature species satisfies

�1� r1=b�r2 < a6 �1� r1=b� �gr�=�kb1b��r2:

(iii) The two species of system (1.1a)±(1.1c) are extinctive if and only if the reproduction rate of
the first mature species satisfies

a6 �1� r1=b�r2:

Proof. By De®nitions 1.1 and 1.2, and Lemma 2.1, we can easily prove Theorem 2.1.

Remark 2.2. Theorem 2.1 depicts a very intuitive biological phenomenon. We can regard a=r2 as a
relative birth rate of the ®rst mature species, b=�b� r1� as a relative transformation rate of the
®rst immature species. Conditions (i)±(iii) of Theorem 2.1 are, respectively, equivalent to

1:
a
r2

b
b� r1

> 1� gr
kb1�r1 � b� ;
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2: 1 <
a
r2

b
b� r1

6 gr
kb1�r1 � b� ;

3:
a
r2

b
b� r1

6 1:

Hence, the product of relative birth rate and relative transformation rate is very crucial to the
permanence of the stage-structured predator±prey species.

3. The optimal harvesting policy of system (1.2)

In order to study the optimal harvesting yield of system (1.2), usually, we need only consider the
following system harvested at a consistent per-captia rate qE

_y1 � ay2 ÿ by1 ÿ cy2
1 ÿ dy1y3;

_y2 � y1 ÿ y2 ÿ h;
_y3 � y3�ÿe� y1 ÿ y3�;

�3:1�

where h � qEy2 is the harvesting yield, q is the catachability coe�cient and E is the harvesting
e�ort.

The possible non-negative equilibria of system (3.1) are

O�0; 0; 0�; P1�ŷ1; ŷ2; 0�; P2��y1; �y2; �y3�;
where

ŷ1 � �aÿ b�1� qE��=�c�1� qE��;
ŷ2 � �aÿ b�1� qE��=�c�1� qE�2�;
�y3 � �aÿ �b� ce��1� qE��=��c� d��1� qE��;
�y1 � �y3 � e;

�y2 � ��y3 � e�=�1� qE�:
Similar to the proof of Lemma 2.1, we have the following lemma.

Lemma 3.1. (i) System (3.1) is permanent if and only if

a > �b� ce��1� qE�: �3:2�
(ii) The second species (predator) of system (3.1) is extinctive and the first species is not extinctive

if and only if

b�1� qE� < a6 �b� ce��1� qE�:
(iii) The two species of system (3.1) are extinctive if and only if

a6 b�1� qE�:
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In the following we shall consider the maximum sustainable yield of system (3.1). Theorem 3.1
is the optimal harvesting policy of system (3.1).

Theorem 3.1. (i) If b� ce < a6 deÿ b or b� ce < a6 b� 2ce� de, the maximum sustainable
yield in system (1.2) is

hMSY � h�E�� � e�aÿ bÿ ce�=a;

where E� � �a=�b� ce� ÿ 1�=q, which is a threshold of the harvesting of system (1.2)
(ii) If a > b� 2ce� de; then, the maximum sustainable yield in system (1.2) is

hMSY � h� �E� � �aÿ b� de�2=�4a�c� d��;
where �E � �a� deÿ b�=�q�a� bÿ de��.

Proof. Let y2 � �y2, the harvesting of system (3.1) is

h�E� � qE�y2 � qE�a� �deÿ b��1� qE��=��c� d��1� qE�2�; �3:3�
where E 2 �0;E��, �E� � �a=�b� ce� ÿ 1�=q�. Calculating the derivative of h�E� for E, we have

dh
dE
� q�a� deÿ bÿ �a� bÿ de�qE�

�c� d��1� qE�3 : �3:4�

(i) If a� bÿ de6 0, then dh=dE > 0 for 8E 2 �0;E��. The maximum sustainable yield for h�E� is

hMSY � h�E�� � e�aÿ bÿ ce�=a:

(ii) If a� bÿ de > 0, then the solution of dh=dE � 0 is �E � �a� deÿ b�=�q�a� bÿ de��.
Comparing the two numbers E� and �E, we have the following results:

(a) �E 2 �0;E�� as a > b� 2ce� de. The corresponding maximum sustainable yield for h�E� is

hMSY � h� �E� � �aÿ b� de�2=�4a�c� d��:
(b) �E > E� as b� ce < a6 b� 2ce� de. The corresponding maximum sustainable yield for

h�E� is

hMSY � h�E�� � e�aÿ bÿ ce�=a:

Summarizing the above discussion. If b� ce < a6 deÿ b or b� ce < a6 b� 2ce� de, then the
maximum sustainable yield for h�E� is hMSY � h�E�� � e�aÿ bÿ ce�=a. If the harvesting
hMSY � h�E�� � e�aÿ bÿ ce�=a, then the non-negative equilibria P2 and P3 of system (3.1) coin-
cide, the non-negative equilibrium P2 is globally asymptotically stable by Lemma 3.1. Hence, the
second species (predator) will be extinctive eventually. By De®nition 1.3, hMSY � h�E�� is a
threshold of the harvesting.

If a > b� 2ce� de, then the maximum sustainable yield for h�E� is hMSY � h� �E� �
�aÿ b� de�2=�4a�c� d��. If the harvesting hMSY � h� �E� � �aÿ b� de�2=�4a�c� d��, then the
unique positive equilibrium P3 of system (3.1) is globally asymptotically stable by Lemma 3.1.
Hence, hMSY � h� �E� � �aÿ b� de�2=�4a�c� d�� is the optimal harvesting for system (3.1).
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Remark 3.1. If a > b� 2ce� de, then h� �E� > h�E��. Therefore, the maximum sustainable yield
depends on the reproduction rate of the mature population.

4. Discussion

Theorems 2.1 and 3.1 should provide a useful insight into the conservation of critically en-
dangered animals. As an example, we depict the case of the Chinese Alligator or Yangtzi Alli-
gator. This animal is only endemic to the north of China; the range is limited only to the waters of
a hilly region below 200 m altitude to the north of the southern Anhui maintains in China (see
Ref. [19]). The Chinese Alligator was listed in Appendix I of the Convention on International
Trade in Endangered Species of Wild Fauna and Flora by the International Union for the
Conservation of Nature and Natural Resources. The Chinese Alligator can be regarded as a stage-
structured species since the mature is more than 10 years old, and can also be regarded as a
predator because almost all acquatic animals are the chief food of the Chinese Alligator. The
primary endangering factors can be summarized as follows:
1. The habitat environments of the Chinese Alligator have been destroyed since the human pop-

ulation has greatly expanded. Those environments enable the Chinese Alligator not only to
procure food, build holds and mate in water, but also to build nests and reproduce on land.
Thus, the factor makes the product of the relative birth rate and the relative transformation
rate to become very small.

2. The excessive, indiscriminate catching or slaughtering makes the catching quantity larger than
the threshold of the harvesting.

3. The application of large chemical fertilizers and insecticides decreases the number of the nat-
ural food of the Chinese Alligator.
In order to assure that the product of the relative birth rate and the relative transformation rate

is larger than one about the Chinese Alligator, we suggest to take the following conservation
measures:
1. Techniques and theories concerning rearing and cultivating the mature alligators, captive prop-

agation, arti®cial hatching of eggs, rearing of the immature alligators etc. should be resolved.
2. To establish some new conservation regions in which the alligators had distributed formerly

and where the human population, at present, is less dense. Economic activity will be forbidden
in those regions. The new conservation regions should be protected by the local government
such that the alligators can freely reproduce their o�spring.
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