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Abstract

We show, in full generality, that the staircase method [27, 29] provides
integrals for mappings, and correspondences, obtained as traveling wave
reductions of (systems of) integrable partial difference equations. We ap-
ply the staircase method to a variety of equations, including the Korteweg-
De Vries equation, the five-point Bruschi-Calogero-Droghei equation, the
QD-algorithm, and the Boussinesq system. We show that, in all these
cases, if the staircase method provides r integrals for an n-dimensional
mapping, with 2r < n, then one can introduce q ≤ 2r variables, which re-
duce the dimension of the mapping from n to q. These dimension-reducing
variables are obtained as joint invariants of k-symmetries of the mappings.
Our results support the idea that often the staircase method provides suf-
ficiently many integrals for the periodic reductions of integrable lattice
equations to be completely integrable. We also study reductions on other
quad-graphs than the regular Z2 lattice, and we prove linear growth of the
multi-valuedness of iterates of high-dimensional correspondences obtained
as reductions of the QD-algorithm.
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1 Introduction

The field of integrable partial difference equations emerged in the late nineteen
seventies, early eighties [1, 11, 17, 23, 30]. An important, and well-studied, class
of partial difference equations is the class of (scalar) equations that are defined
on the elementary squares of a lattice. An example of an integrable equation in
this class is the lattice potential Korteweg-de Vries (pKdV) equation

(ul,m − ul+1,m+1)(ul+1,m − ul,m+1) = α, (1)

in which the linear terms are transformed away. Such equations are part of
a multi-dimensional family of mutually consistent partial difference equations
[20, 24]. A classification with respect to multi-dimensional consistency has been
achieved recently [2, 3].

For lattice equations on the square, an initial value problem can be posed
on a so called staircase: a connected path which is nondecreasing, or nonin-
creasing. In [27] initial values are given at lattice points ul,l and ul+1,l which
satisfy the periodicity ul,m = ul+p,m+p. By doing so, the partial difference
equation (P∆E) reduces to a multi-dimensional mapping. The authors of [27]
used the linear spectral problem (Lax pair) of the lattice pKdV equation to
derive a set of polynomial invariants for this mapping. They constructed a so
called monodromy matrix, which is an ordered product of Lax matrices along
the staircase over a one-period distance. This method, nowadays known as the
staircase method, is an important tool in proving complete integrability in the
sense of Liouville-Arnold. Here, a 2n-dimensional mapping is said to be com-
pletely integrable if it admits n functionally independent integrals in involution
with respect to a symplectic form [7, 42]. Thus, the number of integrals should
be at least equal to half the dimension of the mapping.

In [10, 21] the authors established the involutivity of the integrals for the
mappings they introduced in [27]. Similar results have been obtained for map-
pings derived from the lattice Gel’fand-Dikii hierarchy [22] and for reductions
of the time-discrete versions of the Bogoyavlensky equations [26]. In [29] more
general staircases were given, corresponding to the s-periodicity condition:1

ul,m = ul+s1,m+s2 , (2)

where s1,−s2 ∈ N+ are relatively prime integers. The authors also suggested
considering general s1,−s2 ∈ N+, see the third concluding remark in that pa-
per. In recent work [38, 33] we have provided a unified picture for s-periodic
reductions, with nonzero s = (s1, s2) ∈ Z × Z. In [33] it was shown how, un-
der periodicity condition (2), any lattice equation f(ul,m, · · · ) = 0 reduces to
a system of r ordinary difference equations f(vpn, · · · ) = 0, p = 0, . . . , r − 1,
where r is the greatest common divisor of s1 and s2. Also it was proved that
the monodromy matrix, denoted L, is one of the Lax matrices for the reduction,
that is, there exists a matrix M such that for (periodic) solutions of the system

1Our notation differs from the one used in [29], where s1 = z2 and s2 = −z1.
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the following holds,
LnMn = MnLn+1. (3)

In [38] a geometric description of s-reduction has been given. It was shown
that for all s there exists a well-posed, or nearly well-posed, s-periodic initial
value problem, for any given scalar lattice equation on some arbitrary stencil of
lattice points. We expect something similar to hold for systems of lattice equa-
tions, cf. [34]. Combining the two results; given the existence of a (nontrivial)
periodic solution, after multiplying equation (3) by M−1

n , we may conclude that
the trace of L is an invariant of the mapping n $→ n+1. In section 2 we provide
a direct proof, in the spirit of the original work [29], that the staircase method
applies to any given system of lattice equations, if a Lax-pair and a (nearly)
well-posed periodic initial value problem are known.

Note, for equations on a square the monodromy matrix is defined on the
staircase, and the initial conditions are given at all points of the same staircase.
However, for equations on other stencils, and for systems of equations, the
monodromy matrix is still given on the staircase, but the initial conditions no
longer correspond to the points on the staircase.

The trace of the monodromy matrix L depends on a spectral parameter, aris-
ing from the Lax representation of the P∆E. By expanding in this parameter we
obtain a number of integrals. In relation to establishing the complete integra-
bility of a mapping (or correspondence) obtained by periodic reduction a first
question to ask is: does the staircase method yield sufficiently many functionally
independent integrals?

For the reductions we perform in section 3.1.1, of the Bruschi-Calogero-
Droghei equation [6]

(ul,m − ul,m−1)(ul,m − ul−1,m−1) = (ul,m − ul,m+1)(ul,m − ul+1,m+1),

the number of integrals is exactly half the dimension of the mapping. For the
one-parameter families of reductions we perform in section 3.1.2, of the QD-
system [25]

el,m+1 + ql+1,m+1 = ql+1,m + el+1,m, el,m+1ql,m+1 = ql+1,mel,m,

we have verified that the number of integrals is one more than half the dimension
of the mapping. In other cases, there are fewer integrals than half the dimension
of the mapping obtained by periodic reduction. For example, performing peri-
odic reductions of the lattice pKdV equation (1) we find (2n + 1)-dimensional
mappings and (2n + 2)-dimensional mappings, for which the staircase method
provides only n integrals, see section 4.2.1. It turns out that when the dimen-
sion of the mapping is 2n + 1 it can be dimensionally reduced by 1, whereas
when the dimension is 2n + 2 it can be reduced by 3. All n integrals survive
the dimensional reduction and we can conclude that the dimensionally reduced
mappings posses sufficiently many integrals for complete integrability.

To distinguish the two kinds of reductions we say s-reduction for a periodic
reduction of a lattice equation with period s ∈ Z × Z to a multi-dimensional
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mapping, and we say d-reduction for a reduction of order which reduces the
dimension of a mapping by d ∈ N.

In section 4.3 we show how to pose s-periodic initial value problems for the
Boussinesq system [22, 35]

wl+1,m + vl,m = ul,mul+1,m,

wl,m+1 + vl,m = ul,mul,m+1,

wl,m + vl+1,m+1 = ul,mul+1,m+1 +
γ

ul+1,m − ul,m+1
.

Performing s-reduction with s = (n−1, 1) we get a 2n dimensional mapping. For
these mappings we verified, for all n ≤ 17, that the staircase method provides
n−1 integrals unless 3 divides n in which case it provides only n−3 functionally
independent integrals. We show, for all n, that the mapping can be 6-reduced
if 3 divides n, and that the mapping can be 2-reduced otherwise.

These examples suggest that if the staircase method provides r integrals for
an n-dimensional mapping, with 2r < n, then the mapping can be d-reduced,
with d ≥ n − 2r. However, we do not claim the above statement is true in
general; in examples given in [34] the staircase method gives integrals of the
form JJ ′ where J is a 2-integral, and it does not produce the integral J + J ′.
Recall, a function J is an k-integral, or k-symmetry, of a mapping if it is an
integral, or symmetry, of the kth power of that mapping [13]. If one has one
k-integral, then one can construct k of them, or, even better, k integrals. For
example, it is easy to see that J ′′ = J implies that both JJ ′ and J + J ′ are
integrals. In all cases considered in this paper, the d-reduction is performed by
introducing n−d new variables, which can be obtained as the joint invariants of
symmetries, or k-symmetries, of the mapping, which in turn are obtained from
point-symmetries of the partial difference equation. This will be explained in
section 4.

Recently, in [4], a geometric criterion was given for the well-posedness of
initial value problems on quad-graphs. In section 5 we will show that for ‘regular’
quad-graphs, those that permit periodic solutions, the staircase method can be
applied. We study reductions of equation H3δ=0 from [2], which on a Z2-lattice
would look like

p(ul,mul+1,m + ul,m+1ul+1,m+1) = q(ul,mul,m+1 + ul+1,mul+1,m+1).

We will consider two different quad-graphs, namely Figure 9d and 9e in [4].
These quad-graphs carry more lattice parameters than the standard Z2 lattice,
and these parameters do all appear in the reduced mapping. In the second case
the lattice parameters are interchanged by the shift on the quad-graph, and we
find the reduction to be an alternating mapping, cf. [28].

For certain s-reductions the periodic solutions are given by multi-valued
mappings, or correspondences, see [38]. The staircase method applies equally
well in such cases, see section 4.3.1, where we perform (3,0)-reduction for the
pKdV equation, and section 3.2.1, where we (n,0)-reduce the QD-system. Here,
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another question arises: what is the multi-valuedness of the iterates of the cor-
respondence?

In general, the number of image points of the nth iterate of an m-valued
correspondence would be mn. However, it has been shown that for completely
integrable correspondences the number of images under the iterates grows poly-
nomially, rather than exponentially [41]. In section 6 we show that for the
correspondences obtained in sections 4.3.1 and 3.2.1 the multi-valuedness of
their nth iterate is n+ 1 and 2n, respectively.

2 The staircase method, general theory

Let u be a multi-component field on the square lattice Z2 and let f [u] be a
multi-component function of u and finitely many shifts of u. We call a lattice
equation f [u] = 0 integrable if it arises as the compatibility condition of two

linear equations ψ̃ = Lψ and ψ̂ = Mψ. Here, ˜ denotes the horizontal shift
l $→ l + 1 and ̂ denotes the vertical shift m $→ m+ 1. Thus we have

L̂M ≡ M̃L mod f , (4)

which is called the Lax-equation, or zero-curvature condition. The matrices L
and M are called Lax matrices.

As pointed out by Calogero and Nucci [9] in the continuum case, see also
[12], the mere existence of a Lax pair is not sufficient for integrability, the Lax
pair has to be a good Lax pair. In the discrete setting one has to be equally
careful, see chapter 6 in the thesis of Mike Hay [14]. From this point of view one
could argue that the staircase method tests whether a Lax pair is ‘good’. The
Lax pair would be called good (and hence the lattice equation integrable), if it
can be used to produce a sufficient number of integrals for periodic reductions.

We say that a lattice equation f [u] = 0 admits a well-posed initial value prob-
lem if from a set of generic initial points a solution can be constructed in a unique
way. An initial value problem is called nearly-well-posed if from a set of generic
initial points solutions can be constructed, which can take only finitely many
values at each lattice point. We consider periodic initial value problems. In the
first case the solution is obtained by iterating a (finite dimensional) mapping.
In the second case the solutions are obtained by iterating a correspondence. We
note that if the initial value problem is well-posed the periodicity of the solution
is implied by the periodicity of the initial values, whereas when in the case of
nearly well-posedness the periodicity of the solutions is imposed.

Theorem 1 Let a, s be elements of Z × Z. Suppose an integrable equation
f [u] = 0 allows a s-periodic initial value problem which is well-posed, or nearly-
well-posed. Then, with L being an inversely ordered product of Lax matrices over
a connected path, e.g. a staircase, from a to a + s, the trace of Li is invariant
under any shift on the lattice, ∀i ∈ N.

Proof: Let a,b be two points on the lattice. Define La,b to be the inversely
ordered product of Lax matrices along a connected path from a to b. We have to
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show that La,b does not depend on the path from a to b. This follows from the
fact that every square can be passed in two ways: if L,M are the Lax matrices
at a ∈ Z2 (and L̃ is a Lax matrix at ã = a + (1, 0)), then from (4) it follows

that L̂M = M̃L = L
a,̂̃a is well-defined for solutions of f [u] = 0. We have

Lã,b̃ = Lb,b̃La,bLã,a = Lb,b̃La,bL−1
a,ã

Because the initial value problem is well-posed, or nearly-well-posed, there ex-
ists an s-periodic solution. Now let b = a+ is (i ∈ N), so that the value of the
solution at a and b coincide. Then La,b = Li. Also, Lb,b̃ = La,ã. If we denote

I = Tr(Li), it is clear that we have Ĩ = I and, similarly Î = I. !

The mapping, or correspondence, which generates the s-periodic solution
is defined by updating a set of initial values through a shift on the lattice.
Therefore, an invariant for it is given by the trace of (an integer power of) L.
If the Lax-matrices depend on a spectral parameter, say k, one can expand
the trace Tr(Li) in powers of k. Each coefficient then provides an integral for
the mapping, or for the correspondence. However, these integrals are not all
functionally independent.

By the Cayley-Hamilton theorem any matrix L satisfies its own characteristic
equation P (λ) = Det(λI − L), i.e. we have P (L) = 0. Therefore, given that L
is a n × n matrix, it suffices to consider traces of Li, with i ≤ n. Even better,
there are certain combinations of Tr(Li), which, generally, yield a nicer basis
of functionally independent integrals. These are provided by the coefficients in
P (λ) = 0. For example, if n = 2 we have

P (λ) = λ2 − λTr(L) + (Tr(L)2 − Tr(L2))/2. (5)

Note that the coefficient of λ0 coincides with the determinant of L.
For general n, the coefficients can be obtained using Newton’s identities

nen =
n∑

i=1

(−1)i−1en−ipi, (6)

where the power sums pk are given by pk = xk
1+xk

2+· · ·+xk
q and the elementary

symmetric polynomials ek are given by

ek =
∑

1≤i1

∑

i1<i2

· · ·
∑

ik−1<ik

∑

ik≤q

k∏

j=1

xij ,

and appear as coefficients in the (Vieta) expansion

q∏

i=1

(λ− xi) =
q∑

i=0

(−1)ieiλ
q−i. (7)

If we denote the q eigenvalues of the matrix L by xi, the characteristic polyno-
mial equals the left hand side of equation (7). Using Newton’s identities (6) the
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right hand side can be expanded recursively in terms of pk = Tr(Lk). Taking
k = 1, 2 in (6) we find familiar coefficients e1 = p1, e2 = (p21−p2)/2, see equation
(5). Taking k = 3, 4 Newton’s identities yield e3 = (p31 − 3p1p2 + 2p3)/6, and
e4 = (p41 − 6p21p2 + 3p22 + 8p1p3 − 6p4)/24.

For scalar equations that are defined on elementary squares, initial values are
given on staircases. So the dimension of the initial value problem is |s1|+ |s2|.
A so-called standard staircase, cf. [30, 33, 38] gives rise to a particularly simple
mapping. In fact, any mapping, defined by a shift on the lattice, is (equivalent
to) a certain iterate of this basic one.

♦ ♦ ♦

♦

#

#

Figure 1: (5,3)-periodic initial
value problem for equations de-
fined on elementary squares

To illustrate this, we have presented
the standard (5, 3)-staircase in Figure
1. The standard staircase is the path
through the points between the two lines,
the black dots. They are the points
where initial values are given. The stan-
dard mapping will be the shift ul,m $→
ul+2,m+1. Note that by this shift almost
all black dots are shifted to another black
dot. The one black dot which is closest
to the dotted line, is shifted to the black
diamond, whose value can be calculated
using the equation on the square.

We can also see that the mapping defined by the shift ul,m $→ ul+1,m is given as
the third power of the standard one. To evaluate the monodromy matrix L, one
would take the product of matrices along the same staircase on which the initial
values are given. Since for this type of equations the matrices L,M depend
on (u, ũ), (u, û), respectively, the matrix L is then automatically expressed in
terms of the initial values. We note that one can just as well take the product
over any other one-period long path. For example, assuming that s ∈ N × N,
one could consider the product

L(l,m) =

!
s2−1∏

j=0

Ml+s1,m+j

!
s1−1∏

i=0

Ll+i,m.

Then, one first has to calculate the points on the corresponding path to be able
to evaluate L. In the example given in Figure 1, we would need to calculate
the values of the field at the white diamonds, which amounts to iterating the
mapping 8 times.

For equations, or systems, that are not defined on elementary squares the
initial value problem does, in general, not lie on a staircase. Depending on the
type of stencil and on the particular periodicity condition, there could either be
more, or less than |s1| + |s2| initial values. In [38] it was shown how to write
down, for a given scalar equation on an arbitrary stencil, a piece-wise linear
expression (as a function of s) for the dimension of an s-periodic initial value
problem.
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Note that the monodromy matrix is still a product of |s1|+ |s2| matrices (if
the product is taken over a staircase, which is the sensible thing to do). Also
note that, in general, the Lax matrices depend on u and a number of shifts
of u. Therefore, for certain choices of s, one needs to determine a number of
points, by iterations of the mapping, or correspondence, in order to evaluate the
monodromy matrix in terms of the initial values. It might be possible to avoid
this by using the equation to change the [u]-dependence of the Lax-matrices.
However, that would have to be adjusted to the particular choice of s.

3 The staircase method, applications

In this section we will apply the staircase method to a variety of different equa-
tions and different reductions. Firstly, we consider a 5-point equation, i.e. an
equation which is not defined on the square. Second, we calculate integrals for
reductions of a 2-component system of equations. We first perform reductions
which give rise to mappings and then we also perform reductions that yield
correspondences.

3.1 Mappings with a sufficient number of integrals

3.1.1 The Bruschi-Calogero-Droghei equation

Figure 2

In [6] one finds the five-point equation E(u, û, u
̂
, ˜̂u, u

˜
̂

) = 0,

where
E = (u− u

̂
)(u− u

˜
̂

)− (u− û)(u− ˜̂u), (8)

see [6, Equation (4a)] in which we have set α(ν) = 0. The
equation is defined on the stencil given in Figure 2.

The two recursive formulas [6, Equations (1a),(6)], with coefficients [6, Equa-
tions (5),(7)], yield the following Lax-pair

L(u, ũ, u
̂
, u
˜
̂

) =




k + ũ− u (u− u

̂
)(u− u

˜
̂

)

1 0



 ,

M(u, û, u
˜
) =

(
1 (û− u)

(û− u
˜
)−1 1− (k + u− u

˜
)(û− u

˜
)−1

)
.

Here we have denoted the spectral parameter (x in [6]) by k, which we do
throughout this paper. The method laid out in [38] tells us how to pose well-
defined s-periodic initial value problems for this equation. This can be done
for all s = (s1, s2) such that s2(s2 − 2s1) *= 0. The dimension of the periodic
solutions is given by the following piecewise-linear function 2max{|s2−s1|, |s1|}.
We apply the staircase method to a few reductions, in the different regions
distinguished by this function, see [38, Figure 10].
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(0,3)-reduction

x1 x2

x3 x4

x5 x6

x1 x2

x3 x4

x̃6

x̃2

x̃4

Figure 3

We assigning initial values as in Figure 3. They are in-
dicated by the black dots. We update them using the
right-shift, the values of x̃2, x̃4, x̃6 can be determined us-
ing the equations indicated by the zig-zags. We get a six-
dimensional mapping




x1 x2

x3 x4

x5 x6



 $→




x2

x2x6+x3x4−x3x6−x4x6
x2−x6

x4
x2x5+x2x6−x2x4−x5x6

x2−x4

x6
x1x4+x2x4−x1x2−x4x6

x4−x6



 .

The monodromy matrix, which we take from x2 upwards
to x2, is L = M(x6, x2, x5)M(x4, x6, x3)M(x2, x4, x1).

Three functionally independent integrals for this mapping can be obtained from
the coefficients in its characteristic polynomial (5). They are (x1 − x4)(x2 −
x5)(x3−x6), (x1−x6)(x2−x3)(x4−x5), and (x1−x5)(x2−x4)+(x3−x5)(x4−x6).

(1,3)-reduction

x1 x4

x3

x2

x1 x4

x4
̂

Figure 4

Assigning initial values as in Figure 4, and updating them
using the down-shift, we get a four-dimensional mapping

(x1, x2, x3, x4) $→ (x2, x3, x4,
x1x4 + x2x3 − x1x3 − x3x4

x2 − x3
).

(9)
In this case we have to first calculate a few values of
the field at points close to the staircase in order to
evaluate the monodromy matrix. We calculate x̂1 by

solving E(x2, x1, x3, x4, x̂1) = 0, and we find ̂̂x1 from

E(x1, x̂1, x2, x3, ̂̂x1) = 0.

Two functionally independent integrals are obtained from the coefficients in
(5) with L = M(x2, x1, ̂̂x1)M(x3, x2, x̂1)M(x4, x3, x1)L(x1, x4, x2, ̂̂x1). They are
J1 = (x1 − x2)(x3 − x4), and J2 = (x1 − x3)(x2 − x4)/(x2 − x3).

(2,3)-reduction

x4

x2

x3

x1 x4

̂̃x4

Figure 5

We assign initial values as in Figure 5 and update
them using the diagonal shift u $→ ̂̃u. The val-

ues x̃2, which equals ̂̃x4, and x̃3 are determined by
E(x3, x1, x̃2, x4, x2) = 0, and E(x4, x2, x̃3, x̃2, x3) = 0,
successively. We find the same four-dimensional map-
ping as in the previous case. The monodromy matrix
M(x4, x2, x1)M(x̃3, x4, x3)L(x3, x̃3, x̃2, x2)M(x̃2, x3, x2)·
L(x2, x̃2, x4, x1) yields the same integrals J1, J2.
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(2,-1)-reduction

x1

x1

x3

x3

x5

x5

x2

x4

x6
x̃6

Figure 6

Assigning initial values as in Figure 6, and updating them
using the right-shift, we get a six-dimensional mapping

xi $→ xi+1, i ∈ {1, 2, . . . 5},

x6 $→ x1x4 + x2x4 − x1x2 − x4x6

x4 − x6
.

The trace of the monodromy matrix
M−1(x4, x6, x3)L(x5, x6, x3, x2)L(x4, x5, x2, x1) yields
two functionally independent integrals

These are (x1 − x6)(x2 − x4)(x3 − x5) and (x2 − x6)(x3 − x5) + (x1 − x4)(x2 −
x4)+(x3−x4)(x4−x5. A third functionally independent integral, (x1−x4)(x2−
x4)(x2 − x5)(x3 − x5)(x3 − x6), is obtained by taking the determinant of the
monodromy matrix. In the previous cases, the determinant does not provide a
functionally independent integral.

3.1.2 The QD-algorithm

(a) (b)

Figure 7:
QD-type system

The quotient-difference (QD) algorithm,

ê+ ̂̃q = q̃ + ẽ, (11a)

êq̂ = eq̃, (11b)

is used to construct continued fractions whose convergents
form ordered sequences in a normal Padé table [8], and to
find the zeros of a polynomial [15].

It is also called the time-discrete Toda molecule [19]. It is an integrable two-
component equation defined on the stencils depicted in Figure 7, where we
associate two values, e on the left and and q on the right, to every point on the
lattice.

A Lax-pair for the QD-algorithm can be obtained from relations between so
called higher adjacent orthogonal polynomials [5], cf. [25, equations (3,4)]

kP̂ = P̃ + qP, P̃ =
̂̃
P + eP̂ .

With Ψt = (P, P̂ ) we have Ψ̃ = LΨ and Ψ̂ = k−1MΨ, where

L(e, q) =

(
−q k
−q k − e

)
, M(e, q, q̂) =

(
0 k
−q k − e+ q̂

)
.

This (small) Lax-pair differs from the (big) Lax-pair obtained in [25, equation
(9)]. A big Lax-pair incorporates a particular choice of initial values and we
would like to consider general periodic initial value problems.
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R1

R2

R3R4
R1

R2

R3 R4

Figure 8: Distinct regions
for the QD-stencil

In [38], it has been shown that for all s =
(s1, s2) ∈ Z×Z such that s2(s2 − 2s1) *= 0, there
exists a well-posed s-periodic initial value prob-
lem, with dimension

2max(|s1 + s2|, |s1|).

This function tells us there are two different re-
gions, where the dimension is given by a different
linear function of the periods (up to a sign). How-
ever, to pose the initial value problems one has to
distinguish four different regions, as depicted in
Figure 8.

We note that for all s initial values can be given on (part of) a standard staircase.
In the Figures that follow this will be indicated by a dotted line. We will present
four examples of families of periodic reductions, where the dimension depends
on an arbitrary variable n ∈ N, one family in each of the different regions.

(0, n)-reduction

x2n−3

x2n−2

x2n−1

x2n

x1

x2

x3

x4

x̃2n−3

x̃2n−2

x̃2n−1

x̃2n

x̃1

x̃2

x̃3

x̃4

Figure 9: Vertical period-
icity.

We take initial values (e, q)0,i = (x2i−1, x2i), with
xk = xm if k ≡ m mod 2n, see Figure 9.
Updating these values to the right gives a 2n-
dimensional volume-preserving mapping, with
i = 1, 2, . . . , 2n,

x2i−1 $→ x2i+1 +
x2i+3x2i+4

x2i+1
− x2i+1x2i+2

x2i−1
,

x2i $→
x2i+1x2i+2

x2i−1
.

Here we first used equation (11b) to find the im-
ages x̃2i, and then equation (11a) to find x̃2i−1.
The monodromy matrix is

L =M(x2n−1, x2n, x2)M(x2n−3, x2n−2, x2n) · · ·
· · ·M(x3, x4, x6)M(x1, x2, x4).

We have verified up to n = 9 that the coefficients in the k-expansions of its trace
and determinant yield n+1 functionally independent integrals. The lowest non-
trivial mapping, taking n = 2, is

(x1, x2, x3, x4) $→
(
x3 +

x1x2

x3
− x3x4

x1
,
x3x4

x1
, x1 +

x3x4

x1
− x1x2

x3
,
x1x2

x3

)
,

which admits the three functionally independent integrals x1 +x3, x2x4, x1x2 +
x3x4 − x1x3.

11



(3n,−2n)-reduction

We pose initial values as in Figure 10 and update then using a horse-jump
(l,m) $→ (l + 2,m− 1). Note that one should first update x6i+2 before x6i+4.

x6n−3 x6n−2

x6n

x3 x4

x6

x6n−5x6n−4

x6n−1

x1 x2

x5

x7

y z

Figure 10: Initial values on part of
a standard (3n,−2n)-staircase, and the
image points y, z of x6n−4, x6n−2.

Thus we get a 6n-dimensional map-
ping, with i = 0, 1, . . . , n− 1,

x6i+1 $→ x6i+5,

x6i+2 $→ x6i+7x6i+9

x6i+6
,

x6i+3 $→ x6i+6,

x6i+4 $→ x6i+8 + x6i+9(1−
x6i+7

x6i+6
),

x6i+5 $→ x6i+8,

x6i+6 $→ x6i+10,

where the subscript on x is taken
modulo 6n.

This mapping is measure-preserving with density (
∏n

i=1 x6i−3)−1. We obtain
integrals by expanding the trace and determinant of the monodromy matrix

!
n−1∏

i=0

M−1(x6i+7, x6i+5 + x6i+6 − x6i+7, x6i+6)L(x6i+5, x6i+2 + x6i+4 − x6i+5)

·M−1(x6i+5, x6i+2 + x6i+4 − x6i+5, x6i+4)L(x6i+2, x6i+3)

·L(x6i+1, x6i−1 + x6i − x6i+1)

in powers of the spectral parameter k. We verified that, up to n = 3, 3n+ 1 of
them are functionally independent. For n = 1 the mapping reads

(x1, x2, x3, x4, x5, x6) $→
(
x5,

x1x3

x6
, x6, x2 + x3(1−

x1

x6
), x2, x4

)
,

which admits the following four functionally independent integrals

x6+x4+x2+x3, x3(x4−x5)(x1−x6), x3(x6+x4−x1)+x6(x4+x2−x5), x1x2x3x5.

12



(2n,−3n)-reduction

x4n−3

x4n−2

x4n−1

x4n

x1

x2

x3

x4

x5

Figure 11: Part of the
(2n,−3n)-staircase

We choose initial values as in Figure 11,

e2i,−3i = x4i+1, q2i+1,−3i = x4i+2

e2i+1,−3i−1 = x4i+3, q2i+2,−3i−2 = x4i+4,

with xk = xm if k ≡ m mod 4n. They are updated
by shifting (l,m) $→ (l + 1,m − 1). This yields the
4n-dimensional mapping

x4i+1 $→ x4i+3,

x4i+2 $→ x4i+5x4i+6

x4i+4
+ x4i+4 − x4i+3,

x4i+3 $→ x4i+5x4i+6

x4i+4
,

x4i+4 $→ x4i+6,

which is measure-preserving with density
∏n

i=1 x4i.

The monodromy matrix is

!
n−1∏

i=0

M−1(x4i+5, pi, x4i+4)M
−1(ei, x4i+4, qi)L(x4i+3, ri)

·M−1(x4i+3, ri, x4i+2)L(x4i+1, pi−1),

where ei = x4i+5x4i+6/x4i+4, qi = ei+x4i+4−x4i+3, ri = x4i+1+x4i+2−x4i+3,
pi = zi + x4i+4 − x4i+5, and zi = x4i+3ri/x4i+4. We verified up to n = 3 that
its trace and determinant yield 2n + 1 functionally independent integrals. For
n = 1 the measure preserving 4-dimensional mapping reads

(x1, x2, x3, x4) $→
(
x3,

x1x2

x4
+ x4 − x3,

x1x2

x4
, x2

)
, (11)

which admits the following three functionally independent integrals,

x2 + x4 − x3,
x1x3

x4
,
(x1 − x4)(x2 − x3)(x3 − x4)

x4
.

13



(1,−1− n)-reduction

x1

x2

x3

xn+1

xn+2

xn−1

xn

x2n−2

x2n−1

x2n

Figure 12

We choose initial values as in Figure 12, with j = 1, 2, . . . , n,
and i ∈ Z,

ei,−i(n+1)+j−1 = xj , qi,−i(n+1)+j = xn+j .

Updating by the up-shift yields a 2n-dimensional mapping

xi $→ xi+1, i ∈ {1, 2, . . . , 2n− 1}, i *= n

xn $→ x1 +
x2xn+1

x1
− x2n,

x2n $→ x2xn+1

x1
,

which is measure-preserving with density x1.

The monodromy matrix is

M−1(x1, (xn + x2n−1 − x2n)
x2n

x1
, xn+1)(

n∏

i=2

M−1(xi, xn+i−1, xn+i))

·M−1(x1 +
x2xn+1

x1
− x2n, x2n,

x2xn+1

x1
)L(x1, (xn + x2n−1 − x2n)

x2n

x1
),

whose trace and determinant yield n + 1 functionally independent integrals,
which we verified up to n = 8. For n = 2 we find mapping (11) again, under
the change of variables

(x1, x2, x3, x4) $→ (x4, x2, x1, x3).

3.2 Correspondences with a sufficient number of integrals

There are certain lines in the (s1, s2)-plane where a periodic reduction yields a
correspondence instead of a mapping, see [38]. Here we impose the solution to
be periodic, which is not implied by the periodicity of the initial conditions. For
the QD-system, we find correspondences on lines given by s2(s2 + 2s1) = 0, cf.
[38].

3.2.1 The QD-algorithm, (n, 0)-reduction

We consider horizontal staircases for the QD-system. Solving the non-local (or,
implicit) scheme we find rational expressions for two-valued correspondences.
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x2n x2 x4

x2n−1 x1 x3

x̂2n x̂2 x̂4

x̂2n−1 x̂1 x̂3

Figure 13: Initial values and
their images under the up-shift.

As initial conditions we take

em,0 = x2m−1, qm,0 = x2m,

where the index on x is taken modulo 2n,
see Figure 13. They are updated by the
up-shift. We assume the image is periodic
with the same period as the initial values,
i.e. we also take the index on x̂ modulo 2n.

We have the following 2n equations for the 2n unknowns x̂i (the reader might
like to draw a few of them into Figure 13)

x̂2i−1x̂2i = x2i−1x2i+2, x̂2i−1 + x̂2i+2 = x2i+1 + x2i+2. (12)

We first solve for the odd variables, thereby obtaining a set of n equations for
the even variables

x̂2i−1 =
x2i−1x2i+2

x̂2i
= x2i+1 + x2i+2 − x̂2i+2.

We write x̂2i+2 = m2i+2(x̂2i), where

mk(z) = xk−1 + xk − xk−3xk

z
.

Now x̂2k must be one of the two fixed points of the Möbius transformation

Mk = m2km2(k−1)m2(k−2) · · ·m2(k−n+1)

= m2k · · ·m2(k+3)m2(k+2)m2(k+1).

The first fixed point of Mk is given by x2k−1, as mi(xi−3) = xi−1. This gives
us one way of updating our initial values, i.e. the linear map σ2n :

x2i−1 $→ x2i+2,

x2i $→ x2i−1,
(13)

taking i = 1, 2, . . . , n, assuming the index on x to be periodic modulo 2n.
The other fixed point of M2k is zk := x2(k+1)Q

n
2k/Q

n
2k−2, where

Qn
k (x) =

n−1∑

i=1




i−1∏

j=1

x2j+2+k








n−1∏

j=i

x2j+1+k



 . (14)

This follows from

Lemma 2
m2k(zk−1) = zk
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Proof: In terms of Q the statement is

x2k−3Q
n
2k−4 + x2k+2Q

n
2k = (x2k−1 + x2k)Q

n
2k−2 (15)

From the definition (14) it follows that

x2n−1Q
n−1
0 +

n∏

j=2

x2j = Qn
0 = x4Q

n−1
2 +

n∏

j=2

x2j−1. (16)

Therefore we have

x2n−1Q
n
−2 + x4Q2

= x2n−1(x2Q
n−1
0 +

n−1∏

j=1

x2j−1) + x4(x1Q
n−1
2 +

n+1∏

j=3

x2j)

= x2(x2n−1Q
n−1
0 +

n∏

j=2

x2j) + x1(x4Q
n−1
2 +

n∏

j=2

x2j−1)

= (x1 + x2)Q
n
0 ,

which is equation (15) with k = 1. This implies that equation (15) holds for all
k, as we may shift xi $→ xi+2(k−1). !

The mapping that corresponds to the fixed point zk will be denoted τ2n :

x2i−1 $→ x2i−1
Qn

2i−2

Qn
2i

,

x2i $→ x2i+2
Qn

2i

Qn
2i−2

.
(17)

Since a Möbius transformation has at most two fixed points we obtained a two-
valued correspondence (σ, τ). Integrals for this correspondence are given by the
coefficients of the k-expansions of the trace and determinant of the monodromy
matrix

L(x2n, x2n−1) · · ·L(x4, x3)L(x2, x1).

For all n < 10 we found n + 1 functionally independent integrals. The lowest
non-trivial case is n = 2. Explicitly, both mappings σ4 :

(x1, x2, x3, x4) $→ (x4, x1, x2, x3)

and τ4 :

(x1, x2, x3, x4) $→
(
x1

x3 + x4

x1 + x2
, x4

x1 + x2

x3 + x4
, x3

x1 + x2

x3 + x4
, x2

x3 + x4

x1 + x2

)

admit the three invariants x1 + x2 + x3 + x4, x1x3 + x2x4, and x1x2x3x4.
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4 Reduction of order

In all cases we have encountered so far, the staircase method provided a sufficient
number of integrals, that is, at least half the dimension of the mapping. Still,
the dimension of those mappings may be reduced. This can be done using a
symmetry of the lattice equation. In certain cases the number of invariants
remains the same, whereas in other cases it drops.

For reductions of other equations, which we encounter in this section, the
number of integrals provided by the staircase method is not sufficient. However,
in these cases, after reduction of order the number of integrals will suffice. We
observe that the number of dimensions to be reduced varies with the period s.
This can be understood exploiting symmetries of the P∆E that give rise, for
certain periods, to k-symmetries of the mappings.

4.1 Mappings with sufficiently many integrals, revisited

4.1.1 The Bruschi-Calogero-Droghei equation

For the mappings obtained in section 3.1.1 the number of functionally indepen-
dent integrals is exactly half the dimension of the mapping, sufficiently many
for complete integrability. We note that the equation E = 0, cf. (8), admits
two Lie-point symmetries u $→ u + ε and u $→ λu. This yields two symmetries
for the mappings, which can be used to reduce the dimension of the mappings
by 2. The integrals we have given only admit the first (translation) symme-
try. However, certain homogeneous combinations of them also admit the second
(scaling) symmetry. Therefore, applying 2-reduction to the examples in section
3.1.1 produces 2-, respectively 4-dimensional mappings with 1, respectively 2
integrals. For instance, using reduced variables

z1 =
x1 − x2

x2 − x3
, z2 =

x2 − x3

x3 − x4
,

the 4-dimensional mapping (9) reduces to

(z1, z2) $→
(
z2,

1

z1

)
, (18)

which has one integral
J2
2

J1
=

(z1 + 1)2(z2 + 1)2

z1z2
.

Note that the 4th iterate of (18) equals the identity and hence the reduction
provides an explicit solution for mapping (9). If the (n − 1)st iterate of the
mapping (9) is denoted (xn, xn+1, xn+2, xn+3), then

xn = x1 + +n+ 2

4
,(x2 − x1) + +n+ 1

4
,(x3 − x2) + +n

4
,(x4 − x1)

++n− 1

4
, (x2 − x1)(x4 − x3)

x3 − x2
,
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where + , denotes the floor function, sending x to the largest integer below x.
This solution can be obtained similarly to the solution of the (3,1)-reduction of
lattice pKdV given in the appendix of [39].

4.1.2 The QD-algorithm

As the QD-system (11) admits 1 (scaling) symmetry, all mappings can be 1-
reduced. The reduced mapping has one integral less, as only homogeneous
combinations with scaling eigenvalue 0 are invariant under scaling. For example,
the mapping (11) with new variables yi = xi/x4, i = 1, 2, 3, reduces to the 3-
dimensional mapping

(y1, y2, y3) $→
(
y3
y2

, y1 +
1− y3
y2

, y1

)
, (19)

which has invariants

I1 =
y1y3

y2 − y3 + 1
, I2 =

(y2 − y3)(y1 − 1)(y3 − 1)

(y2 − y3 + 1)2
.

This mapping has a lot of periodic points. The first few are given in Table
1, where a, b are free parameters. Also, one can show that the orbit of (a, b, b)
converges to the periodic orbit of (1, ab, 1), which has length 3.

orbit length periodic points

1 (0,-1,0), (a, 1, a)
2 (0,1,2), (2,-1,0), (0, a, 0)
3 (1, a, 1), (1, a, a), (a, 1, 1)
4 (a, b− 1, b)
5 (a, b(b+ 1)/(a+ b− 1), b)

Table 1: Periodic points with orbit length smaller than six.

Introducing variables x = y1, y = y3 on a level set of the first invariant I1 = z
yields the mapping

τ : (x, y) $→ (
zy

xy + zy − z
, x).

This map can be written as a composition of two involutions, namely τ = i0 ◦ i1,
where

i0 : (x, y) $→ (y, x), i1 : (x, y) $→
(
f1 − f2x

f2 − f3x
, y

)

with f = Av ×Bv, v = (y2, y, 1)t, which has invariant

w ·Av
w ·Bv

=
I2
z
,
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where w = (x2, x, 1). Thus, it is a special case of the 18-parameter QRT-family
of planar maps [31, 32], with

A =




1 −1 0
−1 1− z z
0 z −z



 , B =




1 0 0
0 0 0
0 0 0



 .

Reduction of order also works for correspondences. In reduced coordinates
yi = xi+1/x1, i = 1, 2, 3, the four dimensional mappings σ4, τ4 reduce to

σ : (y1, y2, y3) $→
(

1

y3
,
y1
y3

,
y2
y3

)
(20)

and

τ : (y1, y2, y3) $→
(
y3

(y1 + 1)2

(y3 + y2)2
, y2

(y1 + 1)2

(y3 + y2)2
, y1

)
, (21)

which admit the invariants

y2 + y1y3
(1 + y1 + y2 + y3)2

,
y1y2y3

(1 + y1 + y2 + y3)4
.

4.2 Mappings with insufficiently many integrals

We will next encounter reductions whose dimension is greater than twice the
number of functionally independent integrals provided by the staircase method.

4.2.1 The potential Korteweg-de Vries equation

The matrices
(

u −k − uũ
1 −ũ

)
,

(
u −α− k − uû
1 −û

)
,

form a Lax pair for the lattice pKdV equation

(u− ̂̃u)(ũ− û) = α. (22)

4.2.2 (n− 1, 1)-reduction

xn−1 xn

x1 x2 x3

x̃n

Figure 14

We consider the initial value problem

u(n−1)k+i−1,k = xi,

with i = 1, . . . , n and k ∈ Z, see Figure 14. We
find, for all k, u(n−1)k+n,k = x1 + α/(xn − x2).

Hence, the right-shift induces an n-dimensional mapping,

(x1, x2, . . . , xn) $→
(
x2, x3, . . . , xn, x1 +

α

xn − x2

)
, (23)
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which is volume-preserving when n is odd and anti-volume-preserving when n
is even.

We have verified up to n = 17 that the trace of the monodromy matrix
provides +(n− 1)/2, functionally independent integrals. So, for the odd dimen-
sional mappings we need one reduction, but for the even dimensional mappings
we need two. In fact, as we shall see, in the even case there exist three. How to
explain this? As we will see below, the KdV-equation has a Lie-point symmetry
that does not depend on the lattice variables. This symmetry gives rise to one
reduction for both the odd and the even dimensional mappings. Also, there
are two symmetries that do depend on the lattice variables. These yield two
2-symmetries of the mapping if and only if its dimension is even, giving us two
more reductions.

Equation (22) has the following symmetry u $→ u+ε. This yields a symmetry
for the mapping (23), whose infinitesimal generator is

n∑

i=1

∂

∂xi
. (24)

Let yi = xi−xi+1 for i = 1, 2, . . . , n−1. The functions yi are annihilated by the
vector field (24), they form a set of n− 1 functionally independent invariants of
the symmetry generated by this vector field. Taking the y as new variables the
mapping (23) reduces to

(y1, y2, . . . , yn−1) $→
(
y2, y3, . . . , yn−1,−

n−1∑

i=1

yi +
α

∑n−1
i=2 yi

)
. (25)

In addition, equation (1) also has the following two symmetries

ul,m $→ ul,m − (−1)l+mε, ul,m $→ ul,mε
(−1)l+m

.

Suppose now that n is even. Then the above symmetries of the P∆E (22) give
rise to 2-symmetries of the mapping (25), with generators

n∑

i=1

(−1)i
∂

∂xi
,

n∑

i=1

(−1)ixi
∂

∂xi
. (26)

It can be verified that of n− 3 functionally independent joint invariants of the
above three vector fields (24, 26) are

qi = (xi − xi+2)(xi+1 − xi+3), i = 1, . . . , n− 3.

We will take the qi as reduced variables and perform the reduction. Let us
define, with k,m ∈ N,

Fm
k :=

x1+k − x2m+3+k

x2m+1+k − x2m+3+k
.
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The Fm
k satisfy the recurrence relation

(Fm
k − 1)q2m+k = q2m+k−1F

m−1
k , (27)

with initial condition F 0
k = 1. Therefore the Fm

k can be expressed in the qi,
with i ≤ n−3, when m < n/2−1 and k < n/2−2m+3. We have the following
equalities

xi = xn−1 +
qn−3

xn−2 − xn
F (n−3−i)/2
i−1 , i odd,

xi = xn−2 +
qn−4

qn−3
(xn−2 − xn)F

(n−4−i)/2
i−1 , i even,

which is an inverse reduction. In terms of reduced variables the mapping is

qi $→ qi+1, i ∈ {1, 2, . . . , n− 4},

qn−3 $→ −qn−3F
(n−4)/2
0 + α/F (n−4)/2

1 . (28)

An explicit expression for Fm
k in terms of qi is2

Fm
k =

m+1∑

i=1

2m+1∏

j=2i

q(−1)j

j−1+k, (29)

since this expression solves the recurrence (27) with F 0
k = 1. The mapping (28)

is anti-measure preserving with density
∏(n−4)/2

i=1 q2i.
At n = 4 the reduced mapping is q1 $→ α − q1, which admits one integral,

q1(α − q1). The second iterate of this mapping equals the identity. Note that
this enables one to explicitly solve equation (23) with n = 4, cf. [39]. What
happened? Well, the joint invariant q1 turns out to be a 2-integral of the
mapping. Let us define another set of functions

Hm
k := −x1+kx2m+2+k −

2m+1∑

i=1

(−1)ixi+kxi+1+k.

They can be expressed in terms of the qi, with i ≤ n − 3, if m < n/2 and
k < n/2 + 4− 2m, using the recurrence

Hm
k = Hm−1

k + q2m−1+kF
m−1
k , (30)

with initial condition H0
k = 0. For all n the n-dimensional mapping δn, see (23),

admits the 2-integral H(n−2)/2
0 . If the image of x under (23) is denoted x̃, then

˜
H(n−2)/2

0 = α−H(n−2)/2
0 .

2The function Fm
k is closely related to the function Q given by equation (14), we have

Fm
k − 1 = Qm−2

k+1 (q)(
∏k

j=1 q2j+m)−1.
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An explicit expression for Hm
k in terms of the qi is

Hm
k =

m∑

i=1

m+1−i∑

j=1

2i−2∏

l=0

q(−1)l

2j+l−1+k,

since this solves the initial value problem (30). At n = 6 the 3-reduced mapping
is

(q1, q2, q3) $→ (q2, q3,−
q3(q1 + q2)

q2
+ α

q3
q2 + q3

). (31)

The staircase method provides two integrals

q1q3(q2 + q3 − α+
q1(q2 + q3)

q2
), (q1 + q3 +

q1q3
q2

)(q1 + q3 − α+
q1q3
q2

),

of which the latter can be expressed in terms of the 2-integral H2
0 = q1 +

q3 + q1q3/q2. We can take the 2-integral as a variable. In terms of q1, q2 and

p = H(n−2)/2
0 mapping (31) becomes

(q1, q2, p) $→ (q2, q2(p− q1)/(q1 + q2), α− p)

which has integrals

q1q2
q1 + q2

(p− q1)(p+ q2 − α), p(α− p).

In general, with n > 2 even, the 3-reduced mapping can be written as

(q1, q2, . . . , qn−4, p) $→ (q2, q3, . . . , qn−4,
p−H(n−4)/2

0

F (n−4)/2
0

, α− p),

where we used (30) to solve p = H(n−2)/2
0 for qn−3.

We note that all +(n − 1)/2, functionally independent integrals we have
calculated for n ≤ 17 dimensional mappings survive these reductions. Taking
n = 2m+ 1 odd, the reduced mapping is 2m dimensional and has m integrals.
With n = 2m + 2, the reduced mapping is 2m − 1 dimensional and has m
integrals.
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4.3 The Boussinesq system
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u

u

u

u

u

u

u

u

u

v

v

w

v

v

v

w

w (a)

(b)

(c)

(d)

Figure 15

The Boussinesq system [22, 35]

w̃ = uũ− v (34a)

ŵ = uû− v (34b)

w = û̃u− ̂̃v + γ

ũ− û
. (34c)

is defined on the square as depicted in Figure 15(a,b,c). In
Figure 15(d) we have depicted the consequence of equations
(34a,34b),

û̂̃u− v̂ = ũ̂̃u− ṽ. (34d)

From the Boussinesq system one can eliminate the variables
v and w using the identity

(˜̂v + w)̂ − (˜̂v + w)̃ = (v̂ − ṽ)
˜̂
+ (ŵ − w̃)

to get a 9-point scalar equation on a 2 × 2 square, called
the Boussinesq equation, cf. [22, equation 1.3].

We denote u = (u, v, w). A Lax-pair for the system (34) is given by, cf. [35],

Lu = L(u,w, ũ, ṽ) =




−ũ 1 0
−ṽ 0 1

ũw − ṽu− k −w u



 ,

Mu = M(u,w, û, v̂) =




−û 1 0
−v̂ 0 1

ûw − v̂u+ γ − k −w u



 .

(33)

Invariants for traveling wave reductions of the system can be obtained by ex-
panding traces of powers of the monodromy matrix. Since L is a 3× 3 matrix a
full set of functionally independent integrals can be obtained from k-expansions
of the coefficients in

Det(λI − L) =λ3 − λ2Tr(L) + λTr(L)
2 − Tr(L2)

2

− Tr(L)3 − 3Tr(L)Tr(L2) + 2Tr(L3)

6
. (34)

cf. section 2, in particular equation (7). However, due to the fact that both
Lax-matrices have a constant determinant, it suffices to consider Tr(L) and
Tr2(L)− Tr(L2).

The following proposition tells us how to pose initial value problems for the
Boussinesq system. The proof uses a different technique than the one used in
[38], which is possible due to the fact that for the Boussinesq system initial
values can be given on staircases. However, the staircases are not necessarily
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standard staircases, which they would be in the framework of [38] (at least for
equations defined on the square, such as the Boussinesq system).

We call a staircase ascending, if it goes from the lower left to the upper
right, that is, if it is a sequence of neighboring lattice sites with l and m non-
decreasing. And we call a staircase descending if it goes from the upper left
to the lower right, that is, if it is a sequence of neighboring lattice sites with l
and −m nondecreasing.

Proposition 3 The following initial values problems for the Boussinesq system
are well-posed.

• At every point on an ascending staircase take the components u, v of the
vector u as initial values.

• On a descending staircase take u, v, w at the lower left corners, v at the
upper right corners, and u, v at the other points as initial values.

Proof: The proof consist of two parts. Firstly, we show that the values at all
points of the staircase can be obtained from the initial values. Secondly we show
that any of the four vectors u, ũ, û, ̂̃u, can be determined from the other three.

i) For ascending staircases the first part is easy. Going along the staircase
from the lower-left to the upper-right at each horizontal step the com-
ponent w is obtained using equation (34a), whereas at the vertical steps
equation (34b) can be used. For a descending staircase we can do a similar
thing, except at the upper-right corners. Equation (34d) can be solved for
ul+1,m+1 and used to get the u-components at the upper-right corners.
Once u has been calculated w can be calculated in two ways, using either
(34a) or (34b), leading to the same result.

ii) The values of û can be obtained as follows. First calculate û from (34c).
Then ŵ can be obtained from (34b) and v̂ from the up-shifted consequence
of (34a). We can obtain ũ in a similar way. This follows from the fact that
interchanging the left-shift with the up-shift and γ $→ −γ is a (discrete)

symmetry of the system. Finally, to obtain ̂̃u one uses the consequence
(34d) to calculate ̂̃u, after which ̂̃w is found using a shifted version of either

(34a) or (34b), and ̂̃v is calculated using (34c). Finally, due to the discrete
symmetry which interchanges the up-shift with the down-shift and the
left-shift with the right-shift, together with u ↔ w and γ $→ −γ, it follows
that u can be obtained from given values at the other sites.

!
It follows that, with s = (s1, s2) ∈ Z × Z such that s1s2 *= 0, the dimension of
an s-periodic reduction is 2(| s1 |+ | s2 |).
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(n-1,1)-reduction

x2n−3

x2n−2

x2n−1

x2n

x1 x2 x3 x4 x5 x6

Figure 16: 2n initial values

We take s1 = n − 1 positive (but
n *= 3), s2 = 1, and we consider the
following initial value problem, with
i = 0, 1, . . . , n− 1 and l ∈ Z.

u(n−1)l+i,l = x2i+1,

v(n−1)l+i,l = x2i+2,

where the index on x is taken mod-
ulo 2n, see Figure 16.

Using the equations (34a), (34c), and (34d), in that order, we calculate, w(n−1)l,l−1 =
x2n−3x2n−1 − x2n−2, u(n−1)l+1,l−1 = x1 + γP , and v(n−1)l+1,lk−1 = x2 + x3γP ,
where

P =
1

x2n−1(x2n−3 − x3)− x2n−2 + x4
. (35)

The right-shift induces the 2n-dimensional mapping φ2n :,

xi $→ xi+2, i ∈ {1, 2, . . . , 2n− 2},
x2n−1 $→ x1 + γP, (36)

x2n $→ x2 + γx3P.

The monodromy matrix is

L = M(x2n−1, wn, x1, x2)L(x2n−3, wn−1, x2n−1, x2n) · · ·L(x1, w1, x3, x4),

where w1 = x1x2n−1 − x2n and wi+1 = x2i−1x2i+1 − x2i, i = 1, 2, . . . , n− 1.

n 2 3 4 5 6 7 8 9
# 1 0 3 4 3 6 7 6

Table 2: Number of functionally in-
dependent integrals of φ2n.

The number of functionally indepen-
dent integrals we have obtained for
reductions with period s = (n−1, 1)
is given in table 2. From this table
it seems we need to d-reduce map-
ping φ2n by d = 2 dimensions, or, if
3 divides n, by d = 6 dimensions.

The mapping φ2n has two symmetries, generated by

v1 =
n∑

i=1

∂

∂x2i
, v2 =

n∑

i=1

∂

∂x2i−1
+ x2i−1

∂

∂x2i
.

The easiest way to check that these vector fields are generators of symmetries
indeed is using the Jacobian, we have Jv = φ2n(v) when v = (0, 1, 0, 1, . . . , 0, 1)
or v = (1, x1, 1, x3, . . . , 1, x2n−1), where the Jacobian matrix of φ2n is given by

J =

(
0 I2n−2

I2 γP 2H

)
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where Ik is the k × k identity matrix and H is the 2× (2n− 2) matrix

(
x2n−1 −1 0 · · · 0 −x2n−1 1 (x3 − x2n − 3) 0

1/P + x3x2n−1 −x3 0 · · · 0 −x3x2n−1 x3 x3(x3 − x2n − 3) 0

)
.

The two symmetries of the mapping φ2n correspond to the following symmetries
of the original lattice system (34):

(u, v, w) $→ (u, v + ε, w − ε), (u, v, w) $→ (u+ ε, v + εu, w + εu). (37)

It can be verified that the functions

yi = x2i−1 − x2i+1, yn+i−1 = x2i − x2i+2 + x2i−1(x2i+1 − x2i−1),

with i = 1, . . . , n−1, are joint invariants of the these symmetries and functionally
independent. In the reduced variables y, we get a 2(n− 1)-dimensional volume
preserving mapping

yi $→ yi+1, i ∈ {1, 2, . . . , 2n− 2}, i *= n− 1,

yn−1 $→ −
n−1∑

i=1

yi − γQ,

y2n−2 $→ −(
n−2∑

i=0

yn+i + yi+1

n−1∑

j=i+1

yj)− γQ
n−1∑

i=2

yi,

where Q =
∑n−3

i=1 (yn+i + yi+1
∑n−1

j=i+1 yj).
When n = 2 the reduced mapping is, in terms of X = −y1, Y = −y2

(X,Y ) $→ (−X + γ(Y −X2),−Y +X2)

which carries the invariant Y (X2 − Y ) + γX, cf. [22, equation 5.31]. Note, in
[22] the case s1 = s2 was studied, in particular the involutivity of the integrals
was established in any dimension. The authors defer the actual counting of
independent integrals to a future study. However, they also state that the
investigation of lower-dimensional examples (with s1 = s2) indicate a sufficient
number of invariants are functionally independent.

We have verified that all integrals we found, see Table 2, survive the 2-
reduction. Hence, in those cases, except when 3 divides n, the staircase method
provides enough integrals for integrability. Next we will show that if 3 divides
n, but n *= 3, we can further reduce the mapping by four dimension.

The Boussinesq system (34) has some additional symmetries, which depend
on the lattice variables (u = ul,m),

(u, v, w) $→ (u, v + εζl+m+1, w − εζl+m),

(u, v, w) $→ (u+ εζl+m, v + εζl+m+1u,w + εζl+m−1u), (38)
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where ζ is a primitive third root of unity, that is, ζ2+ζ+1 = 0. The generators
of the corresponding transformations acting on the initial values (16) are

v3 =
n∑

i=1

ζi
∂

∂x2i
, v4 =

n∑

i=1

(
ζi−1 ∂

∂x2i−1
+ ζix2i−1

∂

∂x2i

)
,

and, taking the conjugate root ζ2,

v5 =
n∑

i=1

ζ2i
∂

∂x2i
, v6 =

n∑

i=1

(
ζ2i+1 ∂

∂x2i−1
+ ζ2ix2i−1

∂

∂x2i

)
.

Now assume that 3 divides n. We construct real vector fields by taking the
following linear combinations, with i = 1, 2, 3,

wi = (v1 + ζ
2iv3 + ζ

iv5)/3 =

n/3−1∑

j=0

∂

∂x6j+2i

w3+i = (v2 + ζ
2iv4 + ζ

iv6)/3 =

n/3−1∑

j=0

x6j+2i−1
∂

∂x6j+2i
+

∂

∂x6j+2i+1
,

where x2n+1 = x1. These vector fields are 3-symmetries of the mapping φ2n.
Let J3 be the Jacobian matrix of φ32n. Note, the vector fields wi, i *= 1, 4 can
be obtained from wi = J3φ2n(wi−1). According to [13, proposition 1] it suffices
to verify that w1 and w4 are 3-symmetries. Also note that J3φ2nvi = vi for
i ∈ {1, . . . , 6}.

The following polynomials form a complete set of joint invariants of the
vector fields w1, w2, . . . , w6:

zi = x2i−1 − x2i+5, i ∈ {1, . . . , n− 3},
zn−3+i = x2i+1(x2i−1 − x2i+5)− x2i + x2i+6, i ∈ {1, 2, 3},

zn+i = (x2i−1 − x2i+5)(x2i+6 − x2i+12)

− (x2i − x2i+6)(x2i+5 − x2i+11), i ∈ {1, 2, . . . , n− 6}.

Another joint invariant is given by P , see (35), which therefore should be ex-
pressible in terms of the zi. However, we haven’t found a general formula for
P (z). In terms of the z-variables the mapping φ12 reduces to

zi $→ zi+1, i ∈ {1, 2, 4, 5}

z3 $→ −z1 +
γ

z5 − z2z3
,

z6 $→ −z4 + z1z2 − γ
z2

z5 − z2z3
,
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and φ2n, with 3 divides n > 4,

zi $→ zi+1, i ∈ {1, 2, . . . , 2n− 7}, i *= n− 3, i *= n

zn−3 $→ −
n/3−1∑

i=1

z3i−2 − γP,

zn $→ −zn+1 + z4(z1z2 − zn−2)

z1
,

z2n−6 $→ A− γBP,

where A = (x2n−11 − x2n−5)(x2n−4 − x2)− (x2n−10 − x2n−4)(x2n−5 − x1), and
B = x3(x2n−11 − x2n−5) − x2n−10 + x2n−4 are also joint invariants of the six
vector fields wi. All the integrals we found survive the above reduction. Thus,
as one can see in Table 2, also when 3 divides n the staircase method provides
a sufficient number of integrals for the 6-reduced map to be integrable.

We found two functions which are 3-integrals, that is, integrals of φ32n. These
are

i1 =

n/3∑

j=1

(x6j+1 − x6j−5)(x6j−2 − x6j−3x6j−1) + x6j−1(x6j+2 − x6j−4),

i2 =

n/3∑

j=1

x6j−1(x6j−5x6j−3 − x6j−4 − x6j+1x6j+3 + x6j+2) + x6j(x6j+3 − x6j−3).

We have the following action of φ2n on the 3-integrals

(i1, i2) $→ (i2 − i1 + γ,−i1 + γ), (39)

whose third power is the identity. Note that by applying the map to one of
the 3-integrals gives us the other one but no third functionally independent 3-
integral can be obtained in this way. The 3-integrals admit the vector fields wi

as symmetries and two of the n− 3 functionally independent integrals found by
the staircase method can be written in terms of them. For n = 6 we have

i1 = −z1z2z3 + z1z5 + z3z4, i2 = z2z6 + z3z4.

and two of the three functionally independent integrals found by the staircase
method are given by

i22 + i1(i1 − i2 − γ), i1(γ − i2)(γ − i1 + i2)

which are both integrals of the 2-dimensional map (39). An extra advantage of
working with expansion (34) instead of traces of powers of L is that the third
functionally independent integral factorizes nicely as

z4z5z6(z1z3 + z6)(z4z5 − z4z2z3 − z2z1z5 + z22z1z3 + αz2).
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(n-1,-1)-reduction

x2n−3

x2n−2

x2n−1

x2n

x1 x2 x3 x4 x5 x6

Figure 17: Periodic initial value prob-
lem for the Boussinesq system

We take s1 = n − 1 positive (n *= 2),
s2 = −1, and we consider the fol-
lowing initial value problem, with i =
0, 1, . . . , n− 2, k ∈ Z,

u(n−1)k+i,−k = x2i+1,

v(n−1)k+i,−k = x2i+2,

v(n−1)(k+1),−k = x2n−1,

w(n−1)k,−k = x2n,

see Figure 17.
We right-shift the initial values x2n−3 and x2n using equations (34d) and (34a),
respectively. Then we right-shift x2n−3 a second time and are able to determine
the image of x2n−1, using equation (34c). Thus, we find the 2n-dimensional
mapping ζ2n:

xi $→ xi+2, i ∈ {1, 2, . . . , 2n− 3},

x2n−3 $→ x2n−2 − x2

x2n−3 − x1
,

x2n−2 $→ x2n−1,

x2n−1 $→ −x2n +
(x2n−3 − x1)(x1(x2n−1 − x4)− γ)

x2n−2 − x2 − x3(x2n−3 − x1)
,

x2n $→ −x2 + x1x3,

which is measure preserving with density x2n−3−x1 (n *= 2). The mapping ζ2n
admits the symmetries

∂

∂x2n−1
− ∂

∂x2i
+

n−1∑

i=1

∂

∂x2i

and

x1
∂

∂x2n
+ ζ2n(x2n−3)

∂

∂x2n−1
+

n−1∑

i=1

(
∂

∂x2i−1
+ x2i−1

∂

∂x2i
).

Hence, it can be reduced to a (2n− 2)-dimensional mapping. We have verified
up to n = 7, that the number of functionally independent integrals, obtained
by k-expansion of the coefficients in (34), with

L = M−1(x1, x2n, ζn(x2n−3), x2n−1)L(x2n−3, wn−1, ζn(x2n−3), x2n−1)

·

!
n−1∏

i=2

L(x2i−3, wi−1, x2i−1, x2i),

is n−1, except when 3 divides n+1, where the number is n−3. Also we verified
that all these integrals admit the above vector fields as their symmetries. If 3
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divides n + 1 the symmetries (38) yield 3-symmetries of the mapping ζ2n. As
in the previous example we take linear combinations to get

w1 =

(n−2)/3∑

j=0

∂

∂x6j+2
, w4 = (

(n−5)/3−1∑

j=0

x6j+1
∂

∂x6j+2
+

∂

∂x6j+3
) + x2n−3

∂

∂x2n−2
,

together with wi = J3ζ2n(wi−1), i *= 1, 4. Taking n = 5 we obtain the following
4-dimensional 6-reduced mapping, in terms of y1 = x7 − x1, y2 = x6 + x10 −
x5x1, y3 = x8−x2+x3(−x7+x1), y4 = (−x7+x1)(−x9+x4−x5x3)+x5(−x8+x2):

(y1, y2, y3, y4) $→
(
y3
y1

, y3,
y4
y1

, y4 + γ −
y2y3
y1

)
.

This mapping is measure preserving with density y21 . It has two 3-integrals,
i1 = y2y3/y1 and i2 = y4, which satisfy

(i1, i2) $→ (i2,−i1 − i2 − γ),

whose third power is the identity. The two functionally independent invariants
found by the staircase method can be expressed in terms of the 3-integrals as

i21 + i22 + i1i2 + γ(i1 + i2), i1i2(i1 + i2 + γ).

4.3.1 The potential Korteweg-De Vries equation, (3, 0)-reduction

Consider initial values for the pKdV equation (22): ul,0 = xk with k ≡ l mod
3, k ∈ {1, 2, 3}, as in Figure 18.

x1 x1x2 x3

x̂1 x̂1x̂2 x̂3

Figure 18: Initial values on a
horizontal staircase with periodicity
ul,m = ul+3,m.

Updating these by shifting them up-
wards, and imposing the image to be
periodic, we have to solve the system

(x1 − x̂2)(x2 − x̂1) = α

(x2 − x̂3)(x3 − x̂2) = α (40)

(x3 − x̂1)(x1 − x̂3) = α

for the image points x̂1, x̂2, x̂3.
In terms of reduced variables q1 = x1 − x2, q2 = x2 − x3 the volume preserving
two-valued correspondence is ϕ±:

q1 $→ q1
α(α+ q2(q1 + q2)) + q21q2(q1 + q2)/2 + (q1/2 + q2)R

(α+ q1q2)(α− q1(q1 + q2))

q2 $→ q2
α(α+ q1(q1 + q2)) + q1q22(q1 + q2)/2− (q1 + q2/2)R

(α+ q1q2)(α− q2(q1 + q2))
,

where
R = ±

√
4α3 + (q1q2(q1 + q2))2.

This correspondence admits the integral q1q2(q1 + q2), which can be obtained
by taking the trace of the monodromy matrix.
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5 The staircase method on quad-graphs

Recently, in [4], a geometric criterion was given for the well-posedness of ini-
tial value problems on quad-graphs. In this section we show that for ’regular’
quad-graphs, those that permit periodic solutions, the staircase method can be
applied. We use equation H3δ=0, from [2],

Qpq(a, b, c, d) := p(ab+ cd)− q(ac+ bd) = 0, (41)

on two different quad-graphs, cf. Figure 9d and 9e in [4].
We start with a brief introduction to the idea of a quad-graph. For a more

thorough treatment and references to the literature we refer to [4]. A quad-graph
is a planar graph with quadrilateral faces. Fields are assigned to the vertices
and parameters to its edges. In the class considered in [4] opposite edges carry
the same parameters and the (multi-linear) equation is supposed to have D4-
symmetry (so that the equation can be defined on each face independently of
its position in the quad-graph). Due to the first property there are sequences of
adjacent quadrilaterals on which the value of the parameter is constant. These
are called characteristics. The main result in [4] states that an initial value
problem P is well-posed if and only if each characteristic intersects P in exactly
one edge.

a

b c

de

f g

Figure 19

An example of a well-posed initial value
problem is given in Figure 19: from
given values a, b, c, d one can calculate
e, f, g successively, they are uniquely
determined. Indeed, the three dotted
lines are characteristics and they each
intersect the initial value path in ex-
actly one edge.

In both Figures 20 and 21 a finite piece of a quad-graph is given. We as-
sume these quad-graphs extend periodically in both the vertical and horizontal
directions. For equations on such a doubly infinite quad-graph there exist a
two-parameter family of periodic reductions, as for equations on the regular Z2-
lattice. In fact, these quad-graphs are perturbations of the regular Z2-lattice,
we call them irregular Z2-lattices.

Theorem 1 extends to the more general setting of irregular Z2-lattices. The
proof is similar as in the Z2 setting: the fact the transfer matrix La,b does not
depend on the path from a to b follows from the Lax-condition.
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Figure 20

In Figure 20 the lattice pa-
rameters are attached to
the edges as follows: p to
the horizontal edges, q to
the vertical edges, and r to
the diagonal edges. From
initial values a, b, c, d the
values e, f, g are deter-
mined by

Qpr(d, a, e, b) = 0,

Qqr(c, d, f, e) = 0,

Qpq(e, b, f, g) = 0.

We update values by shifting over (2, 1). Thus, the mapping is

(a, b, c, d) $→ (c, f, g, b),

where

f = d
ar(rb− pd) + qc(rd− pb)

aq(+rb− pd) + rc(rd− pb)
, g = a

rb(qa− pc) + qd(qc− ap)

qb(qa− pc) + rd(qc− ap)
.

A Lax pair L,M for equation (41) is given by L = La,b(p), M = La,c(q), where

La,b(p) =
1

a

(
ka −pab
p −kb

)
,

see [16]. The monodromy matrix Ld,a(p)Lc,d(q)Lb,c(p)La,b(r) yields one inte-
gral.

We perform the following reduction: in variables x = a/c, y = b/d the
mapping is expressed

(x, y) $→
(
p(qy + rx)− q(qxy + r)

p(qx+ ry)− q(rxy + q)

1

x
,
p(rx+ qy)− r(q + rxy)

p(qx+ ry)− r(qxy + r)

1

y

)
,

and its integral is

p2
(
x

y
+

y

x

)
− p(r + q)

(
x+ y +

1

x
+

1

y

)
+

(
xy +

1

xy

)
qr.

In the next example we need four lattice parameters to ensure that the two
lattice parameters on each quadrilateral differ.
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Figure 21

Given initial values
a, b, c, d, the values
e, f, g, h, i can be deter-
mined by the following
equations:

Qrp(b, c, e, d) = 0,

Qsp(a, b, f, e) = 0,

Qrq(e, d, g, a) = 0,

Qsq(f, e, h, g) = 0,

Qrs(g, a, h, i) = 0,

Qqp(a, f, j, h) = 0.

The values a, b, c, d are repeated periodically on the ’staircase’ which extends
along a ’diagonal’ of the quad-graph.The particular way of choosing lattice pa-
rameters (q, p, p, q, see Figure 21, and we also take r, s, s, r vertically) ensures
that the periodic solution has the same period as the initial values. It is im-
portant to notice that when going one step to the right (on the Z2 part of the
quad-graph) the lattice parameters p, r are interchanged with q, s respectively.
Therefore, we consider the mapping

(a, b, c, d, p, q, r, s) $→ (h, i, a, j, q, p, s, r).

After the transformation x = a/c, y = b/d we are left with

(x, y, p, q, r, s) $→ (
1

x

xn

xd
,
1

y

yn
yd

, q, p, s, r),

with

xn = −qsp2 + pq(qs+ pr)x+ 2ypsrq − (rq + ps)(qs+ pr)yx− y2sr2q

−pq2x2r + sr(qs+ pr)y2x+ (p2q2 + s2r2)yx2 − y2ps2x2r,

xd = y2rqp2x− y2rq2p− y2qsx2p2 + y2q2sxp+ yr2s2 − ypqr2x+ 2yrqsx2p

−yp2sxr − yq2sxr + yq2p2 − yps2xq − r2qsx2 + r2spx+ rs2xq − ps2r,

yn = (s2p− s(qs+ pr)x− s2ry + (prq + s3)yx+ x2rqs− yqsx2p)

·(−qsp+ q(qs+ pr)x+ ysrq − (srp+ q3)yx− q2x2r + x2q2py),

yd = (−qsp+ (prq + s3)x+ ysrq − s(qs+ pr)yx− x2s2r + x2s2py)

·(q2p− (srp+ q3)x− yq2r + q(qs+ pr)yx+ x2rqs− yqsx2p).

The monodromy matrix,

Ld,a(q)Lc,d(p)Lb,c(r)La,b(s)

yields one invariant, in reduced variables,

x(1 + y2)(qs+ pr) + y(x2 + 1)(pq + sr)− (x2 + y2)rq − (x2y2 + 1)ps.
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The linear part of the mapping is easily solved by

p = c1 + c2(−1)n, q = c1 − c2(−1)n, r = c3 + c4(−1)n, s = c3 − c4(−1)n

where n is an integer counting the iterations of the map. Thus we may obtain
an alternating two-dimensional map with one integral, cf. [28]. However, this
map would take too much space to write explicitly. For special values of the
parameters and one of the initial values we have observed that the growth of
this map is quadratic, which indicates it is integrable.

6 Multivaluedness of iterates of correspondences

We have seen two examples in which correspondences arose: (n, 0)-reductions
of the QD-system in section 3.2.1 and of the pKdV-equation in section 4.3.1.
In general the multi-valuedness of the iterates of a correspondence would grow
exponentially. However, for integrable correspondences one expects the multi-
valuedness to grow polynomially instead.

6.1 The pKdV (3,0)-correspondence

ϕ− ϕ+

Figure 22: Polynomial growth of
multivaluedness of iterates.

Generically the multi-valuedness of the
lth iterate of a two-valued map would
be 2l. This is not the case here. Due to
the x ↔ y symmetry of the system (40)
the correspondence ϕ equals its own in-
verse. The relations ϕ−1

± = ϕ∓ imply
that the lth iterate of the correspon-
dence is (l + 1)-valued, see Figure 22.
All points on the same vertical line have
the same value.

6.2 The QD (n, 0)-correspondence

As one can easily verify the mappings τ, σ, given by equations (20,21), satisfy

τστ = σσσ and τσσ = σστ. (42)

Due to these relations the lth iterate of the correspondence is 2l valued, see
figure 23.

Proposition 4 With compositions of mappings (42), the lth iterate of the cor-
respondence (σ, τ) is 2l valued.

Proof: The relations (42) can be used to rewrite every word in two symbols σ
and τ of length l into either a word that does not contain τσ or a word that
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σ τ

τσ

ττττσ τττττ

Figure 23: Graphical representation of Proposition 4

only contains τσ at the end. There are 2l such words:

τττ · · · τττ, σττ · · · τττ, σστ · · · τττ, . . . , σσσ · · ·σστ,
τττ · · · ττσ, σττ · · · ττσ, σστ · · · ττσ, . . . , σσσ · · ·σσσ.

So there are at most 2l inequivalent words of length l. To show that there are
exactly 2l inequivalent words of length l we proceed by induction. We suppose
there are are exactly 2l inequivalent words of length l. For any three words
u, v, w we have uv = uw ⇒ v = w. So if two different words of length l extend
to an equivalent word of length l+1, this word can be written (we concatenate
from the left) as u = τv = σw. If a third word of length l would extend to u
then we have u = τz or u = σz which would imply z = v or z = w respectively.
Therefore words of length l that extend to words of length l+1 coincide at most
pairwise, giving an lower bound of 2l on the number of words of length l + 1.
However, since there are two words of length l + 1 that are not equivalent to
any other word, namely τττ · · · τττ and σττ · · · τττ , there are at least 2l + 2
inequivalent words of length l + 1. !

The same relations hold in the 2n-dimensional case.

Proposition 5 The 2n-dimensional mappings τ = τ2n (17) and σ = σ2n (13)
satisfy the relations (42).

Proof: That the second of the relations (42) holds is easily established as σσ,
i.e. the mapping xk $→ xk+2, clearly commutes with τ .

For the first relation we solve the equations (12) for the xi in terms of the
x̂k to find the inverse τ−1, with i = 1, 2, . . . , n,

x2i−1 $→ x2i−1
Wn

2i

Wn
2i−2

,

x2i $→ x2i−2
Wn

2i−4

Wn
2i−2

,
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where

Wn
k =

n−1∑

i=1




i−1∏

j=1

x2j−1+k








n−1∏

j=i

x2j+2+k



 . (43)

One can verify that σ(Wn
k ) = Qn

k . This implies that στ−1 is given by

x2i−1 $→ x2i+2
Qn

2i

Qn
2i−2

x2i $→ x2i−3
Qn

2i−4

Qn
2i−2

, i = 1, . . . , n

which equals its inverse τσ−1. Multiplying τσ−1 = στ−1 from the left by τσ
and from the right by σ, using τσσ = σστ , gives us τστ = σσσ. !

Remark: One can also directly prove that the τ−1 provided is the inverse
of τ . This relies on the fact that τ(Wn

k ) = Qn
k , which in terms of Q amounts to

the identity

n−1∏

i=1

Qn
2i =

n∑

i=1

(
i−1∏

j=1

x2j−1)(
n−1∏

j=i

x2j+4)(
n−2∏

j=1

Qn
2j+2i),

which can be proved using

Qn−m
0 Qn

2 = x1Q
n−m−1
2 Qn

0 +Qn
2(n−m)(

n−m+1∏

i=3

x2i)

which in turn relies on a generalization of the relations (16),

Qn−m
0 = Qn−m

2m (
m+1∏

i=2

x2i) + (Qm
0

n−1∏

i=m

x2i+1).

7 Concluding remarks

We have shown that the staircase method provides integrals for mappings and
correspondences derived as s-periodic reductions of lattice equations and sys-
tems of lattice equations. We also showed that such mappings and correspon-
dences can be order-reduced systematically, using symmetries of the lattice equa-
tions. In all examples encountered the staircase method yields sufficiently many
functionally independent integrals for the d-reduced mappings and correspon-
dences to be completely integrable. However, we know the above statement is
not true in general. In [34] periodic reductions of systems of P∆Es are consid-
ered for which the staircase method does not provide sufficiently many integrals.
However, in those cases it was observed that a certain linear combination of in-
tegrals factorises into a product of 2-integrals, from which then another integral
can be obtained.
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For posing initial value problems we used the method laid out in [38]. Al-
though, for the Boussinesq system we presented an alternative approach. We
have calculated integrals for mappings/correspondences with dimension up to
say 20. Therefore we were able to check functional independence of the integrals
using the symbolic software package Maple [18].

Closed form expressions for integrals of mappings with arbitrary dimensions
(corresponding to reductions with s2 = −1) have been given in [40, 36]. There,
the lattice equations are of Adler-Bobenko-Suris type [2, 3] and the integrals
are expressed in terms of multisums of products. Their functional independence
and involutivity is being investigated [37].

It is an open problem whether such closed form expressions can be obtained
in general. In particular, we don’t know whether such expressions can be given
for the Bruschi-Calogero-Droghei equation, the Quotient-Difference algorithm
and the Boussinesq system presented here, except for QD in the case s1 =
0. Another question is how to obtain symplectic structures for the mappings
studied in this paper. This would enable one to conclude complete integrability.

We have obtained a few results on mappings of arbitrary dimension. These
include an explicit (2+(−1)n)-reduction of the mapping related to the (n−1, 1)-
reduction of the lattice potential KdV equation, as well as an explicit expression
for a 2-integral of the mapping in the case that n is even. We proved that the
(n − 1, 1)-reduction of the Boussinesq system can be d-reduced with d = 6 if
3 divides n and with d = 2 otherwise. Also, we presented two 3-integrals for
this mapping (expressed in terms of the original variables). For the (n− 1,−1)-
reduction of the Boussinesq system we have showed that the mapping can be d-
reduced with d = 6 if 3 divides n+1 and with d = 2 otherwise. Finally, the (n, 0)-
reduction of the QD-system yields a 2n-dimensional 2-valued correspondence.
We have given an explicit expression for this correspondence and showed that
its nth iterate is 2n-valued. It would be interesting to investigate other ways of
establishing such a result because one does not always have explicit expressions
at hand.
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