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Abstract. The unit tangent bundle of a Riemannian manifold is one of popular
examples of contact manifolds. It has the standard CR structure which is not integrable
in general. We study the recently defined gauge invariant of type (1,3) of the CR structure
and show that the invariant vanishes, if and only if the Riemannian manifold is of
constant curvature — 1.

Introduction. Popular examples of contact manifolds are the odd-dimensional
spheres and the unit tangent bundles of Riemannian manifolds. These examples have
the standard contact Riemannian structures and their associated CR structures.

A contact Riemannian structure satisfying the integrability condition Q = 0
corresponds to a strongly pseudo-convex integrable CR structure. There are rich results
in the study of strongly pseudo-convex integrable CR structures. If one wants to
generalize the Chern-Moser-Tanaka invariant of (l,3)-type of CR structures to a
(l,3)-type invariant of gauge transformations of contact Riemannian structures, it
seems to be necessary that one fixes a linear connection (Tanno [12]) or a nowhere
vanishing m-form on the contact manifold M, where dimλf=m (cf. §3).

In §4 we give the expression for our (l,3)-type invariant B of the standard contact
Riemannian structure on the unit tangent bundle of a Riemannian manifold.

THEOREM A. Let (M, g) be a Riemannian manifold of dimension m>3 an
η, g*) be its unit tangent bundle with the standard contact Riemannian structure (η, g*).

Then the gauge invariant B of(\,3)-type of(TlM, η, g*) vanishes, if and only if (M, g)
is of constant curvature —1.

It is worth noticing that if (M, g), m > 3, is of constant curvature — 1 then the CR
structure associated with the contact Riemannian structure (η, g*) on the unit tangent
bundle T1M is integrable and yet the natural almost complex structure of the ambient
space, i.e., the tangent bundle ΓM, is not integrable.

Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science and

Culture, Japan.

1991 Mathematics Subject Classification. Primary 53C20; Secondary 53C15.



536 S. TANNO

1. A contact form and its associated Riemannian metrics. A 1-form η on a
manifold M of dimension m = 2n+ 1 is called a contact form if it satisfies η Λ (dη)n^Q

everywhere on M. The equivalence class of contact forms containing η is denoted

by {η}, which is called a contact structure. The pair (M, {η}) is called a contact manifold.

By P we denote the subbundle of the tangent bundle TM of M defined by η = Q, and

at the same time the 2«-dimensional distribution on M, which is called the contact

distribution associated with the contact structure.
By a contact manifold (M, 77) we mean a contact manifold (M, {η}) with a fixed

contact form η. Since dη is of rank 2n, there is a unique vector field ξ such that ^/(ί)= 1

and Lξη = ΰ, where Lξ denotes the Lie derivation by ξ. ξ is called the associated vector

field. It is known that there exist a Riemannian metric g and a (l,l)-tensor field φ
satisfying φξ = Q,η'φ = Q, g(X, ξ) = η(X) for Xε TXM, and

(1) φφ=-I+η®ξ, dη(X, Y) = 2g(X,φY),

(2) g(X, 7) = g(φX, φ 7) + η(X)η( Y)

for A", 7e TXM, xeM. g is called an associated Riemannian metric. Although g and 0
are not unique for η, the pair g and φ are canonically related. The pair (η, g} is called

a contact Riemannian structure. The restriction φ = φ \ P of φ to P defines an almost

complex structure to P. So (η, g) is equivalent to (η, φ) or (η, φ), where φ is an almost

complex structure for P such that g(X, Y) (= -(l/2)dη(X,$Y)), X, YeP, defines an
almost Hermitian structure for P. The pair (η, φ) is called the CR structure associated

with the contact Riemannian structure (η, g). A contact Riemannian structure (η, g) is

a strongly pseudo-convex integrable CR structure, if it satisfies the integrability condition

2 = 0, where Q is a (l,2)-tensor field on M defined by

(3) Q(X, Y) = (Vγφ)(X) + (Vγη)(φX)ξ + η(X)φVγξ

for X, Ye TXM (cf. [10]). A natural question is stated as follows:
Which metric is most proper among Riemannian metrics associated with η ?

One method of finding conditions of nice Riemannian metrics is to study variational

problems and their critical points. Blair [3], [4], Chern and Hamilton [5], and Tanno
[10] studied variational problems on contact manifolds. Let (M, η) be a compact contact
manifold. Then an associated Reimannian metric g is critical with respect to the Dirichlet
energy functional E(g) = JM || Lξg \\2dM if and only if

(4) VξLξg = 2Lξg φ.

An associated Riemannian metric g satisfying (4) is called ^-critical. One may consider

that a contact Riemannian structure (η, g) belongs to a nice class if g is ^-critical.

2. Gauge transformations of contact Riemannian structure. If one changes η to
ή = σηm {η} for a positive function σ, then one may hope that the choice of an associated



UNIT TANGENT BUNDLE 537

Riemannian metric g should be determined in a natural way. This is done by assuming
φ\P=φ\ P. Namely we have

(5) =(l/σ)(ξ + C ) , C = (l/2σ)φgradσ, φ = φ + (l/2σ)η ® (gradσ-ξσ-ξ) ,

(6) g = σg-σ(η ® w + w

where w is dual to ζ with respect to g. g and # are conformal with respect to P. We
call (η, g)-*(ή, g) a gauge transformation of contact Riemannian structure. A natural
problem is stated as follows:

What are gauge invariants and what are their properties in contact geometry?
Using the generalized Tanaka- Webster scalar curvature Sτ of contact Riemannian
structure, a scalar gauge invariant K(^g) of contact Riemannian structure (η, g) is defined
on a compact contact manifold (Tanno [10]). This invariant is a natural generalization
of the Jerison-Lee invariant for strongly pseudo-convex integrable CR manifolds ([7]).

3. A gauge invariant of (l,3)-type. Let R and p denote the Riemannian curvature
tensor and the Ricci tensor of a contact Riemannian manifold (M, η, g). Let p be a (0,2)-
tensor field defined by 2p = Lξg. Define p* and p* by g(X, p*Y) = p(X, Y) and g(X,p*Y) =
p(X, Y). Since the action of φ, β, /?* and Vξp* to ξ is trivial, by the same notations φ,
β, p* and Vξp*9 we mean also their restrictions to P. Now we denote the restriction

of R and p* to P with respect to g by R and pff, i.e., R e Γ(P ® P*3) and p* e Γ(P ® P*).
By a P-related frame we mean a frame {e^ = (eu, e0 = ξ; 1 < w < 2n} such that ^u e P.

The indices w, ι;, w, x, ,̂ and z run from 1 to 2n. We define UεΓ(P2 ® P*3) by

(7) U%, = 2[(2/(m + 3))[ - δ"x(Q*y» + Qv

wy)φΐ - φ"x(Qv

zy

+ δϊyφ"
-(l/2)^β

where [ ~\xy denotes the skew symmetric part of [ •] with respect to x, y.

Let ω be a nowhere vanishing m-form on M and fix it. Let dM(g) denote the volume
element of (M, η, g\ i.e., dM(g) = ((-l)n/2nn\)η A(dη)\ We define λ by dM(g)= ±eλω
and θeΓ(P*) by θ(X) = Xλ for XeP. By XΛ Y we denote the operator defined by

C^Λ Y)Z = g(Y, Z}X-g(X, Z)Y. Now we define BεΓ(P® P*3) by

(8) (m + 3)B(X, Y)Z=(m + 3)R(X, Y)Z-(X* Y)p*Z-p*(X* Y)Z + φ(XΛ Y)p*φZ

-lp(X, φY)-p(Y, φX)~\φZ+φp*(X* Y)φZ

-(l/2)dη(X, r)((/>ptf + pV)Z+[5Γ/(m+l)-4](^Λ Y)Z

-l][-ψ(AΓΛ Y)φZ+dη(X, Y)φZ]

Y)φZ-φ(XΛ Y)p*Z\

T Λ Y)p*Z
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+ φ(X* Y)φξp*)φZ-((m + y)l(m+ \))U(X, Y, Z; 0)

for X, Y,ZeP, where U(X, Y, Z; θ) = (θvU™yX
xYyZz). This B is essentially the same

as the one defined in [12]. The only difference is 0, where this 0 satisfies the same

relation θu-θu = 2(n+ l)αu for σ = e2" as in [12]. We restate Theorem A of [12].

THEOREM. Let (M9 η, g) be a contact Riemannίan manifold of dimension m = 2n+l
and let ω be a fixed nowhere vanishing m-form on M. Then BeΓ(P® p*3) defined by

(8) is a gauge invariant of type (1,3) of the contact Riemannian structure. Furthermore:
(i) If B = Q, then the CR structure (η, φ) associated with (η, g) is integrable.
(ii) IfQ = Q9 then B reduces to the Chern-Moser-Tanaka invariant.

Note that the condition (4) is written as Vξp* = 2p*φ. So, if (4) is satisfied on
(M, η, g), then B of (M, η, g) takes somewhat simpler form.

We call B' defined by B'z
u

xy = Bu

zxy + (\/(m+\))θvU
v

z

u

xy the main part of the invariant
B. Now we put B'uzxy = gu^B'z

v

xy. Then we have the following:

/Q\ D> D> D> D'
\

y
)
 D

 uzxy ° uzyx •> ° uzxy -" zuxy ?

(10) (m + 3)(B'uzxy - B'xyuz) = φxzZyu - φyzZxu - φxuZyz + φyuZxz,

where we have put

(Π) Zxy = Pxwφ™ + Py»φ»-4(n- l)p

Zxy is symmetric with respect to x, y. By Remark (i) of [12] we see that if g = 0 then
Zxy = Q, and in particular B'uzxy = Bxyuz holds.

REMARK (i). If m = 3, then we have B = Q. In fact, m = 3 implies that Q = 0 holds
(and hence t/=0) and that R is expressed in terms of p, g and S. In simplifying B' we
use the following, (i): Sτ = S-p(ξ,ξ) + 4n (cf. (8.2) of [10]), (ii): the trace of/ (also

Vξp*) vanishes (cf. [10]) and (iii): p(ξ, ξ) = 2n- \\ p \\2 (cf. Blair [2]), where | |/? | | 2 =
\\(l/2)Lξφ\\2. By calculating the component B'^ wi^ respect to an orthonormal
basis {el9e2 = φeί9ξ}, we have B' = ΰ for n= 1.

4. The tangent bundle and unit tangent bundle. Let (M, g) be an m-dimensional
Riemannian manifold and let TM denote its tangent bundle with projection π. For a
local coordinate neighborhood (U, xl) in M, (π'^U^x^v1) is a local coordinate
neighborhood in TM, where v = (x, v) = (vid/dxi)Gπ~1U. A vector field W on TM or
tangent vector W at a point of ΓM is denoted by W=(W\ Wm+i\ where
JF= Widldxi+ Wm+ίd/dvi. For a vector field A" on M or a tangent vector Jf at a point
of M its horizontal lift XH is defined by XH = (X\ -Γ]kv

kXj\ where (Γjk) denotes the
coefficients of the Riemannian connection V. The vertical lift Xv of Λ^ is given by Xv =
(0, X*). Then we have the following: [_XV', Fκ] = 0, [JTH, ΓF] = (Vxr)κ,

(12) [JTH, FH] = [JT, 7]H - (Λ(JT, Y)υ)v .
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A natural almost complex structure tensor J of TM is defined by JXH = XV and

JXV = —XH. J is integrable if and only if (M, g) is locally flat (Dombrowski [6]).

The Sasaki metric g of TM is defined by

g(XH, YH) = g(X, Y) π , g(XH, Yv} = 0 , g(Xv \ Yv) = g(X, 7) π .

g(JZ, JW) = g(Z, W) is easily verified, and (TM, g, J) is an almost Hermitian manifold.
The Riemannian connection V of g is given by the following (cf. Sasaki [9]):

(13) VχHYH = (VxY)H-(l/2)(R(X, Y)v)v ,

VχHYv = (VxY)v-(l/2)(R(Y,v)X)H ,

Vχv Y* = -(l/2)(R(X, υ) Y)H , Vχv Y
v = 0 .

The geodesic flow vector ξ0 = vl(d/dxl)H on TM satisfies Vξoξ0 = 0. TM admits a natural
1-form η = (l/2)η0 — (\/2)gίjv

jdx\ which defines the standard contact structure on T1M.

We have 2dη(Z, W} = g(Z, JW) for any Z, We TVTM. This means that (TM, g, /) is
an almost Kahlerian manifold, which is Kahlerian if and only if (M, g) is locally flat.

The unit tangent bundle Tl M of M is a submanifold of TM defined by gijv
ivj=l

and so n = vid/dvi = vi(d/dxί)v is a unit normal. By (13), etc., we obtain

(14) Vi

and hence the Weingarten map A is characterized by AXH = 0, Aξ0 = 0 and A Xv = — Xv,

where v±Xe TXM.
By Z'τ we denote the tangent part of Z' to T1M for Z'εTυTM, and by g* we

denote the (l/4)-times the induced metric on T1M form g on TM. We define φ and ξ by

(15) ξ = 2ξ0=-2Jn, φW=(JW}

Then 02= -7+ιy ® ξ, η(ξ)= 1, η(Z) = g*(ξ, Z) and 20*(Z, φW} = dη(Z, W) hold. So,

(f/> 9*) = (Φι ζ, n> 9*) defines a contact Riemannian structure on T^M, which we call the
standard contact Reimannian structure on T1M.

REMARK (ii). The second fundamental form h of T1M in TM is degenerate.
However, the hybrid part (l/2)[Λ(Ar, 7) + Λ(/Ar, JT)] of A restricted to P is non-
degenerate.

As for V%ξ and V|0 we have the following (cf. Tashiro [13], Blair [1]).

(16) V*Hξ = V

(17) V$vξ=-2φXv-(R(X,v)Ό)H

9 X-Lv,

(18) (V*χ*Φ)YH = VχHYv-JVχHYH= -(l/2)(R(X, v)Y)H ,
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(19) (Vί»0)rκ = (l/2)[(Λ(jr, υ)Y)vγ , Fit? ,

(20)

(21) (V

PROPOSITION 4.1. For dimM-m>3, //ze CR structure (η, φ) on T1M associated

with the standard contact Riemannίan structure (η, g*) is integrable, if and only if

(M, g) is of constant curvature.

PROOF. For X, YE TXM such that X, Y±.υ9 by the definition (3) of Q and (16H21)

we obtain the following:

Q(XH,Ya)=-Q(Xv,Yv)= -(1/2)[Λ(F, υ)X-g(R(Y, v)X, φ]H ,

9 υ)X-g(R(Y, v)X, φ]"

Therefore, β = 0 is equivalent to the relation R(X, Y)ZLv for any X, Y, ZLv. This

means that R(X, Y)Z is a linear combination of X, Y and Z, and hence (M, 0) is

of constant curvature, if the dimension m>3 (cf. Ogiue [8]). q.e.d.

REMARK (iii). Proposition 4.1 shows that the unit tangent bundle T1M of a
Riemannian manifold (M, g), m>3, of non-zero constant curvature is an interesting
example of integrable CR manifolds, in the sense that the almost complex structure /

of the ambient space TM is not integrable.

REMARK (iv). The associated vector field ξ of the standard contact Riemannian
structure (77, g*) on T1M is a Killing vector field if and only if (M, g) is of constant

curvature 1 (Tashiro [13]).

In the following we denote by m' = n + 1 the dimension of M. It is convenient to

use the following basis of T(XV)T
1M at a point ( c, t;) of T1M:

where {ea, e0 = en + i = v} is a basis of TXM at x such that g(ea, v) = 0. We use the following

ranges of indices:

l<α, jβ, Λ,, . . .<«, 1<#, 6, r, s, ... <«+! , l<w, ϋ, . . . <2n , α =

PROPOSITION 4.2 (cf. YampoΓskiί [14]). The Riemannian curvature tensor R*, the
Ricci tensor p* and the scalar curvature S* of(T1M, #* = (1/4)0) are given by
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= 0 ,

= 0 ,

4S?= 0 ,

Pft = (m' - 2)gβy + (\/4)Rsr

0βRsr0y ,

S*=4S+ 4(m' - l)(m' - 2) - Rsr°0Rsrσ0

REMARK (v). Proposition 4.2 implies that if (M, g) is a 2-dimensional flat
Riemannian manifold then its unit tangent bundle (T1M, η, g*) is a 3-dimensional flat
contact Riemannian manifold.

PROPOSITION 4.3. p = (l/2)Lξg* and Vfp on (T^M, η, g*) are given by

PROOF. The first two follow from (16) and (17). For example, the second is

2p(XH, Yv) = g*(V$Hξ, Yv) + g*(XH,Vfrξ)

= -g*((R(X, v)v)y, Yv) + g*(XH, 2YH-(R(Y, φ)H)

= -(l/4)g(R(X, v)v, Y) + (\/4)g(X, 2Y-R(Y, φ) .

To verify the other, first we use (13), etc., to get

Vf X" = 2ΪvHXH = 2(VυX)H + (R(X, v)v)y ,

V%XV = 2ΪvHXv = 2(VVX)V - (R(X, φ)«

and, for example, we use the following:

, Y)-v"vbg(X,R(Y,δa)db) ]

, R(Y, da)db) .

The remaining part consists of similar direct calculations. q.e.d.

PROPOSITION 4.4. The generalized Tanaka-Webster scalar curvature Sτ of the unit
tangent bundle (T1M, η, g*) is given by Sτ = 4S+4n2-4Poo~R>>>"'0Rplta0.

PROOF. By (8.2) of [10] and p*(ξ, ζ) = 4p*(ξ0, ξ0) = 4p^0 we have

Sτ = S*-p*(ξ, ξ)+4n = 4S+4n(n- \)-Rsr°0Rsrσ0-4p00 + 2R°0

τ

0RσQτ0 + 4n ,

from which the above expression of Sτ follows. q.e.d.
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PROPOSITION 4.5. Let (T1M, η, g*) be the unit tangent bundle of a Riemannίan

manifold. Then the main part of the gauge invariant B of(l,3)-ίype is given by the following:

(22) 2(n + 2)B'^ = 2(n + 2)Rλ

yxβ + [SΓ/8(« + 1 ) + 2](δ*gβ, - δλ

βgxy)

+ ((n + 2)/2)(Rxσ0RQβy — Rβσ0Roxy — 2Ryσ0Roxβ)

+ δλ

βFxy - δλ

xFβy + gxyF
λ

β - gβyF
λ

x ,

(23) 4(« + 2)B'^β = 2(n + 2)VyR
λ

0xβ + δλ

xGyβ - δλ

βGyx + gxyG
λ

β - gβyG\ + δλ

y(Gxβ - Gβx) ,

(24) 2(/ι + 2)B'lβ = 2(n + 2)Rλ

yx

(25) 2(« + 2)*'£,,= (n + 2)\_Rλ

xyβ - (\/2)RlpoR°xy0 + δλ

βR°x

+ δλ

xHβy + δλ

yHxβ + 9xyH
λ

β + gxβH
λ

y - δ$Fxy - δλ

yFxβ - g^F* - gβyF
λ

x

(26) 4(» + ΐ)B'fa= δλ

xGβy - δλ

βGxy + gxyGβ

λ - gβyGx

λ + δλ

y(Gxβ - Gβx) ,

(27) 2(n + 2)β^=[

where we have put

GΛ =

PROOF. We apply Propositions 4.2 and 4.3 to the expression (8) of B. By (9), (10)
and (11) we see that (22)-(27) give the main part of B. q.e.d.

COROLLARY 4.6. If '(M, g) is of constant curvature k, then B of (T1M, η, g*) is
given by

PROOF. By Proposition 4.1 we have Q = Q and B—B'. By Proposition 4.4 we have
Sτ = 4n2(k+l). Furthermore, we have FΛβ = (n+l)kgφ Gaβ = 0 and HΛβ = kgΛβ. Then,
Corollary 4.6 follows from Propostion 4.5. q.e.d.

PROOF OF THEOREM A. First we assume that B = Q holds. Then we have β = 0 and
'̂ = 0. By Proposition 4.1, (M, g) is of constant curvature k. Now Corollary 4.6 shows

that B = Q implies k= — 1 if n>2. Conversely, if (M, g) is of constant curvature k= — 1
then Corollary 4.6 implies /? = 0. q.e.d.

REMARK (vi). By Proposition 4.3 the ^-critical condition V^p = 2p-φ is given by
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Kσo«oKσoβo = 9aβ and V0tf% = 0. Blair [4] proved that g* of (T^M, η, g*) is ^-critical,
if and only if (M, g) is of constant curvature 1 or — 1.
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