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THE STANDARD DOUBLE BUBBLE
IS THE UNIQUE STABLE DOUBLE BUBBLE IN R2

FRANK MORGAN AND WACHARIN WICHIRAMALA

(Communicated by Bennett Chow)

Abstract. We prove that the only equilibrium double bubble in R2 which is
stable for fixed areas is the standard double bubble. This uniqueness result
also holds for small stable double bubbles in surfaces, where it is new even for
perimeter-minimizing double bubbles.

1. Introduction

In 1993 Foisy et al. [F] proved that the standard double bubble of Figure 1ab,
consisting of three constant-curvature arcs meeting at 120 degrees, is the unique
least-perimeter way to enclose and separate two planar regions of prescribed areas.
The regions are not assumed to be connected. This proof left open the question of
whether there might be other stable double bubbles (see Sullivan [SM, Prob. 2]).
Our Theorem 3.2 proves there are no other stable double bubbles, except of course
for two single bubbles.

Figure 1. Foisy et al. [F] proved that the standard double bubble
(a, b) is the least-perimeter way to enclose and separate two regions
of prescribed areas in the plane, rather than any other crazy alter-
native.
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There are other unstable equilibrium double bubbles, like that of Figure 1d;
shrinking one component of R1 and enlarging the other reduces perimeter to second
order.

Further results on bubbles with more than two regions will appear in Wichira-
mala’s thesis [W].

1.1. The proof. The proof uses stability to show that the region R1 of larger
pressure has at most two components, which reduces the combinatorial possibilities
for a connected bubble to the thirteen of Figure 2. Possibilities (6)–(13) are easily
shown to be impossible, even for unstable equilibria. Then possibilities (2)–(5) are
fairly easily shown to be unstable. The standard double bubble (1) is the only
remaining possibility.

To prove that the region R1 of larger pressure has at most two components, note
that its components are convex, and hence have negative second variation under
shrinking or expanding. If R1 had three components, some nontrivial combination
of shrinking and expanding would preserve both areas and yield a contradictory
negative second variation.

1.2. Bubbles in surfaces. In Theorem 3.3 the uniqueness result Theorem 3.2 and
its proof extend to small stable double bubbles in surfaces of bounded curvature,
more than settling the conjecture of Cotton and Freeman [CF, Conj. 1.1] that a
small perimeter-minimizing double bubble must be standard.

1.3. Higher dimensions. In R3 and above, it remains an open question whether
every stable double bubble is standard. Indeed, in R5 and above, it remains an open
question whether every perimeter-minimizing double bubble is standard, despite
the recent proofs in R3 [HMRR] and R4 [RHLS]. For remarks on small perimeter-
minimizing double bubbles in manifolds, see [M3, Sect. 1.2].

2. Soap bubbles and second variation

A planar soap bubble consists of finitely many constant-curvature arcs meeting in
threes at 120 degrees, enclosing (not necessarily connected) regions Ri of prescribed
areas; arcs separating the same two regions have the same curvature, the difference
of the pressures of the two regions. These are just the equilibrium conditions.
Usually the pressure of the exterior R0 is taken to be 0.

Even the most technically general definition of soap bubbles as (M, ε, δ)-minimal
sets ([M1, 11.3], [A]) reduces to our definition ([M2], [T]). The general existence
of least-perimeter bubbles of prescribed volumes in Rn is well established ([M1,
Chapt. 13], [M4], [A, Thm. VI.2]).

The following Second Variation Formula was provided in general dimension in
the proof of the double bubble conjecture by Hutchings et al.

2.1. Second Variation Formula ([HMRR, Prop. 3.3, (3.11), Lemma 3.2]). Con-
sider an (equilibrium) planar soap bubble and smooth variation vectorfield u which
preserves areas to first order. Any such u is the initial velocity of many smooth
flows which preserve areas. Let uij denote the associated normal variation of the
interface from Rj into Ri, and κij its curvature, nonnegative where Ri is convex.
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Figure 2. The thirteen initial combinatorial possibilities for a sta-
ble connected double bubble

For any such flow, the initial second variation of perimeter equals the sum over
0 ≤ i < j of ∫

(u′2ij − κ2
iju

2
ij)−

∑
p

(u2
ijqij)|p

where e.g. at a point p where regions R1, R2, and R3 meet

q12(p) =
κ13 + κ23√

3

∣∣∣∣
p

.
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Remark. By approximation, nonnegative second variation for smooth variations is
equivalent to nonnegative second variation for variations which are piecewise C1.

3. Stable double bubbles must be standard

Theorem 3.2 provides our main result that the standard double bubble is essen-
tially the unique stable double bubble. Proposition 3.1, first formulated in [W],
where it is used in the study of minimizing triple bubbles, provides an estimate on
the number of components of a stable bubble cluster. Here we give a proof using
the Second Variation Formula 2.1, as for certain double bubbles in R3 by [HMRR,
Prop. 6.5].

3.1. Proposition ([W]). Consider a planar bubble cluster B of m regions, of non-
negative second variation for fixed areas. Then B has at most m nonpolygonal
nonadjacent convex components.

Proof. Let vk be a variation vectorfield which just shrinks the kth nonpolygonal
convex component at unit rate; i.e. on that component, u1j = 1 and elsewhere uij
vanishes. If there are more than m nonpolygonal convex components, then some
nontrivial linear combination v of the vk preserves the m areas to first order. By the
convexity hypothesis and the Second Variation Formula 2.1, the second variation
is negative, a contradiction.

3.2. Theorem. For prescribed areas in the plane, the standard double bubble is
the unique stable double bubble, indeed, the unique (equilibrium) double bubble with
nonnegative second variation, except of course for two single bubbles (one possibly
inside the other).

Proof. Let B be a double bubble of nonnegative second variation for fixed areas.
First we consider the case of B connected. Let R1 denote the region of larger
(or equal) pressure. Consideration of the outer boundary of B shows that R1 has
greater pressure than the exterior (much greater for small bubbles). Since every
component of R1 must interface the exterior, every component is nonpolygonal as
well as convex. Therefore by Proposition 3.1, R1 has at most two components.

Let C be a component of R1. C has an even number of edges because R2 and
the exterior alternate around C. Since C is convex and nonpolygonal, with interior
angles of 120 degrees, it has fewer than six edges. Therefore C is a curvilinear digon
or quadrilateral.

We claim that there are just twelve combinatorial possibilities for B, as pictured
in Figure 2. If R1 consists of one digon, two digons, or one quad, then B must
be (1), (2), or (3) or (7). If R1 consists of one digon and one quad, it comes from
inserting a digon in (3) or (7) and hence B must be (4), or (8) or (9). Finally we
consider the case that R1 consists of two quads, sharing four edges with R2, which
therefore has eight edges and at most four components, actually at most three
components because B is connected. If R2 has one component, B must be (12) or
(13). So we may assume that R2 has at least two components. If R2 consists of
two quads, B is (6). Otherwise one component of R2 is a digon, and B comes from
inserting that digon into an R1 digon of (4), (8), or (9), yielding (5), (10), or (11).

We claim that (6)–(11) cannot occur even as equilibrium bubbles. Both regions
and the exterior have bounded components with at most six edges as well as interior
angles of 120 degrees. Such a bounded component of a region of least pressure must
be convex and hence a hexagon (with straight edges), so that all three regions have
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the same pressure. But we already have that R1 has greater pressure than the
exterior, a contradiction.

Likewise we claim that (12) cannot occur. The bounded components of the
exterior, with less pressure than R1, must have more pressure than R2, and the
interface with R2 must have more than 240 degrees. Since all the edges of R2 are
concave and the interior angles are 120 degrees, this yields a contradiction.

Likewise (13) cannot occur. Consideration of the exterior region digon shows that
the exterior has more pressure than R2, while consideration of the outer boundary
shows that R2 has more pressure than the exterior, a contradiction.

Now we will show that (2)–(5) cannot be stable. Consider possibility (2). Of
course the digons are identical, determined by their curvatures and 120-degree an-
gles. Shrinking one (increasing curvature dP/dA) and enlarging the other (reducing
curvature) at the same rate reduces perimeter to second order while maintaining
areas to first order, a contradiction. More explicitly, choose u1j = 1 on one com-
ponent and u1j = −1 on the other. (These come from a piecewise C1 variation
vectorfield v.) Then by the Second Variation Formula 2.1, the second variation is
less than the sum over four points of

−κ12 + κ02 + κ10 + κ20√
3

= −κ12 + κ10√
3

≤ −κ10√
3
< 0.

(This is a trivial case of an instability argument in the proof of the double bubble
conjecture in R3 [HMRR, Prop. 6.5].)

In possibilities (3) and (5), the exterior boundary of R2 contains two long arcs
greater than 180 degrees (actually at least 240 degrees). Shrinking one through
circular arcs (increasing curvature) and enlarging the other (decreasing curvature),
while maintaining area, decreases perimeter to second order, a contradiction.

Consider possibility (4). Some linear combination of shrinking the two, convex
components of R1 and the long arc of R2 preserves area, with contradictory negative
second variation as before.

Only possibility (1), the standard double bubble, remains for a connected bubble
B.

For a disconnected bubble, each connected component is therefore a standard
double bubble or single bubble, of the same curvatures, possibly nested. There can
be no bounded components of the exterior, since pressure continues to drop as you
move outward. If R1 occurs in more than one component of the bubble, shrinking it
in one and enlarging it in the other provides contradictory negative second variation
as before. If R2 occurs in more than one component of the bubble, shrinking a long
exterior arc through circular arcs in one and enlarging a long exterior arc in the
other provides contradictory negative second variation as before. Two possibilities
remain: two single bubbles (possibly nested) and the standard double bubble, as
the theorem asserts.

Two single bubbles are of course stable. The standard double bubble, with less
perimeter, must be the minimizer.

Theorem 3.2 and its proof generalize easily to other ambient surfaces.

3.3. Theorem. Let M be a smooth Riemannian surface with bounded Gauss cur-
vature G. For small prescribed areas, a double bubble of nonnegative second vari-
ation is standard, i.e., consists of three constant-curvature arcs meeting at 120
degrees.
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Remark. For perimeter-minimizing double bubbles, Theorem 3.3 appears as a con-
jecture by Cotton and Freeman [CF, Conj. 1.1]. For small perimeter-minimizing
double bubbles in compact surfaces, there is an alternative limit argument proof
[M3], which requires proving bounds on curvature and numbers of components.

Proof. The proof requires only minor modifications of the Euclidean case of Theo-
rem 3.2. In the small, M is nearly Euclidean, and most of the estimates have plenty
of leeway. The second variation formula has an additional −

∫
u2
ijG term, which is

small for small bubbles. A modified Proposition 3.1 says that a region has at most
m convex components on which some edge has curvature at least 1.

In eliminating possibility (2) of Figure 2, the components of R1 need not be quite
identical, so that shrinking one and enlarging the other at rates to preserve the area
of R1 may not preserve the area of R2 to first order. A compensating variation of
the exterior boundary of R2, one arc of which is at least 60 degrees, could have
positive second variation. To compare these effects for small bubbles, renormalize
by scaling M to give the exterior boundary arcs of R2 unit curvature and M small
Gauss curvature. Now the components of R1 are nearly identical, the compensating
variation of the larger exterior arc of R2 is small, its effect on the second variation
is small, and the net second variation remains negative, the desired contradiction.
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