
Chapter 3

The Standard Model of Electroweak
Interactions

Guido Altarelli and Stefano Forte

3.1 Introduction

In this chapter,1 we summarize the structure of the standard EW theory [1]

and specify the couplings of the intermediate vector bosons W±, Z and of the

Higgs particle with the fermions and among themselves, as dictated by the gauge

symmetry plus the observed matter content and the requirement of renormalizability.

We discuss the realization of spontaneous symmetry breaking and of the Higgs

mechanism [2]. We then review the phenomenological implications of the EW

theory for collider physics (that is we leave aside the classic low energy processes

that are well described by the “old” weak interaction theory (see, for example, [3])).

Moreover, a detailed description of experiments for precision tests of the EW theory

is presented in Chap. 6.

For this discussion we split the lagrangian into two parts by separating the terms

with the Higgs field:

L = Lgauge + LHiggs . (3.1)

Both terms are written down as prescribed by the SU(2) ⊗ U(1) gauge symmetry

and renormalizability, but the Higgs vacuum expectation value (VEV) induces the
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spontaneous symmetry breaking responsible for the non vanishing vector boson and

fermion masses.

3.2 The Gauge Sector

We start by specifying Lgauge, which involves only gauge bosons and fermions,

according to the general formalism of gauge theories discussed in Chap. 2:

Lgauge = −1

4

3
∑

A=1

FA
μνF

Aμν − 1

4
BμνB

μν + ψ̄Liγ μDμψL + ψ̄Riγ μDμψR .

(3.2)

This is the Yang–Mills lagrangian for the gauge group SU(2) ⊗ U(1) with fermion

matter fields. Here

Bμν = ∂μBν − ∂νBμ and FA
μν = ∂μWA

ν − ∂νW
A
μ − gǫABC WB

μ WC
ν (3.3)

are the gauge antisymmetric tensors constructed out of the gauge field Bμ associated

with U(1), and WA
μ corresponding to the three SU(2) generators; ǫABC are the

group structure constants (see Eqs. (3.8, 3.9)) which, for SU(2), coincide with the

totally antisymmetric Levi-Civita tensor (recall the familiar angular momentum

commutators). The normalization of the SU(2) gauge coupling g is therefore

specified by Eq. (3.3).

The fermion fields are described through their left-hand and right-hand compo-

nents:

ψL,R = [(1 ∓ γ5)/2]ψ, ψ̄L,R = ψ̄[(1 ± γ5)/2] , (3.4)

with γ5 and other Dirac matrices defined as in the book by Bjorken–Drell [4]. In

particular, γ 2
5 = 1, γ

†
5 = γ5. Note that, as given in Eq. (3.4),

ψ̄L = ψ
†
Lγ0 = ψ†[(1 − γ5)/2]γ0 = ψ̄γ0[(1 − γ5)/2]γ0 = ψ̄[(1 + γ5)/2] .

The matrices P± = (1 ± γ5)/2 are projectors. They satisfy the relations P±P± =
P±, P±P∓ = 0, P+ + P− = 1.

The sixteen linearly independent Dirac matrices can be divided into γ5-even and

γ5-odd according to whether they commute or anticommute with γ5. For the γ5-

even, we have

ψ̄ŴEψ = ψ̄LŴEψR + ψ̄RŴEψL (ŴE ≡ 1, iγ5, σμν) , (3.5)
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whilst for the γ5-odd,

ψ̄ŴOψ = ψ̄LŴOψL + ψ̄RŴOψR (ŴO ≡ γμ, γμγ5) . (3.6)

The standard EW theory is a chiral theory, in the sense that ψL and ψR behave

differently under the gauge group (so that parity and charge conjugation non

conservation are made possible in principle). Thus, mass terms for fermions (of

the form ψ̄LψR + h.c.) are forbidden in the symmetric limit. In particular, in the

Minimal Standard Model (MSM: i.e. the model that only includes all observed

particles plus a single Higgs doublet), all ψL are SU(2) doublets while all ψR

are singlets. But for the moment, by ψL,R we mean column vectors, including

all fermion types in the theory that span generic reducible representations of

SU(2) ⊗ U(1).

In the absence of mass terms, there are only vector and axial vector interactions

in the lagrangian and those have the property of not mixing ψL and ψR . Fermion

masses will be introduced, together with W± and Z masses, by the mechanism of

symmetry breaking. The covariant derivatives DμψL,R are explicitly given by

DμψL,R =
[

∂μ + ig

3
∑

A=1

tAL,RWA
μ + ig′ 1

2
YL,RBμ

]

ψL,R , (3.7)

where tAL,R and 1/2YL,R are the SU(2) and U(1) generators, respectively, in the

reducible representations ψL,R . The commutation relations of the SU(2) generators

are given by

[tAL , tBL ] = i ǫABC tCL and [tAR , tBR ] = iǫABC tCR . (3.8)

We use the normalization (3.8) [in the fundamental representation of SU(2)]. The

electric charge generator Q (in units of e, the positron charge) is given by

Q = t3
L + 1/2 YL = t3

R + 1/2 YR . (3.9)

Note that the normalization of the U(1) gauge coupling g′ in (3.7) is now specified

as a consequence of (3.9). Note that t iRψR = 0, given that, for all known quark and

leptons, ψR is a singlet. But in the following, we keep t iRψR for generality, in case

1 day a non singlet right-handed fermion is discovered.

3.3 Couplings of Gauge Bosons to Fermions

All fermion couplings of the gauge bosons can be derived directly from Eqs. (3.2)

and (3.7). The charged Wμ fields are described by W 1,2
μ , while the photon Aμ and

weak neutral gauge boson Zμ are obtained from combinations of W 3
μ and Bμ. The
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charged-current (CC) couplings are the simplest. One starts from the W 1,2
μ terms in

Eqs. (3.2) and (3.7) which can be written as:

g(t1W 1
μ + t2W 2

μ) = g
{

[(t1 + it2)/
√

2](W 1
μ − iW 2

μ)/
√

2] + h.c.
}

= g
{

[(t+W−
μ )/

√
2] + h.c.

}

, (3.10)

where t± = t1 ± it2 and W± = (W 1 ± iW 2)/
√

2. By applying this generic relation

to L and R fermions separately, we obtain the vertex

Vψ̄ψW = gψ̄γμ

[

(t+L /
√

2)(1 − γ5)/2 + (t+R /
√

2)(1 + γ5)/2
]

ψW−
μ + h.c.

(3.11)

Given that tR = 0 for all fermions in the SM, the charged current is pure V − A.

In the neutral-current (NC) sector, the photon Aμ and the mediator Zμ of the weak

NC are orthogonal and normalized linear combinations of Bμ and W 3
μ:

Aμ = cos θWBμ + sin θWW 3
μ ,

Zμ = − sin θWBμ + cos θWW 3
μ . (3.12)

and conversely:

W 3
μ = sin θWAμ + cos θWZμ ,

Bμ = cos θWAμ − sin θWZμ . (3.13)

Equations (3.12) define the weak mixing angle θW . We can rewrite the W 3
μ and Bμ

terms in Eqs. (3.2) and (3.7) as follows:

gt3W 3
μ + g′Y/2Bμ = [gt3 sin θW + g′(Q − t3) cos θW ]Aμ +

+ [gt3 cos θW − g′(Q − t3) sin θW ]Zμ , (3.14)

where Eq. (3.9) for the charge matrix Q was also used. The photon is characterized

by equal couplings to left and right fermions with a strength equal to the electric

charge. Thus we immediately obtain

g sin θW = g′ cos θW = e , (3.15)

or equivalently,

tg θW = g′/g (3.16)
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Once θW has been fixed by the photon couplings, it is a simple matter of algebra to

derive the Z couplings, with the result

Vψ̄ψZ = g

2 cos θW

ψ̄γμ[t3
L(1 − γ5) + t3

R(1 + γ5) − 2Q sin2 θW ]ψZμ , (3.17)

where Vψ̄ψZ is a notation for the vertex. Once again, recall that in the MSM, t3
R = 0

and t3
L = ±1/2.

In order to derive the effective four-fermion interactions that are equivalent, at

low energies, to the CC and NC couplings given in Eqs. (3.11) and (3.17), we

anticipate that large masses, as experimentally observed, are provided for W± and

Z by LHiggs. For left–left CC couplings, when the momentum transfer squared can

be neglected, with respect to m2
W , in the propagator of Born diagrams with single

W exchange (see, for example, the diagram for μ decay in Fig. 3.1, from Eq. (3.11)

we can write

L
CC
eff ≃ g2

8m2
W

[ψ̄γμ(1 − γ5)t
+
L ψ][ψ̄γ μ(1 − γ5)t

−
L ψ] . (3.18)

By specializing further in the case of doublet fields such as νe − e− or νμ − μ−,

we obtain the tree-level relation of g with the Fermi coupling constant GF precisely

measured from μ decay (see Chap. 2, Eqs. (2), (3)):

GF /
√

2 = g2/8m2
W . (3.19)

By recalling that g sin θW = e, we can also cast this relation in the form

mW = μBorn/ sin θW , (3.20)

with

μBorn = (πα/
√

2GF )1/2 ≃ 37.2802 GeV , (3.21)

where α is the fine-structure constant of QED (α ≡ e2/4π = 1/137.036).

In the same way, for neutral currents we obtain in Born approximation from

Eq. (3.17) the effective four-fermion interaction given by

L
NC
eff ≃

√
2 GF ρ0ψ̄γμ[. . .]ψψ̄γ μ[. . .]ψ , (3.22)

Fig. 3.1 The Born diagram

for μ decay

W e

e
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where

[. . .] ≡ t3
L(1 − γ5) + t3

R(1 + γ5) − 2Q sin2 θW (3.23)

and

ρ0 = m2
W

m2
Z cos2 θW

. (3.24)

All couplings given in this section are obtained at tree level and are modified in

higher orders of perturbation theory. In particular, the relations between mW and

sin θW (Eqs. (3.20) and (3.21)) and the observed values of ρ (ρ = ρ0 at tree level)

in different NC processes, are altered by computable EW radiative corrections, as

discussed in Sect. (3.11).

The partial width Ŵ(W → f̄ f ′) is given in Born approximation by the simplest

diagram in Fig. 3.2 and one readily obtains from Eq. (3.11) with tR = 0, in the limit

of neglecting the fermion masses and summing over all possible f ′ for a given f :

Ŵ(W → f̄ f ′) = NC

GFm3
W

6π
√

2
= NC

αmW

12 sin2 θW

, (3.25)

where NC = 3 or 1 is the number of colours for quarks or leptons, respectively, and

the relations Eqs. (3.15, 3.19) have been used. Here and in the following expressions

for the Z widths the one loop QCD corrections for the quark channels can be

absorbed in a redefinition of NC : NC → 3[1 + αs(mZ)/π + . . .]. Note that the

widths are particularly large because the rate already occurs at order g2 or GF .

The experimental values of the W total width and the leptonic branching ratio (the

average of e, μ and τ modes) are [5, 8] (see Chap. 6):

ŴW = 2.147 ± 0.060 GeV, B(W → lνl) = 10.80 ± 0.09. (3.26)

The branching ratio B is in very good agreement with the simple approximate

formula, derived from Eq. (3.25):

B(W → lνl) ∼ 1

2.3.(1 + αs(m
2
Z)/π) + 3

∼ 10.8%. (3.27)

Fig. 3.2 Diagrams for (a) the

W and (b) the Z widths in

Born approximation
Z

a

W

b

ff

f ’ f
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The denominator corresponds to the sum of the final states d ′ū, s′c̄, e−ν̄e, μ−ν̄μ,

τ−ν̄τ (for the definition of d ′ and s′ see Eq. (3.66)).

For tR = 0 the Z coupling to fermions in Eq. (3.17) can be cast into the form:

Vψ̄f ψf Z = g

2 cos θW

ψ̄f γμ[gf

V − g
f

Aγ5]ψf Zμ , (3.28)

with:

g
f

A = t
3f

L , g
f

V /g
f

A = 1 − 4|Qf | sin2 θW . (3.29)

and t
3f
L = ±1/2 for up-type or down-type fermions. In terms of gA,V given in

Eqs. (3.29) (the widths are proportional to (g2
V +g2

A)), the partial width Ŵ(Z → f̄ f )

in Born approximation (see the diagram in Fig. 3.2), for negligible fermion masses,

is given by:

Ŵ(Z → f̄ f ) = NC

αmZ

12 sin2 2θW

[1 + (1 − 4|Qf | sin2 θW )2]

= NCρ0

GFm3
Z

24π
√

2
[1 + (1 − 4|Qf | sin2 θW )2]. (3.30)

where ρ0 = m2
W /m2

Z cos2 θW is given in Eq. (3.55). The experimental values of the

Z total width and of the partial rates into charged leptons (average of e, μ and τ ),

into hadrons and into invisible channels are [5, 8] (see Chap. 6):

ŴZ = 2.4952 ± 0.0023 GeV,

Ŵl+l− = 83.985 ± 0.086 MeV,

Ŵh = 1744.4 ± 2.0 MeV,

Ŵinv = 499.0 ± 1.5 MeV. (3.31)

The measured value of the Z invisible width, taking radiative corrections into

account, leads to the determination of the number of light active neutrinos (see

Chap. 6):

Nν = 2.9841 ± 0.0083, (3.32)

well compatible with the three known neutrinos νe, νμ and ντ ; hence there exist only

the three known sequential generations of fermions (with light neutrinos), a result

with important consequences also in astrophysics and cosmology.

At the Z peak, besides total cross sections, various types of asymmetries have

been measured. The results of all asymmetry measurements are quoted in terms of

the asymmetry parameter Af , defined in terms of the effective coupling constants,
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g
f
V and g

f
A , as:

Af = 2
g

f
V g

f
A

g
f 2
V + g

f 2
A

= 2
g

f
V /g

f
A

1 + (g
f
V /g

f
A)2

, A
f
FB = 3

4
AeAf . (3.33)

The measurements are: the forward-backward asymmetry (A
f
FB = (3/4)AeAf ), the

tau polarization (Aτ ) and its forward backward asymmetry (Ae) measured at LEP, as

well as the left-right and left-right forward-backward asymmetry measured at SLC

(Ae and Af , respectively). Hence the set of partial width and asymmetry results

allows the extraction of the effective coupling constants: widths measure (g2
V + g2

A)

and asymmetries measure gV /gA.

The top quark is heavy enough that it can decay into a real bW pair, which is by

far its dominant decay channel. The next mode, t → sW , is suppressed in rate by a

factor |Vt s|2 ∼ 1.7.10−3, see Eqs. (3.71–3.73). The associated width, neglecting mb

effects but including 1-loop QCD corrections in the limit mW = 0, is given by (we

have omitted a factor |Vtb|2 that we set equal to 1):

Ŵ(t → bW+) = GF m3
t

8π
√

2
(1 − m2

W

m2
t

)2(1 + 2
m2

W

m2
t

)[1 − αs(mZ)

3π
(
2π2

3
− 5

2
) + . . .].

(3.34)

The top quark lifetime is so short, about 0.5.10−24 s, that it decays before hadroniz-

ing or forming toponium bound states.

3.4 Gauge Boson Self-interactions

The gauge boson self-interactions can be derived from the Fμν term in Lgauge, by

using Eq. (3.12) and W± = (W 1 ± iW 2)/
√

2.

Defining the three-gauge-boson vertex as in Fig. 3.3 (with all incoming lines), we

obtain (V ≡ γ,Z)

VW−W+V = igW−W+V [gμν(p − q)λ + gμλ(r − p)ν + gνλ(q − r)μ] , (3.35)

with

gW−W+γ = g sin θW = e and gW−W+Z = g cos θW . (3.36)

Note that the photon coupling to the W is fixed by the electric charge, as imposed

by QED gauge invariance. The ZWW coupling is larger by a tan θW factor. This

form of the triple gauge vertex is very special: in general, there could be departures

from the above SM expression, even restricting us to Lorentz invariant, em gauge
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Fig. 3.3 The three- and four-gauge boson vertices. The cubic coupling is of order g, while the

quartic one is of order g2

W
+

W
+

W W

e
+ e

+

e
e

, Z

Fig. 3.4 The three- and four-gauge boson vertices. The cubic coupling is of order g, while the

quartic one is of order g2

symmetric and C and P conserving couplings. In fact some small corrections are

already induced by the radiative corrections. But, in principle, more important could

be the modifications induced by some new physics effect. The experimental testing

of the triple gauge vertices has been done mainly at LEP2 and at the Tevatron. At

LEP2 the crosssection and angular distributions for the process e+e− → W+W−

have been studied (see Chap. 6).

In Born approximation the Feynman diagrams for the LEP2 process are shown

in Fig. 3.4 [6]. Besides neutrino exchange which only involves the well established

charged current vertex, the triple weak gauge vertices VW−W+V appear in the γ and

Z exchange diagrams. The Higgs exchange is negligible because the electron mass is

very small. The analytic cross section formula in Born approximation can be found,

for example, in Ref. [5]. The experimental data are compared with the SM prediction

in Chap. 6 [7]. The agreement is very good. Note that the sum of all three exchange

amplitudes has a better high energy behaviour. This is due to cancellations among

the amplitudes implied by gauge invariance, connected to the fact that the theory is

renormalizable (the crosssection can be seen as a contribution to the imaginary part

of the e+e− → e+e− amplitude).

The quartic gauge coupling is proportional to g2ǫABCWBWCǫADEWDWE .

Thus in the term with A = 3 we have four charged W’s. For A = 1 or two

we have two charged W’s and 2 W 3’s, each W3 being a combination of γ and Z

according to Eq. (3.13). With a little algebra the quartic vertex can be cast in the

form:

VWWV V = igWWV V [2gμνgλρ − gμλgνρ − gμρgνλ] , (3.37)
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where, μ and ν refer to W+W+ in the 4W vertex and to V V in the WWV V case

and:

gWWWW = g2, gWWγγ = −e2, gWWγZ = −eg cos θW , gWWZZ = −g2 cos2 θW .

(3.38)

In order to obtain these result for the vertex the reader must duly take into account

the factor of −1/4 in front of F 2
μν in the lagrangian and the statistical factors

which are equal to two for each pair of identical particles (like W+W+ or γ γ , for

example). The quartic coupling, being quadratic in g, hence small, could not be

directly tested so far.

3.5 The Higgs Sector

We now turn to the Higgs sector of the EW lagrangian. The Higgs lagrangian is

specified by the gauge principle and the requirement of renormalizability to be

LHiggs = (Dμφ)†(Dμφ) − V (φ†φ) − ψ̄LŴψRφ − ψ̄RŴ†ψLφ† , (3.39)

where φ is a column vector including all Higgs fields; it transforms as a reducible

representation of the gauge group. The quantities Ŵ (which include all coupling

constants) are matrices that make the Yukawa couplings invariant under the Lorentz

and gauge groups. Without loss of generality, here and in the following, we take Ŵ

to be γ5-free. The potential V (φ†φ), symmetric under SU(2) ⊗ U(1), contains, at

most, quartic terms in φ so that the theory is renormalizable:

V (φ†φ) = −μ2φ†φ + 1

2
λ(φ†φ)2 (3.40)

As discussed in Chap. 2, spontaneous symmetry breaking is induced if the

minimum of V, which is the classical analogue of the quantum mechanical vacuum

state (both are the states of minimum energy), is obtained for non-vanishing φ

values. Precisely, we denote the vacuum expectation value (VEV) of φ, i.e. the

position of the minimum, by v (which is a doublet):

〈0|φ(x)|0〉 = v =
(

0

v

)

�= 0 . (3.41)

The reader should be careful that the same symbol is used for the doublet and the

only non zero component of the same doublet. The fermion mass matrix is obtained

from the Yukawa couplings by replacing φ(x) by v:

M = ψ̄L MψR + ψ̄RM
†ψL , (3.42)
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with

M = Ŵ · v . (3.43)

In the MSM, where all left fermions ψL are doublets and all right fermions ψR are

singlets, only Higgs doublets can contribute to fermion masses. There are enough

free couplings in Ŵ, so that one single complex Higgs doublet is indeed sufficient to

generate the most general fermion mass matrix. It is important to observe that by a

suitable change of basis we can always make the matrix M Hermitian and diagonal.

In fact, we can make separate unitary transformations on ψL and ψR according to

ψ ′
L = UψL, ψ ′

R = WψR (3.44)

and consequently

M → M
′ = U†

MW . (3.45)

This transformation does not alter the structure of the fermion couplings in Lsymm

(because both the kinetic terms and the couplings to gauge bosons do not mix L

and R spinors) except that it leads to the phenomenon of mixing, as we shall see in

Sect. (3.6).

If only one Higgs doublet is present, the change of basis that makes M diagonal

will at the same time diagonalize the fermion–Higgs Yukawa couplings. Thus, in

this case, no flavour-changing neutral Higgs vertices are present. This is not true,

in general, when there are several Higgs doublets. But one Higgs doublet for each

electric charge sector i.e. one doublet coupled only to u-type quarks, one doublet to

d-type quarks, one doublet to charged leptons (and possibly one for neutrino Dirac

masses) would also be all right, because the mass matrices of fermions with different

charges are diagonalized separately. For several Higgs doublets in a given charge

sector it is also possible to generate CP violation by complex phases in the Higgs

couplings. In the presence of six quark flavours, this CP-violation mechanism is not

necessary. In fact, at the moment, the simplest model with only one Higgs doublet

seems adequate for describing all observed phenomena.

We now consider the gauge-boson masses and their couplings to the Higgs. These

effects are induced by the (Dμφ)†(Dμφ) term in LHiggs (Eq. (3.39)), where

Dμφ =
[

∂μ + ig

3
∑

A=1

tAWA
μ + ig′(Y/2)Bμ

]

φ . (3.46)

Here tA and Y/2 are the SU(2) ⊗ U(1) generators in the reducible representation

spanned by φ. Not only doublets but all non-singlet Higgs representations can
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contribute to gauge-boson masses. The condition that the photon remains massless

is equivalent to the condition that the vacuum is electrically neutral:

Q|v〉 = (t3 + 1

2
Y )|v〉 = 0 . (3.47)

We now explicitlly consider the case of a single Higgs doublet:

φ =
(

φ+

φ0

)

, v =
(

0

v

)

, (3.48)

The charged W mass is given by the quadratic terms in the W field arising from

LHiggs, when φ(x) is replaced by v in Eq. (3.41). By recalling Eq. (3.10), we obtain

m2
WW+

μ W−μ = g2|(t+v/
√

2)|2W+
μ W−μ , (3.49)

whilst for the Z mass we get [recalling Eqs. (3.12–3.14)]

1

2
m2

ZZμZμ = |[g cos θW t3 − g′ sin θW (Y/2)]v|2ZμZμ , (3.50)

where the factor of 1/2 on the left-hand side is the correct normalization for the

definition of the mass of a neutral field. By using Eq. (3.47), relating the action of t3

and Y/2 on the vacuum v, and Eqs. (3.16), we obtain

1

2
m2

Z = (g cos θW + g′ sin θW )2|t3v|2 = (g2/ cos2 θW )|t3v|2 . (3.51)

For a Higgs doublet, as in Eq. (3.48), we have

|t+v|2 = v2, |t3v|2 = 1/4v2 , (3.52)

so that

m2
W = 1/2g2v2, m2

Z = 1/2g2v2/ cos2 θW . (3.53)

Note that by using Eq. (3.19) we obtain

v = 2−3/4G
−1/2
F = 174.1 GeV . (3.54)
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It is also evident that for Higgs doublets

ρ0 = m2
W

m2
Z cos2 θW

= 1 . (3.55)

This relation is typical of one or more Higgs doublets and would be spoiled by the

existence of Higgs triplets etc. In general,

ρ0 =
∑

i((ti)
2 − (t3

i )2 + ti)v
2
i

∑

i 2(t3
i )2v2

i

(3.56)

for several Higgs bosons with VEVs vi , weak isospin ti , and z-component t3
i .

These results are valid at the tree level and are modified by calculable EW radiative

corrections, as discussed in Sect. (3.7).

The measured values of the W and Z masses are [5, 8] (see Chap. 6):

mW = 80.398 ± 0.025 GeV, mZ = 91.1875 ± 0.0021 GeV. (3.57)

In the minimal version of the SM only one Higgs doublet is present. Then

the fermion–Higgs couplings are in proportion to the fermion masses. In fact,

from the Yukawa couplings gφf̄ f (f̄LφfR + h.c.), the mass mf is obtained by

replacing φ by v, so that mf = gφf̄ f v. In the minimal SM three out of the four

Hermitian fields are removed from the physical spectrum by the Higgs mechanism

and become the longitudinal modes of W+,W−, and Z. The fourth neutral

Higgs is physical and should be found. If more doublets are present, two more

charged and two more neutral Higgs scalars should be around for each additional

doublet.

The couplings of the physical Higgs H can be simply obtained from LHiggs, by

the replacement (the remaining three hermitian fields correspond to the would be

Goldstone bosons that become the longitudinal modes of W± and Z):

φ(x) =
(

φ+(x)

φ0(x)

)

→
(

0

v + (H/
√

2)

)

, (3.58)

[so that (Dμφ)†(Dμφ) = 1/2(∂μH)2 + . . .], with the results

L[H,W,Z] = g2 v√
2
W+

μ W−μH + g2

4
W+

μ W−μH 2 +

+ g2 v

2
√

2 cos2 θW

ZμZμH + g2

8 cos2 θW

ZμZμH 2 . (3.59)

Note that the trilinear couplings are nominally of order g2, but the adimensional

coupling constant is actually of order g if we express the couplings in terms of the
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masses according to Eqs. (3.53):

L[H,W,Z] = gmWW+
μ W−μH + g2

4
W+

μ W−μH 2 +

+ gmZ

2 cos2 θW

ZμZμH + g2

8 cos2 θW

ZμZμH 2 . (3.60)

Thus the trilinear couplings of the Higgs to the gauge bosons are also proportional

to the masses. The quadrilinear couplings are genuinely of order g2. Recall that to

go from the lagrangian to the Feynman rules for the vertices the statistical factors

must be taken into account: for example, the Feynman rule for the ZZHH vertex

is igμνg
2/2 cos2 θW .

The generic coupling of H to a fermion of type f is given by (after diagonaliza-

tion):

L[H, ψ̄,ψ] = gf√
2
ψ̄ψH, (3.61)

with

gf√
2

= mf√
2v

= 21/4G
1/2
F mf . (3.62)

The Higgs self couplings are obtained from the potential in Eq. (3.40) by the

replacement in Eq. (3.58). Given that, from the minimum condition:

v =
√

μ2

λ
(3.63)

one obtains:

V = −μ2(v + H√
2
)2 + μ2

2v2
(v + H√

2
)4 = −μ2v2

2
+ μ2H 2 + μ2

√
2v

H 3 + μ2

8v2
H 4

(3.64)

The constant term can be omitted in our context. We see that the Higgs mass is

positive (compare with Eq. (3.40)) and is given by:

m2
H = 2μ2 = 2λv2 (3.65)

We see that for
√

λ ∼ o(1) the Higgs mass should be of the order of the weak scale.

The difficulty of the Higgs search is due to the fact that it is heavy and coupled

in proportion to mass: it is a heavy particle that must be radiated by another heavy

particle. So a lot of phase space and luminosity is needed. At LEP2 the main process

for Higgs production was the Higgs-strahlung process e+e− → ZH shown in
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Fig. 3.5 Higgs production

diagrams in Born

approximation: (a) The

Higgs-strahlung process

e+e− → ZH , (b) the WW

fusion process e+e− → Hνν̄

W

WH

e + e +

Z

Z

e -

e -

H

a b

Fig. 3.5 [9]. The alternative process e+e− → Hνν̄, via WW fusion, also shown

in Fig. 3.5 [10], has a smaller crosssection at LEP2 energies but would become

important, even dominant at higher energy e+e− colliders, like the ILC or CLIC

(the corresponding ZZ fusion process has a much smaller crosssection). The analytic

formulae for the crosssections of both processes can be found, for example, in [11].

The direct experimental limit on mH from LEP2 is mH � 114 GeV at 95% c.l. (see

Chap. 6).

3.6 The CKM Matrix

Weak charged currents are the only tree level interactions in the SM that change

flavour: for example, by emission of a W an up-type quark is turned into a down-

type quark, or a νl neutrino is turned into a l− charged lepton (all fermions are

letf-handed). If we start from an up quark that is a mass eigenstate, emission of a

W turns it into a down-type quark state d’ (the weak isospin partner of u) that in

general is not a mass eigenstate. The mass eigenstates and the weak eigenstates do

not coincide and a unitary transformation connects the two sets:

D′ =

⎛

⎝

d ′

s′

b′

⎞

⎠ = V

⎛

⎝

d

s

b

⎞

⎠ = V D (3.66)

V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [12] (and similarly we can

denote by U the column vector of the three up quark mass eigenstates). Thus in

terms of mass eigenstates the charged weak current of quarks is of the form:

J+
μ ∝ Ūγμ(1 − γ5)t

+V D (3.67)

where

V = U†
uUd (3.68)



50 G. Altarelli and S. Forte

Here Uu and Ud are the unitary matrices that operate on left-handed doublets in

the diagonalization of the u and d quarks, respectively (see Eq. (3.44)). Since V

is unitary (i.e. V V † = V †V = 1) and commutes with T 2, T3 and Q (because

all d-type quarks have the same isospin and charge), the neutral current couplings

are diagonal both in the primed and unprimed basis (if the down-type quark terms

in the Z current are written in terms of weak isospin eigenvectors as D̄′ŴD′,
then by changing basis we get D̄V †ŴV D and V and Ŵ commute because, as

seen from Eq. (3.23), Ŵ is made of Dirac matrices and of T3 and Q generator

matrices). It follows that D̄′ŴD′ = D̄ŴD. This is the GIM mechanism [13] that

ensures natural flavour conservation of the neutral current couplings at the tree

level.

For N generations of quarks, V is a N×N unitary matrix that depends on N2

real numbers (N2 complex entries with N2 unitarity constraints). However, the 2N

phases of up- and down-type quarks are not observable. Note that an overall phase

drops away from the expression of the current in Eq. (3.67), so that only 2N − 1

phases can affect V. In total, V depends on N2 − 2N + 1 = (N − 1)2 real physical

parameters. A similar counting gives N(N − 1)/2 as the number of independent

parameters in an orthogonal N×N matrix. This implies that in V we have N(N −
1)/2 mixing angles and (N − 1)2 − N(N − 1)/2 = (N − 1)(N − 2)/2 phases: for

N = 2 one mixing angle (the Cabibbo angle θC) and no phases, for N = 3 three

angles (θ12, θ13 and θ23) and one phase ϕ etc.

Given the experimental near diagonal structure of V a convenient parametrisation

is the one proposed by Maiani [14]. It can be cast in the form of a product of

three independent 2 × 2 block matrices (sij and cij are shorthands for sin θij and

cos θij ):

V =

⎛

⎝

1 0 0

0 c23 s23

0 −s23 c23

⎞

⎠

⎛

⎝

c13 0 s13e
iϕ

0 1 0

−s13e
−iϕ 0 c13

⎞

⎠

⎛

⎝

c12 s12 0

−s12 c12 0

0 0 1

⎞

⎠ . (3.69)

The advantage of this parametrization is that the three mixing angles are of different

orders of magnitude. In fact, from experiment we know that s12 ≡ λ, s23 ∼ o(λ2)

and s13 ∼ o(λ3), where λ = sin θC is the sine of the Cabibbo angle, and, as order

of magnitude, sij can be expressed in terms of small powers of λ. More precisely,

following Wolfenstein [15] one can set:

s12 ≡ λ, s23 = Aλ2, s13e
−iφ = Aλ3(ρ − iη) (3.70)

As a result, by neglecting terms of higher order in λ one can write down:

V =

⎡

⎣

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vt s Vtb

⎤

⎦ ∼

⎡

⎢

⎣

1 − λ2

2
λ Aλ3(ρ − iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎤

⎥

⎦
+ o(λ4).

(3.71)
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It has become customary to make the replacement ρ, η → ρ̄, η̄ with:

ρ − iη = ρ̄ − iη̄√
1 − λ2

∼ (ρ̄ − iη̄)(1 + λ2/2 + . . . ). (3.72)

Present values of the CKM parameters as obtained from experiment are [16] [17] (a

survey of the current status of the CKM parameters can also be found in Ref. [5]):

λ = 0.2258 ± 0.0014

A = 0.818 ± 0.016

ρ̄ = 0.164 ± 0.029; η̄ = 0.340 ± 0.017 (3.73)

A more detailed discussion of the experimental data is given in Chap. 10.

In the SM the non vanishing of the η parameter (related to the phase ϕ in

Eqs. 3.69 and 3.70) is the only source of CP violation. Unitarity of the CKM matrix

V implies relations of the form
∑

a VbaV
∗
ca = δbc. In most cases these relations

do not imply particularly instructive constraints on the Wolfenstein parameters. But

when the three terms in the sum are of comparable magnitude we get interesting

information. The three numbers which must add to zero form a closed triangle in the

complex plane, with sides of comparable length. This is the case for the t-u triangle

(unitarity triangle) shown in Fig. 3.6 (or, what is equivalent in first approximation,

for the d-b triangle):

VtdV
∗
ud + Vt sV

∗
us + VtbV

∗
ub = 0 (3.74)

All terms are of order λ3. For η = 0 the triangle would flatten down to vanishing

area. In fact the area of the triangle, J of order J ∼ ηA2λ6, is the Jarlskog invariant

[18] (its value is independent of the parametrization). In the SM all CP violating

observables must be proportional to J, hence to the area of the triangle or to η. A

direct and by now very solid evidence for J non vanishing is obtained from the

measurements of ǫ and ǫ′ in K decay. Additional direct evidence is being obtained

from the experiments on B decays at beauty factories and at the TeVatron where the

angles β (the most precisely measured), α and γ have been determined. Together

with the available information on the magnitude of the sides all the measurements

Fig. 3.6 The unitarity

triangle corresponding to

Eq. (3.74)

1-

V Vtb ub
* V Vtb ud

*

V Vtb us
*
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Fig. 3.7 Box diagrams

describing K0 − K̄0 mixing

at the quark level at 1-loop

d d

d

d

s s s

s

u, c, t
u, c, t

W

W

are in good agreement with the predictions from the SM unitary triangle [16, 17]

(see Chap. 10).

As we have discussed, due to the GIM mechanism, there are no flavour changing

neutral current (FCNC) transitions at tree level in the SM. Transitions with |�F | =
1, 2 are induced at one loop level. In particular, meson mixing, i.e. M → M̄ off

diagonal |�F | = 2 mass matrix elements (with M = K,D or B neutral mesons),

are obtained from box diagrams. For example, in the case of K0 − K̄0 mixing the

relevant transition is s̄d → sd̄ (see Fig. 3.7). In the internal quark lines all up-type

quarks are exchanged. In the amplitude, two vertices and the connecting propagator

(with virtual four momentum pμ) at one side contribute a factor (ui = u, c, t):

FGIM =
∑

i

V ∗
uis

1

p/ − mui

Vuid , (3.75)

which, in the limit of equal mui , is clearly vanishing due to the unitarity of the CKM

matrix V . Thus the result is proportional to mass differences. For K0 − K̄0 mixing

the contribution of virtual u quarks is negligible due to the small value of mu and the

contribution of the t quark is also small due to the mixing factors V ∗
t sVtd ∼ o(A2λ5).

The dominant c quark contribution to the real part of the box diagram quark-level

amplitude is approximately of the form (see, for example, [19]):

ReHbox = G2
F

16π2
m2

cRe(V ∗
csVcd )2η1O

�s=2 , (3.76)

where η1 ∼ 0.85 is a QCD correction factor and O�s=2 = d̄LγμsL s̄LγμdL is the

4-quark dimension six relevant operator. To obtain the K0 − K̄0 mixing its matrix

element between meson states must be taken which is parametrized in terms of a

“BK parameter” which is defined in such a way that BK = 1 for vacuum state

insertion between the two currents:

〈K0|O�s=2|K̄0〉 = 16

3
fKm2

KBK , (3.77)

where fK ∼ 113MeV is the kaon pseudoscalar constant. Clearly to the charm

contribution in Eq. (3.76) non perturbative additional contributions must be added,

some of them of o(m2
K/m2

c), because the smallness of mc makes a completely

partonic dominance inadequate. In particular, BK is best evaluated by QCD lattice

simulations. In Eq. (3.76) the factor o(m2
c/m2

W ) is the “GIM suppression” factor
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Z

d, s, b

c

a

W

W W

b c

b bs s

u, t, c u, t, c

e e

, Z

t

Fig. 3.8 Examples of |�F | = 1 transitions at the quark level at 1-loop: (a) Diagram for a Z → t c̄

vertex, (b) b → s γ , (c) a “penguin” diagram for b → s e+e−

(1/m2
W is hidden in GF according to Eq. (3.19)). For B mixing the dominant

contribution is from the t quark. In this case, the partonic dominance is more realistic

and the GIM factor o(m2
t /m2

W ) is actually larger than one.

All sorts of transitions with |�F | = 1 are also induced at loop level. For example,

an effective vertex Z → t c̄, which does not exist at tree level, is generated at 1-loop

(see Fig. 3.8). Similarly, transitions involving photons or gluons are also possible,

like t → c g or b → s γ (Fig. 3.8) or b → s g. For light fermion exchange

in the loop the GIM suppression is also effective in |�F | = 1 amplitudes. For

example, analogous leptonic transitions like μ → e γ or τ → μ γ also exist but

are extremely small in the SM because the tiny neutrino masses enter in the GIM

suppression factor. But new physics effects could well make these rare processes

accessible to experiments in the near future. The external Z, photon or gluon can be

attached to a pair of light fermions, giving rise to an effective four fermion operator,

as in “penguin diagrams” like the one shown in Fig. 3.8 for b → s l+l−. The

inclusive rate B → Xs γ with Xs a hadronic state containing a unit of strangeness

corresponding to an s-quark, has been precisely measured. The world average result

for the branching ratio with Eγ > 1.6 GeV is [5]:

B(B → Xs γ )exp = (3.55 ± 0.26).10−4 . (3.78)

The theoretical prediction for this inclusive process is to a large extent free of

uncertainties from hadronisation effects and is accessible to perturbation theory as

the b-quark is heavy enough. The most complete result at order α2
s is at present [20]

(and refs. therein):

B(B → Xs γ )th = (2.98 ± 0.26).10−4 . (3.79)

Note that the theoretical value has recently become smaller than the experimental

value. The fair agreement between theory and experiment imposes stringent con-

straints on possible new physics effects.
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3.7 Neutrino Masses

In the minimal version of the SM the right handed neutrinos νiR , which have no

gauge interactions, are not present at all. With no νR no Dirac mass is possible

for neutrinos. If lepton number conservation is also imposed, then no Majorana

mass is allowed either and, as a consequence, all neutrinos are massless. But, at

present, from neutrino oscillation experiments (see Chapter 11 of the present work),

we know that at least 2 out of the 3 known neutrinos have non vanishing masses:

the two mass squared differences measured from solar (�m2
12) and atmospheric

oscillations (�m2
23) are given by �m2

12 ∼ 8 10−5 eV 2 and �m2
23 ∼ 2.5 10−3

[21]. The absolute values of the masses are very small, with an upper limit of a

fraction of eV , obtained from laboratory experiments (tritium β decay near the end

point: mν � 2 eV [5], absence of visible neutrinoless double β decay : |mee| �

0.3−0.7 eV (mee is a combination of neutrino masses; for a review, see, for example

[22]) and from cosmological observations: mν � 0.1 − 0.7 eV (depending on the

cosmological model assumptions) [23]. If νiR are added to the minimal model and

lepton number is imposed by hand, then neutrino masses would in general appear as

Dirac masses, generated by the Higgs mechanism, like for any other fermion. But,

for Dirac neutrinos, to explain the extreme smallness of neutrino masses, one should

allow for very small Yukawa couplings. However, we stress that, in the SM, baryon

B and lepton L number conservation, which are not guaranteed by gauge symmetries

(as is the case for the electric charge Q), are understood as “accidental” symmetries,

due to the fact that, out of the SM fields, it is not possible to construct gauge invariant

operators which are renormalizable (i.e. of operator dimension d ≤ 4) and violate

B and/or L. In fact the SM lagrangian should contain all terms allowed by gauge

symmetry and renormalizability. The most general renormalizable lagrangian, built

from the SM fields, compatible with the SM gauge symmetry, in absence of νiR , is

automatically B and L conserving. But in presence of νiR , this is no more true and

the right handed Majorana mass term is allowed:

MRR = ν̄c
iRMij νjR = νT

iRCMij νjR , (3.80)

where νc
iR = Cν̄T

iR is the charge conjugated neutrino field and C is the charge

conjugation matrix in Dirac spinor space. The Majorana mass term is an operator

of dimension d = 3 with �L = 2. Since the νiR are gauge singlets the Majorana

mass MRR is fully allowed by the gauge symmetry and a coupling with the Higgs is

not needed to generate this type of mass. As a consequence, the entries of the mass

matrix Mij do not need to be of the order of the EW symmetry breaking scale v and

could be much larger. If one starts from the Dirac and RR Majorana mass terms for

neutrinos, the resulting mass matrix, in the L,R space, has the form:

mν =
[

0 mD

mD M

]

(3.81)
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where mD and M are the Dirac and Majorana mass matrices (M is the matrix Mij

in Eq. (3.80)). The corresponding eigenvalues are three very heavy neutrinos with

masses of order M and three light neutrinos with masses

mν = −mT
DM−1mD , (3.82)

which are possibly very small if M is large enough. This is the see-saw mechanism

for neutrino masses [24]. Note that if no νiR exist a Majorana mass term could

still be built out of νjL. But νjL have weak isospin 1/2, being part of the left

handed lepton doublet l. Thus, the left handed Majorana mass term has total weak

isospin equal to one and needs two Higgs fields to make a gauge invariant term. The

resulting mass term:

O5 = λlTi λij ljHH/M , (3.83)

with M a large scale (apriori comparable to the scale of MRR) and λ a dimensionless

coupling generically of o(1), is a non renormalizable operator of dimension 5. The

corresponding mass terms are of the order mν ∼ λv2/M , hence of the same generic

order of the light neutrino masses from Eq. (3.82).

In conclusion, neutrino masses are believed to be small because neutrinos are

Majorana particles with masses inversely proportional to the large scale M of energy

where L non conservation is induced. It is interesting that the observed magnitudes

of the mass squared splittings of neutrinos are well compatible with a scale M

remarkably close to the Grand Unification scale, where in fact L non conservation

is naturally expected.

In the previous Section we have discussed flavour mixing for quarks. But, clearly,

given that non vanishing neutrino masses have been established, a similar mixing

matrix is also introduced in the leptonic sector, but will not be discussed here (see

Chapter 11).

3.8 Renormalization of the Electroweak Theory

The Higgs mechanism gives masses to the Z, the W± and to fermions while the

lagrangian density is still symmetric. In particular the gauge Ward identities and the

symmetric form of the gauge currents are preserved. The validity of these relations

is an essential ingredient for renormalizability. In the previous Sections we have

specified the Feynman vertices in the “unitary” gauge where only physical particles

appear. However, as discussed in Chap. 2, in this gauge the massive gauge boson

propagator would have a bad ultraviolet behaviour:

Wμν =
−gμν + qμqν

m2
W

q2 − m2
W

. (3.84)
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A formulation of the standard EW theory with good apparent ultraviolet behaviour

can be obtained by introducing the renormalizable or Rξ gauges, in analogy with

the abelian case discussed in detail in Chap. 2. One parametrizes the Higgs doublet

as:

φ =
(

φ+

φ0

)

=
(

φ1 + iφ2

φ3 + iφ4

)

=
(

−iw+

v + H+iz√
2

)

, (3.85)

and similarly for φ†, where w− appears. The scalar fields w± and z are the pseudo

Goldstone bosons associated with the longitudinal modes of the physical vector

bosons W± and Z. The Rξ gauge fixing lagrangian has the form:

�LGF = −1

ξ
|∂μWμ − ξmWw|2 − 1

2η
(∂μZμ −ηmZz)2 − 1

2α
(∂μAμ)2 . (3.86)

The W± and Z propagators, as well as those of the scalars w± and z, have exactly

the same general forms as for the abelian case in Eqs. (67)–(69) of Chap. 2, with

parameters ξ and η, respectively (and the pseudo Goldstone bosons w± and z have

masses ξmW and ηmZ). In general, a set of associated ghost fields must be added,

again in direct analogy with the treatment of Rξ gauges in the abelian case of

Chap. 2. The complete Feynman rules for the standard EW theory can be found

in a number of textbooks (see, for example, [25]).

The pseudo Goldstone bosons w± and z are directly related to the longitudinal

helicity states of the corresponding massive vector bosons W± and Z. This

correspondence materializes in a very interesting “equivalence theorem”: at high

energies of order E the amplitude for the emission of one or more longitudinal gauge

bosons VL (with V = W,Z) becomes equal (apart from terms down by powers of

mV /E) to the amplitude where each longitudinal gauge boson is replaced by the

corresponding Goldstone field w± or z [26]. For example, consider top decay with

a longitudinal W in the final state: t → bW+
L . The equivalence theorem asserts that

we can compute the dominant contribution to this rate from the simpler t → bw+

matrix element:

Ŵ(t → bW+
L ) = Ŵ(t → bw+)[1 + o(m2

W/m2
t )] . (3.87)

In fact one finds:

Ŵ(t → bw+) = h2
t

32π
mt = GF m3

t

8π
√

2
, (3.88)

where ht = mt/v is the Yukawa coupling of the top quark (numerically very close

to 1), and we used 1/v2 = 2
√

2GF (see Eq. (3.54)). If we compare with Eq. (3.34),

we see that this expression coincides with the total top width (i.e. including all

polarizations for the W in the final state), computed at tree level, apart from terms
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down by powers of o(m2
W/m2

t ). In fact, the longitudinal W is dominant in the final

state because ht >> g2. Similarly the equivalence theorem can be applied to find

the dominant terms at large
√

s for the crosssection e+e− → W+
L W−

L , or the leading

contribution in the limit mH >> mV to the width for the decay Ŵ(H → V V ).

The formalism of the Rξ gauges is also very useful in proving that spontaneously

broken gauge theories are renormalizable. In fact, the non singular behaviour of

propagators at large momenta is very suggestive of the result. Nevertheless to

prove it is by far not a simple matter. The fundamental theorem that in general a

gauge theory with spontaneous symmetry breaking and the Higgs mechanism is

renormalizable was proven by ’t Hooft and Veltman [27, 28].

For a chiral theory like the SM an additional complication arises from the

existence of chiral anomalies. But this problem is avoided in the SM because the

quantum numbers of the quarks and leptons in each generation imply a remarkable

(and, from the point of view of the SM, mysterious) cancellation of the anomaly,

as originally observed in Ref. [29]. In quantum field theory one encounters an

anomaly when a symmetry of the classical lagrangian is broken by the process of

quantization, regularization and renormalization of the theory. Of direct relevance

for the EW theory is the Adler-Bell-Jackiw (ABJ) chiral anomaly [30]. The classical

lagrangian of a theory with massless fermions is invariant under a U(1) chiral

transformations ψ′ = eiγ5θψ . The associated axial Noether current is conserved

at the classical level. But, at the quantum level, chiral symmetry is broken due to the

ABJ anomaly and the current is not conserved. The chiral breaking is produced by a

clash between chiral symmetry, gauge invariance and the regularization procedure.

The anomaly is generated by triangular fermion loops with one axial and two

vector vertices (Fig. 3.9). For example, for the Z the axial coupling is proportional

to the third component of weak isospin t3, while the vector coupling is proportional

to a linear combination of t3 and the electric charge Q. Thus in order for the chiral

anomaly to vanish all traces of the form tr{t3QQ}, tr{t3t3Q}, tr{t3t3t3} (and also

tr{t+t−t3} when charged currents are also included) must vanish, where the trace

is extended over all fermions in the theory that can circulate in the loop. Now all

these traces happen to vanish for each fermion family separately. For example take

tr{t3QQ}. In one family there are, with t3 = +1/2, three colours of up quarks with

Fig. 3.9 Triangle diagram

that generates the ABJ

anomaly
A

V V
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charge Q = +2/3 and one neutrino with Q = 0 and, with t3 = −1/2, three colours

of down quarks with charge Q = −1/3 and one l− with Q = −1. Thus we obtain

tr{t3QQ} = 1/2.3.4/9 − 1/2.3.1/9 − 1/2.1 = 0. This impressive cancellation

suggests an interplay among weak isospin, charge and colour quantum numbers

which appears as a miracle from the point of view of the low energy theory but is in

fact understandable from the point of view of the high energy theory. For example,

in Grand Unified Theories (GUTs) (for reviews, see, for example, [31]) there are

similar relations where charge quantization and colour are related: in the five of

SU(5) we have the content (d, d, d, e+, ν̄) and the charge generator has a vanishing

trace in each SU(5) representation (the condition of unit determinant, represented by

the letter S in the SU(5) group name, translates into zero trace for the generators).

Thus the charge of d quarks is −1/3 of the positron charge because there are three

colours. A whole family fits perfectly in one 16 of SO(10) which is anomaly free.

So GUTs can naturally explain the cancellation of the chiral anomaly.

An important implication of chiral anomalies together with the topological

properties of the vacuum in non abelian gauge theories is that the conservation of the

charges associated to baryon (B) and lepton (L) numbers is broken by the anomaly

[32], so that B and L conservation is actually violated in the standard electroweak

theory (but B-L remains conserved). B and L are conserved to all orders in the

perturbative expansion but the violation occurs via non perturbative instanton effects

[33] (the amplitude is proportional to the typical non perturbative factor exp −c/g2,

with c a constant and g the SU(2) gauge coupling). The corresponding effect is

totally negligible at zero temperature T , but becomes relevant at temperatures close

to the electroweak symmetry breaking scale, precisely at T ∼ o(T eV ). The non

conservation of B+L and the conservation of B−L near the weak scale plays a role

in the theory of baryogenesis that quantitatively aims at explaining the observed

matter antimatter asymmetry in the Universe (for a recent review, see, for example,

[34]; see also Chap. 9).

3.9 QED Tests: Lepton Anomalous Magnetic Moments

The most precise tests of the electroweak theory apply to the QED sector. Here

we discuss some recent developments. The anomalous magnetic moments of the

electron and of the muon are among the most precise measurements in the whole

of physics. The magnetic moment �μ and the spin �S are related by �μ = −ge �S/2m,

where g is the gyromagnetic ratio (g = 2 for a pointlike Dirac particle). The quantity

a = (g − 2)/2 measures the anomalous magnetic moment of the particle. Recently

there have been new precise measurements of ae and aμ for the electron [35] and

the muon [36]:

a
exp
e = 11596521808.5(7.6) .10−13, aexp

μ = 11659208.0(6.3) .10−10.

(3.89)
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Fig. 3.10 The hadronic

contributions to the

anomalous magnetic moment:

vacuum polarization (left)

and light by light scattering

(right)

The theoretical calculations in general contain a pure QED part plus the sum of

hadronic and weak contribution terms:

a = aQED + ahadronic + aweak =
∑

i

Ci(
α

π
)i + ahadronic + aweak. (3.90)

The QED part has been computed analytically for i = 1, 2, 3, while for i = 4

there is a numerical calculation with an error (see, for example, [38] and refs

therein). Some terms for i = 5 have also been estimated for the muon case. The

hadronic contribution is from vacuum polarization insertions and from light by light

scattering diagrams (see Fig. 3.10). The weak contribution is from W or Z exchange.

For the electron case the weak contribution is essentially negligible and the

hadronic term (ahadronic
e ∼ (16.71 ± 0.19).10−13) does not introduce an important

uncertainty. As a result this measurement can be used to obtain the most precise

determination of the fine structure constant [37]:

α−1 ∼ 137.035999710(96) , (3.91)

with an uncertainty about 10 times smaller than the previous determination.

However, very recently a theoretical error in the α4 terms was corrected [39]. As a

result the value of α−1 in Eq. (3.91) is shifted by −6.41180(73) 10−7 (about 7 σ ’s).

This change has a minor impact in the following discussion of the muon (g − 2).

In the muon case the experimental precision is less by about three orders of

magnitude, but the sensitivity to new physics effects is typically increased by a

factor (mμ/me)
2 ∼ 4.104 (one mass factor arises because the effective operator

needs a chirality flip and the second one is because, by definition, one must factor

out the Bohr magneton e/2m). From the theory side, the QED term (using the value

of α from ae in Eq. (3.91)), and the weak contribution are affected by small errors

and are given by (all theory number are taken here from the review [40])

aQED
μ = (116584718.09 ± 1.6).10−11, aweak

μ = (154 ± 2.2).10−11 (3.92)

The dominant ambiguities arise from the hadronic term. The lowest order (LO)

vacuum polarization contribution can be evaluated from the measured cross sections

in e+e− → hadrons at low energy via dispersion relations (the largest contribution

is from the ππ final state), with the result aLO.
μ 10−11 = 6909 ± 44. The higher
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order (HO) vacuum polarization contribution (from 2-loop diagrams containing an

hadronic insertion) is given by: aHO.
μ 10−11 = −98 ± 1. The contribution of the

light by light (LbL) scattering diagrams is estimated to be: aLbL.
μ 10−11 = 120 ± 35.

Adding the above contributions up the total hadronic result is reported as:

ahadronic
μ = (6931 ± 56).10−11. (3.93)

At face value this would lead to a 3.3σ deviation from the experimental value a
exp
μ

in Eq. (3.89):

aexp
μ − ath(e+e−)

μ = (275 ± 84).10−11. (3.94)

However, the error estimate on the LbL term, mainly a theoretical uncertainty, is

not compelling, and it could well be somewhat larger (although probably not by as

much as to make the discrepancy to completely disappear). Another puzzle is the

fact that, using the conservation of the vector current (CVC) and isospin invariance,

which are well established tools at low energy, aLO
μ can also be evaluated from τ

decays. But the results on the hadronic contribution from e+e− and from τ decay,

nominally of comparable accuracy, do not match well, and the discrepancy would be

much attenuated if one takes the τ result [41]. Since it is difficult to find a theoretical

reason for the e+e− vs τ difference, one must conclude that there is something

which is not understood either in the data or in the assessment of theoretical errors.

The prevailing view is to take the e+e− determination as the most directly reliable,

which leads to Eq. (3.94), but doubts certainly remain. Finally, we note that, given

the great accuracy of the aμ measurement and the relative importance of the non

QED contributions, it is not unreasonable that a first signal of new physics can

appear in this quantity.

3.10 Large Radiative Corrections to Electroweak Processes

Since the SM theory is renormalizable higher order perturbative corrections can

be reliably computed. Radiative corrections are very important for precision EW

tests. The SM inherits all successes of the old V-A theory of charged currents

and of QED. Modern tests have focussed on neutral current processes, the W

mass and the measurement of triple gauge vertices. For Z physics and the W

mass the state of the art computation of radiative corrections include the complete

one loop diagrams and selected dominant two loop corrections. In addition some

resummation techniques are also implemented, like Dyson resummation of vacuum

polarization functions and important renormalization group improvements for large

QED and QCD logarithms. We now discuss in more detail sets of large radiative

corrections which are particularly significant (for reviews of radiative corrections

for LEP1 physics, see, for example: [42]).
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Even leaving aside QCD corrections, a set of important quantitative contributions

to the radiative corrections arise from large logarithms [e.g. terms of the form

(α/π ln (mZ/mfl l))
n where fll is a light fermion]. The sequences of leading and

close-to-leading logarithms are fixed by well-known and consolidated techniques (β

functions, anomalous dimensions, penguin-like diagrams, etc.). For example, large

logarithms from pure QED effects dominate the running of α from me, the electron

mass, up to mZ . Similarly large logarithms of the form [α/π ln (mZ/μ)]n also

enter, for example, in the relation between sin2 θW at the scales mZ (LEP, SLC)

and μ (e.g. the scale of low-energy neutral-current experiments). Also, large logs

from initial state radiation dramatically distort the line shape of the Z resonance as

observed at LEP1 and SLC and this effect was accurately taken into account for

the measurement of the Z mass and total width. The experimental accuracy on mZ

obtained at LEP1 is δmZ = ±2.1 MeV (see Chap. 6). Similarly, a measurement of

the total width to an accuracy δŴ = ±2.3 MeV has been achieved. The prediction of

the Z line-shape in the SM to such an accuracy has posed a formidable challenge to

theory, which has been successfully met. For the inclusive process e+e− → f f̄X,

with f �= e (for a concise discussion, we leave Bhabha scattering aside) and X

including γ ’s and gluons, the physical cross-section can be written in the form of a

convolution [42]:

σ(s) =
∫ 1

z0

dz σ̂ (zs)G(z, s) , (3.95)

where σ̂ is the reduced cross-section, and G(z, s) is the radiator function that

describes the effect of initial-state radiation; σ̂ includes the purely weak corrections,

the effect of final-state radiation (of both γ ’s and gluons), and also non-factorizable

terms (initial- and final-state radiation interferences, boxes, etc.) which, being small,

can be treated in lowest order and effectively absorbed in a modified σ̂ . The radiator

G(z, s) has an expansion of the form

G(z, s) = δ(1 − z) + α/π(a11L + a10) + (α/π)2(a22L
2 + a11L + a20) + . . . +

+ (α/π)n
n

∑

i=0

aniL
i , (3.96)

where L = ln s/m2
e ≃ 24.2 for

√
s ≃ mZ. All first- and second-order terms

are known exactly. The sequence of leading and next-to-leading logs can be

exponentiated (closely following the formalism of structure functions in QCD). For

mZ ≈ 91 GeV, the convolution displaces the peak by +110 MeV, and reduces it

by a factor of about 0.74. The exponentiation is important in that it amounts to an

additional shift of about 14 MeV in the peak position with respect to the one loop

radiative correction.

Among the one loop EW radiative corrections, a very remarkable class of

contributions are those terms that increase quadratically with the top mass. The

sensitivity of radiative corrections to mt arises from the existence of these terms. The
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quadratic dependence on mt (and on other possible widely broken isospin multiplets

from new physics) arises because, in spontaneously broken gauge theories, heavy

virtual particles do not decouple. On the contrary, in QED or QCD, the running

of α and αs at a scale Q is not affected by heavy quarks with mass M ≫ Q.

According to an intuitive decoupling theorem [43], diagrams with heavy virtual

particles of mass M can be ignored at Q ≪ M provided that the couplings do not

grow with M and that the theory with no heavy particles is still renormalizable.

In the spontaneously broken EW gauge theories both requirements are violated.

First, one important difference with respect to unbroken gauge theories is in the

longitudinal modes of weak gauge bosons. These modes are generated by the Higgs

mechanism, and their couplings grow with masses (as is also the case for the

physical Higgs couplings). Second the theory without the top quark is no more

renormalizable because the gauge symmetry is broken as the (t,b) doublet would

not be complete (also the chiral anomaly would not be completely cancelled).

With the observed value of mt the quantitative importance of the terms of order

GF m2
t /4π2

√
2 is substancial but not dominant (they are enhanced by a factor

m2
t /m2

W ∼ 5 with respect to ordinary terms). Both the large logarithms and the

GF m2
t terms have a simple structure and are to a large extent universal, i.e. common

to a wide class of processes. In particular the GF m2
t terms appear in vacuum

polarization diagrams which are universal (virtual loops inserted in gauge boson

internal lines are independent of the nature of the vertices on each side of the

propagator) and in the Z → bb̄ vertex which is not. This vertex is specifically

sensitive to the top quark which, being the partner of the b quark in a doublet, runs in

the loop. Instead all types of heavy particles could in principle contribute to vacuum

polarization diagrams. The study of universal vacuum polarization contributions,

also called “oblique” corrections, and of top enhanced terms is important for

an understanding of the pattern of radiative corrections. More in general, the

important consequence of non decoupling is that precision tests of the electroweak

theory may apriori be sensitive to new physics even if the new particles are too

heavy for their direct production, but aposteriori no signal of deviation has clearly

emerged.

While radiative corrections are quite sensitive to the top mass, they are unfortu-

nately much less dependent on the Higgs mass. If they were sufficiently sensitive

by now we would precisely know the mass of the Higgs. But the dependence

of one loop diagrams on mH is only logarithmic: ∼ GF m2
W log(m2

H /m2
W ).

Quadratic terms ∼ G2
F m2

H only appear at two loops [44] and are too small to

be detectable. The difference with the top case is that the splitting m2
t − m2

b

is a direct breaking of the gauge symmetry that already affects the 1- loop

corrections, while the Higgs couplings are “custodial” SU(2) symmetric in lowest

order.
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3.11 Electroweak Precision Tests in the SM and Beyond

For the analysis of electroweak data in the SM one starts from the input parameters:

as is the case in any renormalizable theory, masses and couplings have to be

specified from outside. One can trade one parameter for another and this freedom is

used to select the best measured ones as input parameters. Some of them, α, GF and

mZ, are very precisely known, as we have seen, some other ones, mflight , mt and

αs(mZ) are less well determined while mH is largely unknown. Among the light

fermions, the quark masses are badly known, but fortunately, for the calculation

of radiative corrections, they can be replaced by α(mZ), the value of the QED

running coupling at the Z mass scale. The value of the hadronic contribution to

the running, embodied in the value of �α
(5)
had(m2

Z) (see Table 3.1, [8] ) is obtained

through dispersion relations from the data on e+e− → hadrons at moderate centre-

of-mass energies. From the input parameters one computes the radiative corrections

to a sufficient precision to match the experimental accuracy. Then one compares the

theoretical predictions with the data for the numerous observables which have been

measured [45], checks the consistency of the theory and derives constraints on mt ,

αs(mZ) and mH . A detailed discussion of all experimental aspects of precision tests

of the EW theory is presented in Chap. 6.

The basic tree level relations:

g2

8m2
W

= GF√
2

, g2 sin2 θW = e2 = 4πα (3.97)

can be combined into

sin2 θW = πα√
2GF m2

W

(3.98)

Always at tree level, a different definition of sin2 θW is from the gauge boson

masses:

m2
W

m2
Z cos2 θW

= ρ0 = 1 �⇒ sin2 θW = 1 − m2
W

m2
Z

(3.99)

where ρ0 = 1 assuming that there are only Higgs doublets. The last two relations

can be put into the convenient form

(1 − m2
W

m2
Z

)
m2

W

m2
Z

= πα√
2GF m2

Z

(3.100)
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Beyond tree level, these relations are modified by radiative corrections:

(1 − m2
W

m2
Z

)
m2

W

m2
Z

= πα(mZ)√
2GF m2

Z

1

1 − �rW

m2
W

m2
Z cos2 θW

= 1 + �ρm (3.101)

The Z and W masses are to be precisely defined in terms of the pole position in

the respective propagators. Then, in the first relation the replacement of α with the

running coupling at the Z mass α(mZ) makes �rW completely determined at 1-loop

by purely weak corrections (GF is protected from logarithmic running as an indirect

consequence of (V-A) current conservation in the massless theory). This relation

defines �rW unambigously, once the meaning of α(mZ) is specified (for example,

M̄S). On the contrary, in the second relation �ρm depends on the definition of

sin2 θW beyond the tree level. For LEP physics sin2 θW is usually defined from the

Z → μ+μ− effective vertex. At the tree level the vector and axial-vector couplings

g
μ
V and g

μ
A are given in Eqs. (3.29). Beyond the tree level a corrected vertex can be

written down in terms of modified effective couplings. Then sin2 θW ≡ sin2 θeff is

in general defined through the muon vertex:

g
μ
V /g

μ
A = 1 − 4 sin2 θeff

sin2 θeff = (1 + �k)s2
0 , s2

0c2
0 = πα(mZ)√

2GF m2
Z

g
μ2
A = 1

4
(1 + �ρ) (3.102)

We see that s2
0 and c2

0 are “improved” Born approximations (by including the

running of α) for sin2 θeff and cos2 θeff . Actually, since in the SM lepton

universality is only broken by masses and is in agreement with experiment within

the present accuracy, in practice the muon channel can be replaced with the average

over charged leptons.

We can write a symbolic equation that summarizes the status of what has been

computed up to now for the radiative corrections (we list some recent work on each

item from where older references can be retrieved) �rW [46], �ρ [47] and �k [48]:

�rW ,�ρ,�k = g2 m2
t

m2
W

(1 + αs + α2
s ) + g2(1 + αs+ ∼ α2

s ) + g4 m4
t

m4
W

+ g4 m2
t

m2
W

+ . . .

(3.103)

The meaning of this relation is that the one loop terms of order g2 are completely

known, together with their first order QCD corrections (the second order QCD
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corrections are only estimated for the g2 terms not enhanced by m2
t /m2

W ), and the

terms of order g4 enhanced by the ratios m4
t /m4

W or m2
t /m2

W are also known.

In the SM the quantities �rW , �ρ, �k, for sufficiently large mt , are all

dominated by quadratic terms in mt of order GF m2
t . The quantity �ρm is not

independent and can expressed in terms of them. As new physics can more easily be

disentangled if not masked by large conventional mt effects, it is convenient to keep

�ρ while trading �rW and �k for two quantities with no contributions of order

GF m2
t . One thus introduces the following linear combinations (epsilon parameters)

[49]:

ǫ1 = �ρ,

ǫ2 = c2
0�ρ + s2

0�rW

c2
0 − s2

0

− 2s2
0�k,

ǫ3 = c2
0�ρ + (c2

0 − s2
0 )�k. (3.104)

The quantities ǫ2 and ǫ3 no longer contain terms of order GFm2
t but only logarithmic

terms in mt . The leading terms for large Higgs mass, which are logarithmic, are

contained in ǫ1 and ǫ3. To complete the set of top-enhanced radiative corrections

one adds ǫb defined from the loop corrections to the Zbb̄ vertex. One modifies gb
V

and gb
A as follows:

gb
A = − 1

2
(1 + �ρ

2
)(1 + ǫb),

gb
V

gb
A

= 1 − 4/3 sin2 θeff + ǫb

1 + ǫb

. (3.105)

ǫb can be measured from Rb = Ŵ(Z → bb̄)/Ŵ(Z → hadrons) (see Table 3.1).

This is clearly not the most general deviation from the SM in the Z → bb̄ vertex

but ǫb is the quantity where the large mt corrections are located in the SM. Thus,

summarizing, in the SM one has the following “large” asymptotic contributions:

ǫ1 = 3GF m2
t

8π2
√

2
− 3GF m2

W

4π2
√

2
tan2 θW ln

mH

mZ

+ . . . .,

ǫ2 = − GF m2
W

2π2
√

2
ln

mt

mZ

+ . . . .,

ǫ3 = GF m2
W

12π2
√

2
ln

mH

mZ

− GF m2
W

6π2
√

2
ln

mt

mZ

. . . .,

ǫb = − GF m2
t

4π2
√

2
+ . . . . (3.106)
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The ǫi parameters vanish in the limit where only tree level SM effects are kept

plus pure QED and/or QCD corrections. So they describe the effects of quantum

corrections (i.e. loops) from weak interactions. A similar set of parameters are the

S, T, U parameters [50]: the shifts induced by new physics on S, T and U are

proportional to those induced on ǫ3, ǫ1 and ǫ2, respectively. In principle, with no

model dependence, one can measure the four ǫi from the basic observables of LEP

physics Ŵ(Z → μ+μ−), A
μ
FB and Rb on the Z peak plus mW . With increasing

model dependence, one can include other measurements in the fit for the ǫi . For

example, use lepton universality to average the μ with the e and τ final states, or

include all lepton asymmetries and so on. The present experimental values of the ǫi ,

obtained from a fit of all LEP1-SLD measurements plus mW , are given by The LEP

Electroweak Working Group [8]:

ǫ1
.103 = 5.4 ± 1.0, ǫ2

.103 = −8.9 ± 1.2,

ǫ3
.103 = 5.34 ± 0.94, ǫb

.103 = −5.0 ± 1.6. (3.107)

Note that the ǫ parameters are of order a few in 10−3 and are known with an accuracy

in the range 15–30%. As discussed in the next Section, these values are in agreement

with the SM with a light Higgs. All models of new physics must be compared with

these findings and pass this difficult test.

3.12 Results of the SM Analysis of Precision Tests

The electroweak Z pole measurements, combining the results of all the experiments,

are summarised in Table 3.1. The various asymmetries determine the effective

electroweak mixing angle for leptons with highest sensitivity. The weighted average

of these results, including small correlations, is:

sin2 θeff = 0.23153 ± 0.00016, (3.108)

Note, however, that this average has a χ2 of 11.8 for 5 degrees of freedom,

corresponding to a probability of a few %. The χ2 is pushed up by the two most

precise measurements of sin2 θeff , namely those derived from the measurements

of Al by SLD, dominated by the left-right asymmetry A0
LR, and of the forward-

backward asymmetry measured in bb̄ production at LEP, A
0,b
FB , which differ by about

3σ s.

We now discuss fitting the data in the SM. One can think of different types

of fit, depending on which experimental results are included or which answers

one wants to obtain. For example, in Table 3.2 we present in column 1 a fit of

all Z pole data plus mW and ŴW (this is interesting as it shows the value of mt

obtained indirectly from radiative corrections, to be compared with the value of

mt measured in production experiments), in column 2 a fit of all Z pole data plus
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Table 3.1 Summary of

electroweak precision

measurements at high Q2 [8]

Observable Measurement SM fit

mZ [GeV] 91.1875 ± 0.0021 91.1875

ŴZ [GeV] 2.4952 ± 0.0023 2.4957

σ 0
h [nb] 41.540 ± 0.037 41.477

R0
l 20.767 ± 0.025 20.744

AFB0,l 0.01714 ± 0.00095 0.01645

Al (SLD) 0.1513 ± 0.0021 0.1481

Al (Pτ ) 0.1465 ± 0.0032 0.1481

R0
b 0.21629 ± 0.00066 0.21586

R0
c 0.1721 ± 0.0030 0.1722

A
0,b
FB 0.0992 ± 0.0016 0.1038

A
0,c
FB 0.0707 ± 0.0035 0.0742

Ab 0.923 ± 0.020 0.935

Ac 0.670 ± 0.027 0.668

sin2 θeff (Qhad
FB ) 0.2324 ± 0.0012 0.2314

mW [GeV] 80.398 ± 0.025 80.374

ŴW [GeV] 2.140 ± 0.060 2.091

mt [GeV (pp̄) 170.9 ± 1.8 171.3

�α
(5)
had (m2

Z) 0.02758 ± 0.00035 0.02768

The first block shows the Z-pole measurements. The second

block shows additional results from other experiments: the

mass and the width of the W boson measured at the Tevatron

and at LEP-2, the mass of the top quark measured at the

Tevatron, and the contribution to α of the hadronic vacuum

polarization. The SM fit results are derived from the SM

analysis of these results

mt (here it is mW which is indirectly determined), and, finally, in column 3 a fit

of all the data listed in Table 3.1 (which is the most relevant fit for constraining

mH ). From the fit in column 1 of Table 3.2 we see that the extracted value of

mt is in good agreement with the direct measurement (see Table 3.1). Similarly

we see that the experimental measurement of mW in Table 3.1 is larger by about

one standard deviation with respect to the value from the fit in column 2. We

have seen that quantum corrections depend only logarithmically on mH . In spite

of this small sensitivity, the measurements are precise enough that one still obtains

a quantitative indication of the mass range. From the fit in column 3 we obtain:

log10 mH (GeV) = 1.88 ± 0.16 (or mH = 76+34
−24 GeV). This result on the Higgs

mass is particularly remarkable. The value of log10 mH (GeV) is compatible with

the small window between ∼2 and ∼3 which is allowed, on the one side, by the

direct search limit (mH > 114 GeV from LEP-2 [8]), and, on the other side, by the

theoretical upper limit on the Higgs mass in the minimal SM, mH � 600−800 GeV

[51].

Thus the whole picture of a perturbative theory with a fundamental Higgs is well

supported by the data on radiative corrections. It is important that there is a clear

indication for a particularly light Higgs: at 95% c.l. mH � 182 GeV (including
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Table 3.2 Standard Model fits of electroweak data [8]

Fit 1 2 3

Measurements mW mt mt , mW

mt (GeV) 178.9+12
−9 170.9 ± 1.8 171.3 ± 1.7

mH (GeV) 145+240
−81 99+52

−35 76+34
−24

log [mH (GeV)] 2.16 ± +0.39 2.00 ± 0.19 1.88 ± 0.16

αs (mZ) 0.1190 ± 0.0028 0.1189 ± 0.0027 0.1185 ± 0.0026

mW (MeV) 80385 ± 19 80360 ± 20 80374 ± 15

All fits use the Z pole results and �α
(5)
had (m2

Z) as listed in Table 3.1. In addition, the measurements

listed on top of each column are included as well. The fitted W mass is also shown [8] (the directly

measured value is mW = 80398 ± 25 MeV)

the input from the direct search result). This is quite encouraging for the ongoing

search for the Higgs particle. More general, if the Higgs couplings are removed

from the Lagrangian the resulting theory is non renormalizable. A cutoff � must

be introduced. In the quantum corrections log mH is then replaced by log � plus

a constant. The precise determination of the associated finite terms would be lost

(that is, the value of the mass in the denominator in the argument of the logarithm).

A heavy Higgs would need some unfortunate accident: the finite terms, different in

the new theory from those of the SM, should by chance compensate for the heavy

Higgs in a few key parameters of the radiative corrections (mainly ǫ1 and ǫ3, see,

for example, [49]). Alternatively, additional new physics, for example in the form

of effective contact terms added to the minimal SM lagrangian, should accidentally

do the compensation, which again needs some sort of conspiracy.

To the list of precision tests of the SM one should add the results on low

energy tests obtained from neutrino and antineutrino deep inelastic scattering

(NuTeV [52]), parity violation in Cs atoms (APV [53]) and the recent measurement

of the parity-violating asymmetry in Moller scattering [54] (see Chap. 6). When

these experimental results are compared with the SM predictions the agreement

is good except for the NuTeV result that shows a deviation by three standard

deviations. The NuTeV measurement is quoted as a measurement of sin2 θW =
1 − m2

W/m2
Z from the ratio of neutral to charged current deep inelastic cross-

sections from νμ and ν̄μ using the Fermilab beams. But it has been argued and it

is now generally accepted that the NuTeV anomaly probably simply arises from an

underestimation of the theoretical uncertainty in the QCD analysis needed to extract

sin2 θW . In fact, the lowest order QCD parton formalism on which the analysis has

been based is too crude to match the experimental accuracy.

When confronted with these results, on the whole the SM performs rather well,

so that it is fair to say that no clear indication for new physics emerges from the

data. However, as already mentioned, one problem is that the two most precise

measurements of sin2 θeff from ALR and Ab
FB differ by about 3σ s. In general, there

appears to be a discrepancy between sin2 θeff measured from leptonic asymmetries

((sin2 θeff)l) and from hadronic asymmetries ((sin2 θeff)h). In fact, the result from



3 The Standard Model of Electroweak Interactions 69

Fig. 3.11 The data for

sin2 θ
lept

eff are plotted vs mH .

The theoretical prediction for

the measured value of mt is

also shown. For presentation

purposes the measured points

are shown each at the mH

value that would ideally

correspond to it given the

central value of mt (updated

from [55])

ALR is in good agreement with the leptonic asymmetries measured at LEP, while

all hadronic asymmetries, though their errors are large, are better compatible with

the result of Ab
FB . These two results for sin2 θeff are shown in Fig. 3.11 [55]. Each of

them is plotted at the mH value that would correspond to it given the central value

of mt . Of course, the value for mH indicated by each sin2 θeff has an horizontal

ambiguity determined by the measurement error and the width of the ±1σ band for

mt . Even taking this spread into account it is clear that the implications on mH are

sizably different. One might imagine that some new physics effect could be hidden

in the Zbb̄ vertex. Like for the top quark mass there could be other non decoupling

effects from new heavy states or a mixing of the b quark with some other heavy

quark. However, it is well known that this discrepancy is not easily explained in

terms of some new physics effect in the Zbb̄ vertex. A rather large change with

respect to the SM of the b-quark right handed coupling to the Z is needed in order to

reproduce the measured discrepancy (precisely a ∼30% change in the right-handed

coupling), an effect too large to be a loop effect but which could be produced at the

tree level, e.g., by mixing of the b quark with a new heavy vectorlike quark [56]),

or some mixing of the Z with ad hoc heavy states [57]. But then this effect should

normally also appear in the direct measurement of Ab performed at SLD using the

left-right polarized b asymmetry, even within the moderate precision of this result.

The measurements of neither Ab at SLD nor Rb confirm the need of a new effect.

Alternatively, the observed discrepancy could be simply due to a large statistical

fluctuation or an unknown experimental problem. As a consequence of this problem,

the ambiguity in the measured value of sin2 θeff is in practice larger than the nominal

error, reported in Eq. 3.108, obtained from averaging all the existing determinations,

and the interpretation of precision tests is less sharp than it would otherwise be.

We have already observed that the experimental value of mW (with good

agreement between LEP and the Tevatron) is a bit high compared to the SM

prediction (see Fig. 3.12). The value of mH indicated by mW is on the low side,

just in the same interval as for sin2 θ
lept

eff measured from leptonic asymmetries.
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Fig. 3.12 The data for mW

are plotted vs mH . The

theoretical prediction for the

measured value of mt is also

shown (updated from [55])

In conclusion, overall the validity of the SM has been confirmed to a level that we

can say was unexpected at the beginning. In the present data there is no significant

evidence for departures from the SM, no compelling evidence of new physics. The

impressive success of the SM poses strong limitations on the possible forms of new

physics.

3.13 Phenomenology of the SM Higgs

The Higgs problem is really central in particle physics today. On the one hand,

the experimental verification of the Standard Model (SM) cannot be considered

complete until the structure of the Higgs sector is not established by experiment.

On the other hand, the Higgs is also related to most of the major problems of

particle physics, like the flavour problem and the hierarchy problem, the latter

strongly suggesting the need for new physics near the weak scale. In turn the

discovery of new physics could clarify the dark matter identity. It is clear that the

fact that some sort of Higgs mechanism is at work has already been established.

The W or the Z with longitudinal polarization that we observe are not present in an

unbroken gauge theory (massless spin-1 particles, like the photon, are transversely

polarized). The longitudinal degree of freedom for the W or the Z is borrowed from

the Higgs sector and is an evidence for it. Also, it has been verified that the gauge

symmetry is unbroken in the vertices of the theory: all currents and charges are

indeed symmetric. Yet there is obvious evidence that the symmetry is instead badly

broken in the masses. Not only the W and the Z have large masses, but the large

splitting of, for example, the t-b doublet shows that even a global weak SU(2) is

not at all respected by the fermion spectrum. This is a clear signal of spontaneous

symmetry breaking and the implementation of spontaneous symmetry breaking in a
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gauge theory is via the Higgs mechanism. The big remaining questions are about

the nature and the properties of the Higgs particle(s). The present experimental

information on the Higgs sector, is surprisingly limited and can be summarized in

a few lines, as follows. First, the relation M2
W = M2

Z cos2 θW , Eq. (3.55), modified

by small, computable radiative corrections, has been experimentally proven. This

relation means that the effective Higgs (be it fundamental or composite) is indeed

a weak isospin doublet. The Higgs particle has not been found but, in the SM, its

mass can well be larger than the present direct lower limit mH � 114 GeV (at

95% c.l.) obtained from searches at LEP-2. The radiative corrections computed

in the SM when compared to the data on precision electroweak tests lead to a

clear indication for a light Higgs, not too far from the present lower bound. The

exact experimental upper limit for mH in the SM depends on the value of the top

quark mass mt . The CDF and D0 combined value after Run II is at present [8]

mt = 170.9 ± 1.8 GeV (it went down with respect to the value mt = 178 ±
4.3 GeV from Run I and also the experimental error is now sizably reduced). As

a consequence the present limit on mH is more stringent [8]: mH < 182 GeV (at

95% c.l., after including the information from the 114 GeV direct bound). On the

Higgs the LHC will address the following questions : one doublet, more doublets,

additional singlets? SM Higgs or SUSY Higgses? Fundamental or composite (of

fermions, of WW. . . )? Pseudo-Goldstone boson of an enlarged symmetry? A

manifestation of large extra dimensions (5th component of a gauge boson, an effect

of orbifolding or of boundary conditions. . . )? Or some combination of the above

or something so far unthought of? Here in the following we will summarize the

main properties of the SM Higgs that provide an essential basis for the planning

and the interpretation of the LHC Higgs programme. We start from the mass,

then the width and the branching ratios and, finally, the most important production

channels.

3.13.1 Theoretical Bounds on the SM Higgs Mass

It is well known [58–60] that in the SM with only one Higgs doublet a lower limit

on mH can be derived from the requirement of vacuum stability (or, in milder

form, of a moderate instability, compatible with the lifetime of the Universe [61]).

The limit is a function of mt and of the energy scale � where the model breaks

down and new physics appears. The Higgs mass enters because it fixes the initial

value of the quartic Higgs coupling λ for its running up to the large scale �.

Similarly an upper bound on mH (with mild dependence on mt ) is obtained, as

described in [62] and refs. therein, from the requirement that for λ no Landau pole

appears up to the scale �, or in simpler terms, that the perturbative description

of the theory remains valid up to �. We now briefly recall the derivation of these

limits.

The possible instability of the Higgs potential V [φ] is generated by the quantum

loop corrections to the classical expression of V [φ]. At large φ the derivative
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V ′[φ] could become negative and the potential would become unbound from below.

The one-loop corrections to V [φ] in the SM are well known and change the

dominant term at large φ according to λφ4 → (λ + γ log φ2/�2)φ4. This one-

loop approximation is not enough in this case, because it fails at large enough φ,

when γ log φ2/�2 becomes of order one. The renormalization group improved

version of the corrected potential leads to the replacement λφ4 → λ(�)φ′4(�)

where λ(�) is the running coupling and φ′(μ) = φ exp
∫ t

γ (t ′)dt ′, with γ (t) being

an anomalous dimension function and t = log�/v (v is the vacuum expectation

value v = (2
√

2GF )−1/2). As a result, the positivity condition for the potential

amounts to the requirement that the running coupling λ(�) never becomes negative.

A more precise calculation, which also takes into account the quadratic term in the

potential, confirms that the requirements of positive λ(�) leads to the correct bound

down to scales � as low as ∼1 TeV. The running of λ(�) at one loop is given

by:

dλ

dt
= 3

4π2
[λ2 + 3λh2

t − 9h4
t + small gauge and Yukawa terms] , (3.109)

with the normalization such that at t = 0, λ = λ0 = m2
H /2v2 and the top Yukawa

coupling h0
t = mt/v. We see that, for mH small and mt fixed at its measured value,

λ decreases with t and can become negative. If one requires that λ remains positive

up to � = 1015–1019 GeV, then the resulting bound on mH in the SM with only one

Higgs doublet is given by, (also including the effect of the two-loop beta function

terms) [60] :

mH (GeV) > 128.4 + 2.1 [mt − 170.9] − 4.5
αs(mZ) − 0.118

0.006
. (3.110)

Note that this limit is evaded in models with more Higgs doublets. In this case the

limit applies to some average mass but the lightest Higgs particle can well be below,

as it is the case in the minimal SUSY extension of the SM (MSSM).

The upper limit on the Higgs mass in the SM is clearly important for assessing

the chances of success of the LHC as an accelerator designed to solve the Higgs

problem. The upper limit [62] arises from the requirement that the Landau pole

associated with the non asymptotically free behaviour of the λφ4 theory does not

occur below the scale �. The initial value of λ at the weak scale increases with

mH and the derivative is positive at large λ (because of the positive λ2 term—the

λϕ4 theory is not asymptotically free—which overwhelms the negative top-Yukawa

term). Thus, if mH is too large, the point where λ computed from the perturbative

beta function becomes infinite (the Landau pole) occurs at too low an energy. Of

course in the vicinity of the Landau pole the 2-loop evaluation of the beta function

is not reliable. Indeed the limit indicates the frontier of the domain where the theory

is well described by the perturbative expansion. Thus the quantitative evaluation

of the limit is only indicative, although it has been to some extent supported by

simulations of the Higgs sector of the EW theory on the lattice. For the upper limit
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on mH one finds [62]

mH � 180 GeV for � ∼ MGUT − MP l

mH � 0.5 − 0.8 T eV for � ∼ 1 T eV. (3.111)

In conclusion, for mt ∼ 171 GeV, only a small range of values for mH is allowed,

130 < mH < ∼ 200 GeV, if the SM holds up to � ∼ MGUT or MP l .

An additional argument indicating that the solution of the Higgs problem cannot

be too far away is the fact that, in the absence of a Higgs particle or of an alternative

mechanism, violations of unitarity appear in some scattering amplitudes at energies

in the few TeV range [63]. In particular, amplitudes involving longitudinal gauge

bosons (those most directly related to the Higgs sector) are affected. For example,

at tree level in the absence of Higgs exchange, for s >> m2
Z one obtains:

A(W+
L W−

L → ZLZL)no Higgs ∼ i
s

v2
(3.112)

In the SM this unacceptable large energy behaviour is quenched by the Higgs

exchange diagram contribution:

A(W+
L W−

L → ZLZL)Higgs ∼ −i
s2

v2(s − m2
H )

(3.113)

Thus the total result in the SM is:

A(W+
L W−

L → ZLZL)SM ∼ −i
sm2

H

v2(s − m2
H )

(3.114)

which at large energies saturates at a constant value. To be compatible with unitarity

bounds one needs m2
H < 4π

√
2/GF or mH < 1.5 TeV. Both the Landau pole and

the unitarity argument show that, if the Higgs is too heavy, the SM becomes a non

perturbative theory at energies of o(1 TeV). In conclusion, these arguments imply

that the SM Higgs cannot escape detection at the LHC.

3.13.2 SM Higgs Decays

The total width and the branching ratios for the SM Higgs as function of mH are

given in Figs. 3.13 and 3.14, respectively [64].

Since the couplings of the Higgs particle are in proportion to masses, when mH

increases the Higgs becomes strongly coupled. This is reflected in the sharp rise of

the total width with mH . For mH near its present lower bound of 114 GeV, the width

is below 5 MeV, much less than for the W or the Z which have a comparable mass.
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Fig. 3.13 The total width of

the SM Higgs boson [64]
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The dominant channel for such a Higgs is H → bb̄. In Born approximation the

partial width into a fermion pair is given by Djouadi [64] and Haber [66]:

Ŵ(H → f f̄ ) = NC
GF

4π
√

2
mH m2

f β3
f (3.115)

where βf = (1 − 4m2
f /m2

H )1/2. The factor of β3 appears because the fermion pair

must be in a p-state of orbital angular momentum for a Higgs with scalar coupling,

because of parity (this factor would be β for a pseudoscalar coupling). We see that

the width is suppressed by a factor m2
f /m2

H with respect to the natural size GFm3
H
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for the width of a particle of mass mH decaying through a diagram with only one

weak vertex.

A glance to the branching ratios shows that the branching ratio into τ pairs is

larger by more than a factor of two with respect to the cc̄ channel. This is at first

sight surprising because the colour factor NC favours the quark channels and the

masses of τ ’s and of D mesons are quite similar. This is due to the fact that the

QCD corrections replace the charm mass at the scale of charm with the charm

mass at the scale mH , which is lower by about a factor of 2.5. The masses run

logarithmically in QCD, similar to the coupling constant. The corresponding logs

are already present in the 1-loop QCD correction that amounts to the replacement

m2
q → m2

q [1 + 2αs/π(log m2
q/m2

H + 3/2)] ∼ m2
q(m2

H ).

The Higgs width sharply increases as the WW threshold is approached. For decay

into a real pair of V ’s, with V = W,Z, one obtains in Born approximation [64, 66]:

Ŵ(H → V V ) = GF m3
H

16π
√

2
δV βW (1 − 4x + 12x2) (3.116)

where βW =
√

1 − 4x with x = m2
V /m2

H and δW = 2, δZ = 1. Much above

threshold the V V channels are dominant and the total width, given approximately

by:

ŴH ∼ 0.5 TeV(
mH

1 TeV
)3 (3.117)

becomes very large, signalling that the Higgs sector is becoming strongly interacting

(recall the upper limit on the SM Higgs mass in Eq. (3.111)). The V V dominates

over the t t̄ because of the β threshold factors that disfavour the fermion channel

and, at large mH , by the cubic versus linear behaviour with mH of the partial widths

for V V versus t t̄ . Below the V V threshold the decays into virtual V particles is

important: V V ∗ and V ∗V ∗. Note in particular the dip of the ZZ branching ratio

just below the ZZ threshold: this is due to the fact that the W is lighter than the Z

and the opening of its threshold depletes all other branching ratios. When the ZZ

threshold is also passed then the ZZ branching fraction comes back to the ratio of

approximately 1:2 with the WW channel (just the number of degrees of freedom:

two hermitian fields for the W , one for the Z).

The decay channels into γ γ , Zγ and gg proceed through loop diagrams, with

the contributions from W (only for γ γ and Zγ ) and from fermion loops (for all)

(Fig. 3.15).

We reproduce here the results for Ŵ(H → γ γ ) and Ŵ(H → gg) [64, 66]:

Ŵ(H → γ γ ) = GF α2m3
H

128π3
√

2
|AW (τW ) +

∑

f

NCQ2
f Af (τf )|2 (3.118)

Ŵ(H → gg) = GF α2
s m

3
H

64π3
√

2
|
∑

f=Q

Af (τf )|2 (3.119)
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Fig. 3.15 One-loop diagrams

for Higgs decay into γγ , Zγ

and gg W
H H

f

where τi = m2
H /4m2

i and:

Af (τ ) = 2

τ 2
[τ + (τ − 1)f (τ )]

AW (τ ) = − 1

τ 2
[2τ 2 + 3τ + 3(2τ − 1)f (τ )] (3.120)

with:

f (τ) = arcsin2
√

τ for τ ≤ 1

f (τ) = −1

4
[log

1 +
√

1 − τ−1

1 −
√

1 − τ−1
− iπ]2 for τ > 1 (3.121)

For H → γ γ (as well as for H → Zγ ) the W loop is the dominant contribution at

small and moderate mH . We recall that the γ γ mode can be a possible channel for

Higgs discovery only for mH near its lower bound (i.e for 114 < mH < 150 GeV).

In this domain of mH we have Ŵ(H → γ γ )∼6–23 KeV. For example, in the

limit mH << 4m2
i , or τ → 0, we have AW (0) = −7 and Af (0) = 4/3. The

two contributions become comparable only for mH ∼ 650 GeV where the two

amplitudes, still of opposite sign, nearly cancel. The top loop is dominant among

fermions (lighter fermions are suppressed by m2
f /m2

H modulo logs) and, as we have

seen, it approaches a constant for large mt . Thus the fermion loop amplitude for

the Higgs would be sensitive to effects from very heavy fermions, in particular the

H → gg effective vertex would be sensitive to all possible very heavy coloured

quarks. As discussed in the QCD Chapter (Chap. 4) the gg → H vertex provides

one of the main production channels for the Higgs at hadron colliders.

3.14 Limitations of the Standard Model

No signal of new physics has been found neither in electroweak precision tests nor

in flavour physics. Given the success of the SM why are we not satisfied with this

theory? Why not just find the Higgs particle, for completeness, and declare that

particle physics is closed? The reason is that there are both conceptual problems

and phenomenological indications for physics beyond the SM. On the conceptual

side the most obvious problems are that quantum gravity is not included in the SM

and the related hierarchy problem. Among the main phenomenological hints for new
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physics we can list coupling unification, dark matter, neutrino masses (discussed in

Sect. (3.7)), baryogenesis and the cosmological vacuum energy.

The computed evolution with energy of the effective SM gauge couplings clearly

points towards the unification of the electro-weak and strong forces (GUT’s) at

scales of energy MGUT ∼ 1015 − 1016 GeV [31] which are close to the scale

of quantum gravity, MP l ∼ 1019 GeV. One is led to imagine a unified theory

of all interactions also including gravity (at present superstrings provide the best

attempt at such a theory). Thus GUT’s and the realm of quantum gravity set a

very distant energy horizon that modern particle theory cannot ignore. Can the SM

without new physics be valid up to such large energies? One can imagine that some

obvious problems could be postponed to the more fundamental theory at the Planck

mass. For example, the explanation of the three generations of fermions and the

understanding of fermion masses and mixing angles can be postponed. But other

problems must find their solution in the low energy theory. In particular, the structure

of the SM could not naturally explain the relative smallness of the weak scale of

mass, set by the Higgs mechanism at μ ∼ 1/
√

GF ∼ 250 GeV with GF being the

Fermi coupling constant. This so-called hierarchy problem is due to the instability

of the SM with respect to quantum corrections. This is related to the presence of

fundamental scalar fields in the theory with quadratic mass divergences and no

protective extra symmetry at μ = 0. For fermion masses, first, the divergences are

logarithmic and, second, they are forbidden by the SU(2) ⊗ U(1) gauge symmetry

plus the fact that at m = 0 an additional symmetry, i.e. chiral symmetry, is restored.

Here, when talking of divergences, we are not worried of actual infinities. The

theory is renormalizable and finite once the dependence on the cut off � is absorbed

in a redefinition of masses and couplings. Rather the hierarchy problem is one of

naturalness. We can look at the cut off as a parameterization of our ignorance on the

new physics that will modify the theory at large energy scales. Then it is relevant to

look at the dependence of physical quantities on the cut off and to demand that no

unexplained enormously accurate cancellations arise.

The hierarchy problem can be put in very practical terms (the “little hierarchy

problem”): loop corrections to the Higgs mass squared are quadratic in �. The most

pressing problem is from the top loop. With m2
h = m2

bare + δm2
h the top loop gives

δm2
h|top ∼ − 3GF

2
√

2π2
m2

t �
2 ∼ −(0.2�)2 (3.122)

If we demand that the correction does not exceed the light Higgs mass indicated

by the precision tests, � must be close, � ∼ o(1 T eV ). Similar constraints arise

from the quadratic � dependence of loops with gauge bosons and scalars, which,

however, lead to less pressing bounds. So the hierarchy problem demands new

physics to be very close (in particular the mechanism that quenches the top loop).

Actually, this new physics must be rather special, because it must be very close, yet

its effects are not clearly visible neither in precision electroweak tests (the “LEP

Paradox” [67]) nor in flavour changing processes and CP violation. Examples of

proposed classes of solutions for the hierarchy problem are: (1) Supersymmetry
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[68]. In the limit of exact boson-fermion symmetry the quadratic divergences

of bosons cancel so that only log divergences remain. However, exact SUSY is

clearly unrealistic. For approximate SUSY (with soft breaking terms), which is the

basis for all practical models, � is replaced by the splitting of SUSY multiplets,

�2 ∼ m2
SUSY − m2

ord . In particular, the top loop is quenched by partial cancellation

with s-top exchange, so the s-top cannot be too heavy. (2) Technicolor [69]. The

Higgs system is a condensate of new fermions. There is no fundamental scalar

Higgs sector, hence no quadratic divergences associated to the μ2 mass in the scalar

potential. This mechanism needs a very strong binding force, �T C ∼ 103 �QCD.

It is difficult to arrange that such nearby strong force is not showing up in precision

tests. Hence this class of models has been disfavoured by LEP, although some

special class of models have been devised aposteriori, like walking TC, top-color

assisted TC etc (for recent reviews, see, for example, [69]). (3) Extra dimensions (for

a recent review, see, for example, [70]). The idea is that MP l appears very large, or

equivalently that gravity appears very weak, because we are fooled by hidden extra

dimensions so that either the real gravity scale is reduced down to a lower scale,

even possibly down to o(1 T eV ) or the intensity of gravity is red shifted away by

an exponential warping factor [71]. This possibility is very exciting in itself and it

is really remarkable that it is compatible with experiment. It provides a very rich

framework with many different scenarios. (4) “Little Higgs” models [72]. In these

models the Higgs is a pseudo-Goldstone boson and extra symmetries allow mh �= 0

only at two-loop level, so that � can be as large as o(10 TeV) with the Higgs within

present bounds (the top loop is quenched by exchange of heavy vectorlike new

quarks with charge 2/3). The physics beyond the SM will be discussed in Chap. 8.
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