
The Stanford FLASH Multiprocessor

Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein,

Richard Simoni, Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter,

Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hennessy

Computer Systems Laboratory

Stanford University

Stanford, CA 94305

Abstract

The FLASH multiprocessor efficiently integrates support for

cache-coherent shared memory and high-performance message

passing, while minimizing both hardware and software overhead.

Each node in FLASH contains a micropromssor, a portion of the

machine’s globat memory, a port to the interconnection network

an I/O interface, and a custom node controller called MAGIC.

The MAGIC chip handles all communication both within the

node and among nodes, using hsrdwired data paths for efficient

data movement and a programmable processor optimized for

executing protocol operations. lhe use of the protocol processor

makes FLASH very flexible — it can support a variety of differ-

ent communication mechanisms — and simplifies the design and

implementation.

This paper presents the architecture of FLASH and MAGIC,

and discusses the base cache-coherence and message-passing

protocols. Latency and occupancy numbers, which are derived

from our system-level simulator and our Verilog code, are given

for severrd common protocol operations. The paper also

describes our software strategy and FLASH’s current status.

1 Introduction

The two architectural techniques for communicating

data among processom in a scalable multiprocessor are

message passing and distributed shared memory (DSM).

Despite significant differences in how programmers view

these bvo architectural models, the underlying hardware

mechanisms used to implement these approaches have

been converging. Current DSM and message-passing

multiprocessors consist of processing nodes intercon-

nected with a high-bandwidth network. Each node con-

tains a node processor, a portion of the physically

distributed memory, and a node controller that connects

the processor, memory, and network together. The princi-

pal difference between message-passing and DSM

machines is in the protocol implemented by the node con-

troller for transfeming data both within and among nodes.

Perhaps more surprising than the similarity of the over-

all structure of these types of machines is the commonality

in functions performed by the node controller. In both

cases, the primary performance-critical function of the

node controller is the movement of data at high bandwidth

and low latency among the processor, memory, and net-

work. In addition to these existing similarities, the archi-

tectural trends for both styles of machine favor further

convergence in both the hardware and software mecha-

nisms used to implement the communication abstractions.

Message-passing machines are moving to efficient support

of short messages and a uniform address space, features

normally associated with DSM machines. S~larly, DSM

machines are starting to provide support for message-like

block transfers (e.g., the Cray T3D), a feature normrdly

associated with message-passing machines.

The efficient integration and support of both cache-

coherent shared memory and low-overhead user-level

message passing is the primary goal of the FLASH @Lex-

ible Architecture for SHared memory) multiprocessor.

Efficiency involves both low hardware overhead and high

performance. A major problem of current cache-coherent

DSM machines (such as the earlier DASH machine

KLG+92]) is their high hardware overhead, while a major

criticism of current message-passing machines is their

high software overhead for user-level message passing.

FLASH integrates and streamlines the hardware primitives

needed to provide low-cost and high-performance support

for global cache coherence and message passing. We aim

to achieve this support without compromising the protec-

tion model or the ability of an operating system to control

resource usage. The tatter point is important since we want

FLASH to operate well in a general-purpose mnMpro-

grammed environment with many users sharing the

machine as well as in a traditional supercomputer environ-

ment.

To accomplish these goals we are designing a custom

node controller. This controller, called MAGIC (Memory

And General Interconnect Controller), is a highly inte-

grated chip that implements all data transfers both within

302

1063-6897/94 $03.00 @ 1994 IEEE

Figure 2.1. FLASH system architecture.

the node and between the node and the network. To deliver

high performance, the MAGIC chip contains a specialized

data path optimized to move data between the memory,

network processor, and 1/0 ports in a pipelined fashion

without redundant copying. To provide the flexible control

needed to support a variety of DSM and message-passing

protocols, the MAGIC chip contains an embedded proces-

sor that controls the data path and implements the proto-

col. The separate data path allows the processor to update

the protocol data structures (e.g., the directory for cache

coherence) in parallel with the associated data transfers.

This paper describes the FLASH design and rationale.

Section 2 gives an overview of FLASH. Section 3 briefly

describes two example protocols, one for cache-coherent

shared memory and one for message passing. Section 4

presents the microarchitecture of the MAGIC chip.

Section 5 briefly presents our system software strategy and

Section 6 presents our implementation strategy and cur-

rent status. Section 7 discusses related work and we con-

clude in Section 8.

2 FLASH Architecture Overview

FLASH is a single-address-space machine consisting of

a large number of processing nodes connected by a low-

latency, high-bandwidth interconnection network. Every

node is identical (see Figure 2. 1), containing a high-per-

formance off-the-shelf microprocessor with its caches, a

portion of the machine’s distributed main memory, and the

MAGIC node controller chip. The MAGIC chip forms the

heart of the node, integrating the memory controller, 1/0

controller, network interface, and a programmable proto-

col processor. This integration allows for low hardware

overhead while supporting both cache-coherence and mes-

sage-passing protocols in a scalable and cohesive fashion.1

The MAGIC architecture is designed to offer both flex-

ibility and high performance. First, MAGIC includes a

programmable protocol processor for flexibili~y. Second,

MAGIC’s central location within the node ensures that it

sees all processor, network, and I/O transactions, allowing

it to control all node resources and support a variety of

protocols. Third, to avoid limiting the node design to any

specific protocol and to accommodate protocols with vaty -

ing memory requirements, the node contains nc~dedicated

protocol stotagq instead, both the protocol code and pro-

tocol data reside in a reserved portion of the node’s main

memory. However, to provide high-speed access to fre-

quently-used protocol code and da@ MAGIC contains on-

chip instruction and data caches. Finally, MAGIC sepa-

rates data movement logic from protocol state manipula-

tion logic. The hardwired data movement logic achieves

low latency and high bandwidth by supporting highly-

pipelined data transfers without extra copying within the

chip. The protocol processor employs a hardware dispatch

table to help service requests quickly, and a coarse-level

pipeline to reduce protocol processor occupancy. This sep-

aration and specialization of data transfer and control logic

ensures that MAGIC does not become a latency or band-

width bottleneck.

FLASH nodes communicate by sending inrra- and

inter-node commands, which we refer to as mzssages. To

implement a protocol on FLASH, one must define what

kkds of messages will be exchanged (the message types),

1. Our decision to use only one compute processor per node rather than

multiple processors was driven mainly by pragmatic concerns. Using

only one processor considerably simplifies tbe node design, and given the

high bandwidth requirements of m6dern processors, it was not clear that

we could support multiple processes productively. However, nothing in

our approach precludes the use of multiple processors per mode.

303

and write the corresponding code sequences for the proto-

col processor (the handlers). Each handler performs the

necessary actions based on the machine state and the infor-

mation in the message it receives. Handler actions include

updating machine state, communicating with the local pro-

cessor, and communicating with other nodes via the net-

work.

Multiple protocols can be integrated efficiently in

FLASH by ensuring that messages in different protocols

are assigned different message types. The handlers for the

various protocols then can be dispatched as efficiently as if

only a single protocol were resident on the machine.

Moreover, although the handlem are dynamically inter-

leaved, each handler invocation runs without interruption

on MAGIC’s embedded processor, easing the concurrent

sharing of state and other critical resources. MAGIC also

provides protocol-independent deadlock avoidance sup-

porL allowing multiple protocols to coexist without dead-

locking the machine or having other negative interactions.

Since FLASH is designed to scale to thousands of pro-

cessing nodes, a comprehensive protection and fault con-

tainment strategy is needed to assure acceptable system

availtillity. At the user level, the virtual memory system

provides protection against application software errors.

However, system-level errors such as operating system

bugs and hardware faults require a separate fault detection

and containment mechanism. The hardware and operating

system cooperate to identify, isolate, and contain these

faults. MAGIC provides a hardware-based “firewall”

mechanism that can be used to prevent certain operations

(memory writes, for example) from occurring on unautho-

rized addresses. Error-detection codes ensure data integ-

rity ECC protects main memory and CRCS protect

network traffic. Errors are reported to the operating sys-

tem, which is responsible for taking suitable action.

3 FLASH Protocols

This section presents a base cache-coherence protocol

and a base block-transfer protocol we have designed for

FLASH. We use the term “base” to emphasize that these

two protocols are simply the ones we chose to implement

first Section 3.3 discusses protocol extensions and aher-

natives.

3.1 Cache Coherence Protocol

The base cache-coherence protocol is directory-based

and has two components: a scalable directory data struc-

ture, and a set of handlem For a scalable directory struc-

ture, FLASH uses dynamic pointer allocation [Simoni92],

illustrated in Figure 3.1. In this scheme, each cache line-

sized block — 128 bytes in the prototype — of main mem-

ory is associated with an 8-byte state word called a direc-

tory heaal?r, which is stored in a contiguous section of

main memory devoted solely to the cache-coherence pro-

tocol. Each d~tory header contains some boolean flags

and a link field that points to a linked list of sharers. For

efficiency, the first element of the sharer list is stored in the

dmctory header itself. If a block of memory is cached by

more than one processor, additional memory for its list of

sharers is allocated from the pointerflink store. Like the

dwectory headers, the pointdlink store is also a physically

contiguous region of main memory. Each entry in the

pointedlink store consists of a pointer to the sharing pro-

cessor, a link to the next entry in the lis~ and an end-of-list

bit. A free list is used to track the available entries in the

pointerflink store. Pointer/link store entries are allocated

from the he list as cache misses are satisfie~ and are

returned to the free list either when the line is written and

invalkiations are sent to each cache on the list of sharers,

or when a processor notities the directory that it is no

longer caching a bloc~.

A significant advantage of dynamic pointer allocation

is that the directory storage requirements are scalable. The

amount of memory needed for the directory headers is pro-

portional to the local memory per node, and scales as more

processors are added. The total amount of memory needed

in the machine for the pointer/link store is proportional to

the total amount of cache in the system. Since the amount

of cache is much smaller that the amount of main memory,

the size of the pointerflink store is sufficient to maintain

full caching information, as long as the loading on the dif-

ferent memory modules is uniform. When this uniformity

does not exis~ a node can run out of pointer/link storage.

While a detailed discussion is beyond the scope of this

paper, several heuristics can be used in this situation to

ensure reasonable performance. Overall, the directory

occupies 770 to 990 of main memory, depending ons ystem

configuration.

Apart from the data structures used to maintain direc-

tory information, the base cache-coherence protocol is

similar to the DASH protocol KLG+90]. Both protocols

utilize separate request and reply networks to eliminate

request-reply cycles in the network. Both protocols for-

ward dhly data from a processor’s cache directly to a

requesting processor, and both protocols use negative

acknowledgments to avoid deadlock and to cause retries

when a requested line is in a transient state. The main dif-

ference between the two protocols is that in DASH each

cluster collects its own invalidation acknowledgments,

whereas in FLASH invalidation acknowledgments are col-

2. The base cache-coherence protocol relies on replacement hints. The

protocol could be modified to accommodate processem which do not pro-

vide these hints.

304

Figure 3.1. Data structures for the dynamic pointer allocation directory scheme.

lected at the home node, that is, the node where the direc-

tory data is stored for that block,

Avoiding deadlock is difficult in any cache-coherence

protocol. Below we discuss how the base protocol handles

the deadlock problem, and illustrate some of the protocol-

independent deadlock avoidance mechanisms of the

MAGIC architecture. Although this discussion focuses on

the base cache-coherence protocol, any protocol run on

FLASH can use these mechanisms to eliminate the dead-

lock problem.

As a first step, the base protocol divides all messages

into requests (e.g., read, read-exclusive, and invalidate

requests) rmd replies (e.g., read and read-exclusive data

replies, and invrdidation acknowledgments). Second, the

protocol uses the virtual lane support in the network rout-

ers to transmit requests and replies over separate logical

networks. Next it guarantees that replies can be sunk, that

is, replies genemte no additional outgoing messages. This

elimimtes the possibility of request-reply circular depen-

dencies. To break request-request cycles, requests that

cannot be sunk may be negative] y acknowledged, effec-

tively turning those requests into replies.

The that requirement for a deadlock solution is a

restriction placed on all handlers: they must yield the pro-

tocol processor if they cannot run to completion. If a han-

dler violates this constraint and stalls waiting for space on

one of its output queues, the machine could potentially

deadlock because it is no longer servicing messages from

the network. To avoid this type of deadlock, the schedul-

ing mechanism for the incoming queues is initialized to

indicate which incoming queues contain messages that

may require outgoing queue space. The scheduler will not

select an incoming queue unless the corresponding outgo-

ing queue space requirements are satisfied.

However, in some cases, the number of outgoing mes-

sages a handler will send cannot be determined before-

hand, preventing the scheduler from ensuring adequate

outgoing queue space for these handlers. For example, an

incoming request (for which only outgoing reply queue

space is guaranteed) may need to be forwarded to a dirty

remote node. If at this point the outgoing request queue is

full, the protocol processor negatively acknowledges the

incoming request, converting it into a reply. A second case

not handled by the scheduler is au incoming write miss

that is scheduled and finds that it needs to send N invalida-

tion requests into the network. Unfortunately, tlhe outgoing

request queue may have fewer than N spots available. As

stated above, the handler cannot simply wait for space to

free up in the outgoing request queue to send the remain-

ing invalklations. To solve this problem, the protocol

employs the sojlware queue where it can suspend mes-

sages to be rescheduled at a later time.

The softwrwe queue is a reserved region of main mem-

ory that any protocol can use to suspend message process-

ing temporarily y. For instance, each time MAGrIC receives

a write request to a shared line, the corresponding handler

reserves space in the software queue for possible resched-

uling. If the queue is already full, the incoming request is

simply negatively acknowledged. This case should be

extremely rme. If the handler discovers that it needs to

send N invalidations, but only M < N spots are available in

the outgoing request queue, the handler sends M invalidate

requests and then places itself on the software queue. The

list of sharers at this point contains only those processors

that have not been invalidated. When the write request is

rescheduled off of the software queue, the new handler

invocation continues sending invalkiation requests where

the old one left off.

3.2 Message Passing Protocol

In FLASH, we distinguish long messages, used for

block transfer, from short messages, such as those required

305

for synchronization. This section discusses the block

transfer mechanism; Section 3.3 discusses short messages.

The design of the block transfer protocol was driven by

three main goals: provide user-level access to block trans-

fer without sacrificing protectiotu achieve transfer band-

width and latency comparable to a message-passing

machine containing dedicated hardware support for this

task; and operate in harmony with other key attributes of

the machine including cache coherence, virtual memory,

and multiprogramming [HGG94]. We achieve high perfor-

mance because MAGIC efficiently streams data to the

receiver. The performance is further improved by the elim-

ination of processor intermpts and system calls in the com-

mon case, and by the avoidance of extra copying of

message data.

To distinguish a user-level message from the low-level

messages MAGIC sends between nodes, this section

explicitly refers to the former as a user message. Sending a

user message in FLASH logically consists of thee phases:

initiation, transfer, and receptiotdcompletioh.

To send a user message, an application process calls a

library routine to communicate the parameters of the user-

level message to MAGIC. This communication happens

using a series of uncached writes to special addresses

(which act as memory-mapped commands). Unlike stan-

dard uncached writes, tfiese special writes invoke a differ-

ent handler that accumulates information from the

command into a message description record in MAGIC’s

memory. The final command is an uncached read, to which

MAGIC replies with a value indicating if the message is

accepted. Once the message is accepted, MAGIC invokes

a transfer handler that takes over responsibility for trrms-

ferring the user message to its destination, allowing the

main processor to run in parallel with the message transfer.

The transfer handler sends the user message data as a

series of independent, cache line-sized messages. The

transfer handler keeps the user message data coherent by

checking the directory state as the transfer proceeds, tak-

ing appropriate coherence actions as needed. Block trans-

fers are broken into cache line-sized chunks because the

system is optimized for data transfers of this size, and

because block transfers can then utilize the deadlock pre-

vention mechanisms implemented for the base cache-

coherence protocol. From a deadlock avoidance perspec-

tive, the user message transfer is similar to sending a long

list of invalidations: the transfer handler may only be able

to send part of the user message in a single activation. To

avoid filling the outgoing queue and to allow other han-

dlers to execute, the transfer handler periodically marks its

progress and suspends itself on the software queue.

When each component of the user-level message

arrives at the destination node, a reception handler is

invoked which stores the associated message data in mem-

ory and updates the number of message components

received. Using information provided in advance by the

receiving process, the handler can store the data directly in

the user process’s memory without extra copying. When

all the user message data has been received, the handler

notifies the local processor that a user message has arrived

(the application can choose to poll for the user message

arrival or be interrupted), and sends a single acknowledg-

ment back to the sender, completing the transfer.

Section 4.3 discusses the anticipated performance of

this protocol.

3.3 Protocol Extensions and Alternatives

MAGIC’s flexible design supports a variety of proto-

cols, not just the two described in Section 3.1 and

Section 3.2. By changing the handlers, one can implement

other cache-coherence and message-passing protocols, or

support completely different operations and communica-

tion models. Consequently, FLASH is ideal for experi-

menting with new protocols.

For example, the handlers can be modified to emulate

the “attraction memory” found in a cache-only memory

architecture, such as Kendall Square Research’s ALL-

CACHE [KSR92]. A handler that normally forwmds a

remote request to the home node in the base cache-coher-

ence protocol can be expanded to first check the local

memory for the presence of the data. Because MAGIC

stores protocol data structures in main memory, it has no

difficulty accommodating the different state information

(e.g., attraction memory tags) maintained by a COMA

protocol.

Another possibility is to implement synchronization

primitives as MAGIC handlers. Primitives executing on

MAGIC avoid the cost of interrupting the main processor

and can exploit MAGIC’s ability to communicate effi-

ciently with other nodes. In addition, guaranteeing the ato-

micity of the primitives is simplified since MAGIC

handlers are non-interruptible. Operations such as

fetch-and-op and tree barriers are ideal candidates for this

type of implementation.

FLASH’s short message support corresponds closely to

the structuring of communication using active messages as

advocated by von Eicken et al. [vECG+92]. However, the

MAGIC chip supports fast active messages only at the sys-

tem level, as opposed to the user level. While von Eicken

et al. argue for user-level active messages, we have found

that system-level active messages suffice and in many

ways simplify matters. For example, consider the shared-

memory model and the ordinary read/write requests issued

by compute processors. Since the virtual addresses issued

by the processor are translated into physical addresses and

are protection-checked by the TLB before they reach the

MAGIC chip, no further translation or protection checks

306

are needed at MAGIC. By not allowing user-level han-

dlers, we ensure that malicious user-level handlers do not

cause deadlock by breaking resource consumption con-

ventions in the MAGIC chip. The MAGIC chip architec-

ture could be extended to provide protection for user-level

handlers (e.g., by providing time-outs), but this change

would significantly complicate the chip and the protocols.

Instead, we are investigating software techniques for

achieving the required protection to allow user-level han-

dlers to execute in the unprotected MAGIC environment.

Overall, we believe the disadvantages of providing hard-

ware support for user-level handlers in MAGIC outweigh

the advantages. Operations that are truly critical to perfor-

mance (e.g., support for tree barriers and other synchroni-

zation primitives) usually can be coded and provided at the

system level by MAGIC. Disallowing user-level handlers

should lead to a simpler and higher-performing design.

While the inherent complexity of writing handlers may

be small, it is important to realize that errors in the

MAGIC handlers directly impact the correctness and sta-

bility of the machine. We consider the verification of han-

dlers to be analogous to hardware verification, since

MAGIC handlers directly control the node’s hardware

resources. As a resul~ although new protocols maybe sim-

ple to implemen~ they must be verified thoroughly to be

trusted to run on MAGIC.

4 MAGIC Microarchitecture

Fundamentally, protocol handlers must perform two

task~ data movement and state manipulation. The

MAGIC architectme exploits the relative independence of

these tasks by separating control and data processing. As

messages enter the MAGIC chip they are split into mes-

sage headers and message data. Message headers flow

through the control tnacropipeline while message data

flows through the data transfer logic, depicted in

Figure 4.1. Data and control information are recombined

as outgoing message headers are merged with the associ-

ated outgoing message data to form complete outgoing

messages.

4.1 The Data fiansfer Logic

Both message-passing and cache-coherence protocols

requixe data connections among the network, local mem-

ory, and local processor. Because the structure of these

connections is protocol-independent, the data transfer

logic can be implemented completely in hardware without

causing a loss of overall protocol processing flexibility.

The hardwired implementation minimizes data access

latency, maximizes data transfer bandwidth, and frees the

protocol processor from having to perform data transfers

itself.

Figure 4.1. Message flow in MAGIC.

Figure 4.2 shows the data transfer logic in detail. When

messages arrive from the network, processor, or 1/0 sub-

system, the network interface (NI), processor interface

(PI), or 1/0 interface (1/0) splits the message into message

header and message data, as noted above. If the message

contains data, the data is copied into a alua buf)”er,a tem-

porary storage element contained on the MAGIC chip that

is used to stage data as it is forwarded from source to des-

tination. Sixteen data buffers are provided on-chip, each

large enough to store one cache line.

Staging data through data buffers allows the data trans-

fer logic to achieve low latency and high bandwidth

through data pipelining and elimination of multiple data

copies. Data pipelining is achieved by taggin$; each data

buffer word with a valid bit. The functional unit reading

data from the data buffer monitors the valid bits to pipeline

Figure 4.2. Data transfer logic.

307

the data from source to destination — the destination does

not have to wait for the entire buffer to be written before

starting to read data from the buffer. Multiple data copies

are eliminated by placing data into a data buffer as it is

received from the network, processor, or I/O subsystem,

and keeping the data in the same buffer until it is delivered

to its destination. The control macropipeline rarely manip-

ulates data directly; instead, it uses the number of the data

buffer associated with a message to cause the&@ transfer

logic to deliver the data to the proper destination.

4.2 The Control Macropipeline

The control macropipeline must satisfy two potentially

conflicting goak it must provide flexible support for a

variety of protocols, yet it must process protocol opera-

tions quickly enough to ensure that control processing

time does not dominate the data transfer time. A program-

mable controller provides the flexibility. Additional hard-

ware support ensnm that the controller can process

protocol operations efficiently. FWSL a hardware-based

message dispatch mechanism eliminates the need for the

controller to perform message dispatch in software. Sec-

ond this dispatch mechanism allows a speculative mem-

ory operation to be initiated even before the controller

begins processing the message, the~by reducing the data

access time. TIM, in addition to standard RISC instruc-

tions, the controller’s instruction set includes bitfield

manipulation and other special instructions to provide effi-

cient support for common protocol operations. Fourth, the

mechanics of outgoing message sends are handled by a

separate hardware uni~

Figure 4.3 shows the structure of the control mac-

ropipeline. Message headers are passed from the PI, NI

and I/O to the inbox, whicii contains the hardware dispatch

and speculative memory logic. The inbox passes the mes-

sage header to the flexible controller — the protocol pro-

cessor (PP) — where the actual protocol processing

occurs. To improve performance, PP code and data are

cached in the MAGIC instruction cache and MAGIC data

cache, respectively. Finally, the outbox handles outgoing

message sends on behalf of the PP, taking outgoing mes-

sage headers and forwarding them to the PI, NI, and I/O

for delivery to the processor, network, and 1/0 subsystem.

As soon as the inbox completes message preprocessing

and passes the message header to the PP, it can begin pro-

cessing a new message. Similarly, once the PP composes

an outgoing message and passes it to the outbox, it can

accept anew message from the inbox. Thus, the inbox, Pp

and outbox operate independently, increasing message

processing throughput by allowing up to three messages to

be processed concurrently; hence the name “macropipe-

line.” The following sections describe the operation of the

inbox, PP, and outbox in greater detail.

4.2.1 Inbox Operation

The inbox processes messages in several steps. FirsL

the scheduler selects the incoming queue from which the

next message will be read. Second the inbox uses portions

of the selected message’s header to index into a small

memory called thejwnp table to determine the starting PP

program counter (PC) appropriate for the message. The

jump table also determines whether the inbox should ini-

tiate a speculative memory operation. Finally, the inbox

passes the selected message header to the PP for process-

ing.

The scheduler selects a message from one of several

queues. The PI and I/O each provide a single queue of

requests issued by the processor and I/O subsystem,

respectively. The NI provides one queue for each network

virtual lane. The last queue is the software queue. Unlike

the other queues, the software queue is managed entirely

by the PP. The inbox contains only the queue’s head entry;

the remainder of the queue is maintained in main memory,

though in many cases it also will be present in the MAGIC

data cache.

The scheduler plays a crucial role in the deadlock

avoidance strategy discussed in Section 3.1. Each incom-

ing queue has an associated array of status bits which the

PP can use to specify the queue’s relative priority, indicate

whether messages on the queue require outgoing queue

space for servicing, or disable scheduling tlom the queue

completely. By initializing these status bits appropriately,

the PP can ensure that all handlers can run to completion,

-j

‘n
~1

MAGIC

Instruction

Cache

Figure 43. Control macropipeline.

308

that request messages are selected only when sufficient

outgoing queue space exists, and that reply messages are

selected regardless of the state of the outgoing queues.

By providing prog rammable, hardware-based message

dispatch, the jump table frees the PP from having to per-

form an inefficient software dispatch table lookup before

processing a message. A jump table entry contains a pat-

tern field, a speculative memory operation indicator, and a

starting PC value. The inbox compares the pattern field of

each jump table entry to the message type, severat bits of

the address contained in the message, and other informa-

tion to determine which entry matches the message. The

matching entry’s speculative memory indicator specifies

whether to initiate a speculative read or write for the

address contained in the message. The starting PC value

specifies the PC at which the PP will begin processing the

message. When the PP requests the next message from the

inbox, the inbox inserts the starting PC value associated

with the new message directly into the PP’s PC register.

The PP can program the jump table entries to change the

particular set of handlers in use.

4.2.2 Protocol Processor Operation

Each protocol requires different message types, state

information, state formats, and handlers. To accommodate

this variation in processing needs, the PP implements a

subset of the DLX instruction set [HP90] with extensions

to accelerate common protocol operations. These exten-

sions include bittield extraction and insertion, branch on

bit set/clear, and “field” instructions which specify a mask

under which the operation is performed. Additional

instructions implement the interface between the PP and

the other MAGIC functional units, such as issuing mes-

sage sends to the outbox, requesting new messages from

the inbox, and programming the jump table. Thirty-two

64-bit geneml-purpose registers provide scratch space for

use by PP code during protocol processing.

The PP itself is a 64-bit, statically-scheduled, dual-

issue superscalar processor core. It fetches an instruction

pair from the MAGIC instruction cache each cycle and

executes both instructions unconditionally. The PP does

not support interrupts, exceptions, pipeline interlocks, or

hardwme address translation. Although these features can

simplify some aspects of protocol processing, we elected

to eliminate them to reduce design and implementation

complexity. Hence, because the PP lacks many of the

resource conflict detection features present in most con-

temporruy microprocessors, the burden of avoiding

resource conflicts mid pipeline interlocks falls on the PP

programmer or compiler.

4.2.3 Outbox Operation

The outbox performs outgoing message sends on behalf

of the PP. It provides a high-level interface to the PI, NI,

and I/0, relieving the PP from many implementation-spe-

cific details such as outgoing queue entry fiormats and

handshaking conventions.

To initiate an outgoing message send, the Pl? composes

the outgoing message header in its general-purpose regis-

ters. Next, the PP issues a “message send” instruction. The

outbox detects the message send, makes a copy of the

message header, inspects the destination of the outgoing

message, and passes the message to the PI, NI or I/0, as

appropriate. Copying the message header requires only

one cycle, permitting the PP to proceed almost immedi-

ately with additional message processing while the outbox

formats the outgoing message and delivers it tcj the proper

interface unit.

4.2.4 Interface Units

In addition to actual message processing, MAGIC must

interface to the network, processor, and 1/0 subsystem.

The three interface units — the PI, NI, and I/() — imple-

ment these interfaces, isolating the rest of the chip from

the interface details. This isolation is another component

of MAGIC’s flexibility, since it limits the amount of hard-

ware modifications required to adapt the MAGIC design

for use in other systems.

4.3 Putting It All Together

To make the discussion in the previous sections more

concrete, this section summarizes the interaction of the

data transfer logic and the control macropipeline and pre-

sents cycle counts for common protocol operations.

To achieve system performance competitive with a

fully -hardwired design, MAGIC must minimize the

latency required to service requests from the main proces-

sor. Minimizing main processor request latency requires

MAGIC, internally, to minimize the data transfer logic

time and, at the same time, ensure that the control mac-

ropipeline time is less than the data transfer time. Overall,

MAGIC’s performance can be measured both Iby the total

time to process a message (the latency) and by the rate at

which sustained message processing can &cur (the occu-

pancy).

To demonstrate that MAGIC can achieve competitive

performance, we present the latency for servicing a pro-

cessor read miss to local memory. Table 4.1 lists the

latency through each stage of the data transfer logic and

control macropipeline for this operation, assuming that the

MAGIC chip was initially idle. The cycle counts are based

on a 100 MHz (10 ns) MAGIC clock rate and are derived

from the current Verilog models of the various Iunits.

One cycle after the miss appears on the processor bus,

the PI places the message in its incoming queue. After

three additional cycles, the inbox has read the message

from the PI queue, passed the message header through the

309

jump table, and initiated a speculative memory read. At

this point, state manipulation and data transfer proceed in

parallel. The PP requires 10 cycles to update the directory

information and forward the data to the processor (assum-

ing all accesses hit in the MAGIC caches). The memory

system returns the first 8 bytes of data after 16 cycles and

the remaining 120 bytes in the next 15 cycles. Four cycles

after the first data bytes return from the memory system,

the PI issues the response on the processor bus and begins

delivering the cache fill data to the processor.

Table 4.1. Cycle Counts for Local Read Miss

Control Data Transfer

Macropi@ine Pipeline

Latency, Latency,

Unit 10 ns Cy;les 10 ns Cycles

PI, incoming 1 1

The previous example focused on the latency required

to service the processor’s cache fill request. As noted

above, the occupancy of message processing is also

important. The occupancy is determined by the longest

suboperation that must be performed. Again, competitive

performance requires that the control macropipeline not be

the longest suboperation. Table 4.2 lists PP occupancy

cycle counts for some of the common handlers in the base

cache-coherence protocol; the occupancies of the other

units are insensitive to the type of message being pro-

cessed. (Of course the data transfer logic time is elimi-

nated for messages that do not require data movement.)

The first three entries are operations that require local

memory access; the final two entries requite the PP to pass

a message between the network and local processor. For

alt operations with a local memory access, the control

macropipeline time is less than the data transfer time.

Hence, as would be the case in a fully-hardwired control-

ler, the sustained rate at which MAGIC can supply data is

governed by the memory system.

Table 4.2. PP Occupancies For Common Handlers

PI, outgoing 4 4

Memory read, time 16

to first 8 bytes

Occupancy

Handler (cycles)

Local write miss (no shared co~ies) 10

Memory read, time 15

for remaining 120

bytes

TOTAL 19 24 to first word,

39 total

This example illustrates several important MAGIC

architectural features. FirsL the speculative memory indi-

“mtion contained in the jump table allows the memory read

to be started before the PP begins processing the message,

thereby reducing the cache fill time. Second, the data

tmnsfer proceeds independently of the control processing;

thus, at the same time the memory system is reading the

data from memory into the data buffer, the PP is updating

directory state and composing the outgoing data reply

message. Third, the valid bits associated with the data

buffer allow the PI to pipeline the data back to the proces-

sor, further reducing the cache fill time. Fourth, the separa-

tion of data and control processing eliminates multiple

data copie~ the data flows, via the data buffer, directly

from the memory system to the PI while the control pro-

cessing flows through the entire control macropipeline.

Fhtally, as Table 4.1 demonstrates, the control macropipe-

line time is less than the data transfer time, indicating that

the flexible protocol processing is not the limiting factor of

MAGIC’s performance.

ILocal write miss (shared copies) I 7 + 13 per

invalidation I
I Remote read miss, clean I 14 I

I Outgoing Pass through on remote miss \ 3 I

I Incomhw Passthrough on remote miss \ 3 I

The PP cycle counts for the operations in Table 4.1 and

Table 4.2 assume rhat all PP loads and stores hit in the on-

chip MAGIC data cache. Our initial studies, based on

address traces collected from the DASH machine and on

small executions of SPLASH [SWG92] applications,

show that the PP reference stream has sufficient locality to

make this a reasonable assumption.

We have coded a C version of the block-transfer proto-

col in our system-level simulator and, for performance

studies, have hand-coded some of the critical handlers in

PP assembly language, Our preliminary studies, based on

these handlers, show that the initiation phase of the proto-

col takes approximately 70 cycles until the processor can

continue from a non-blocking send. After performing

transfer setup for 30 additionat cycles, the PP begins the

user message transfer. Once the transfer has started,

MAGIC is capable of transferring user data at a sustained

rate of one 128-byte cache line every 30 – 40 cycles, yield-

ing a useful bandwidth of 300 – 400 MB/s.

310

5 System Software Strategy

As noted in Section 1, our goal is for FLASH to operate

well both in a traditional supercomputer environment and

in a general-purpose, multiprogrammed environment. The

latter environment poses significant challenges since gen-

eral-purpose environments typically contain large num-

bers of processes making many system calls and smatl I/O

requests. In addition, users expect good interactive

response, fair sharing of the hardware, protection against

malicious programs, and extremely rare system crashes.

The combination of workload characteristics and user

requirements rules out using a standard supercomputer

operating system for FLASH. Scalability and fault con-

tainment requirement rule out using a generat-purpose

operating system designed for small-scale shared-memory

multiprocessors. To address these issues, we are designing

anew operating system for FLASH, called Hive.

Beneath a standard shared-memory multiprocessor

API, Hive organizes the hardware ~iodes into groups called

cells. Each cell runs a semi-autonomous NUMA-aware

operating system. The division into cells provides the rep-

lication needed for a highly-scalable operating system

implementation and allows for fault containment. Cells

interact as a distributed system internal to Hive, using the

firewall and message-passing mechanisms of the MAGIC

chip for fault isolation. The number of nodes per cell can

be configured for different workload and availability

requirements.

Hive supports shared memory between applications on

different cells, and can allocate processor and memory

resources from multiple cells to a single application. This

support allows flexible, fine-grained sharing of the

machine by large and small applications, despite the fault

containment partitions. A more detailed discussion of

Hive’s design is beyond the scope of this paper.

6 Implementation and Status

FLASH will use the MIPS T5, a follow-on to the

R4000, as its primary processor. Like the R4000, the T5

manages its own second-level cache. The target speed of

the node board and the MAGIC chip is 100 MHz. The

multiply-banked memory system is designed to match the

node’s bandwidth requirements and is optimized for 128-

byte transfers, the system cache line size. FLASH will

implement the PCI standard bus for its 1/0 subsystem and

will use next-generation Intel routers for the interconnec-

tion network. ”The initiaJ FLASH prototype will contain

256 processing nodes. We plan to collaborate with the

Intel Corporation and Silicon Graphics on the design and

construction of the prototype machine.

We currently have a detailed system-level simulator up

and running. The simulator is written in C++ as a multi-

threaded memory simulator for Tango-Lite [Golds93]. The

entire system, called FtashLite, runs real applications and

enables us to verify protocols, analyze system perfor-

mance, and identify architectural bottlenecks,, We have

coded the entire base cache-coherence and base block-

transfer protocols for FlashLite, and have run complete

simulations of several SPLASH applications. The

FlashLite code is stmctured identically to the actual hard-

ware, with each hardware block corresponding to a

FtashLite thread. To aid the debugging of protocols imple-

mented in FtashLite we have developed a random test case

generator, the FLASH Protocol Verifier.

On the hardware design front we are busily coding the

Verilog description of the MAGIC chip. To verify our

hardware description we plan to have FlashLiite provide

test vectors for a Verilog run, and to run real N processor

applications with N–1 FtashLite nodes and one Verilog

node. Since the FlashLite code is structured like the Ver-

ilog description, we also plan to replace a single FlashLite

thread with the appropriate hardware block description to

allow more efficient and accurate verification.

Software tools for the protocol processor are another

major effort. We are porting the GNU C compiler [Stal193]

to generate code for the 64-bit PP. We have also ported a

superscalar instruction scheduler and an assembler from

the Torch project [SHL92]. Finally, we have a I?P instmc-

tion set emulator ported from Mable. This emulator will

help us verify the actuat PP code sequences by becoming

the PP thread in FlashLite simulations.

Operating system development is proceeding concur-

rently with the hardware design. Hive’s implementation is

based on IRIX (UNIX SVR4 from Silicon Graphics), with

extensive modifications in progress to the virtual memory,

1/0, and process management subsystems.

7 Related Work

The architecture of FLASH builds on the work of many

previous research projects. In this section we compare.

FLASH to several existing and proposed machines.

The Alewife [ACD+91, KA93] machine from MIT

shares with FLASH the goals of providing a cache-coher-

ent single-address-space machine with integrated message

passing. It is also similar to FLASH in that the directory

information for coherence is kept in a reserved portion of

the distributed main memory. However, it is different in

that the common cases of the coherence protocol are fixed

in hardware finite state machines, and therefore the base

protocol cannot be changed significantly. The Alewife

machine also does not support virtuat memory, and as a

result, many of the issues that arise in doing user-level

protected messaging in the presence of multiprogramming

are currently not addressed. FLASH directly addresses

these issues.

311

The J-machine project at MIT -3, SGS+93] has

also focused on supporting multiple communication para-

digms within a single machine. A key difference in the

approaches, however, is that while the J-machine uses the

same processor for both computing and protocol process-

ing, FLASH uses separate compute and protocol proces-

sors. Although a single processor obviously costs less, our

experiences with DASH in supporting cache coherence

suggest that if the protocol and compute processor were

one and the same, the sheer number of protocol processing

requests would cause the compute performance to degrade

considerably. Furthermore, we believe that the task

requirements for the compute processor and the protocol

processor are fundamentally differeng and therefore the

two components need to be architected differently, espe-

cially if one relies on an off-the-shelf compute processor.

For instance, our compute processor is designed for

throughput on code optimized for locality, while the proto-

col processor is opthrdzed to process many very short han-

dler sequences, with successive sequences bearing little

relationship to each other. Another difference is that when-

ever the compute processor makes a memory reques4 it

does so with the intention of using the data returned for

further computation. In contra.% when the protocol pro-

cessor makes a memory request, it directly passes the data

returned by memory to the network or to the local proces-

sou the data need never go to the protocol processor’s reg-

isters or through its memory hierarchy. This data handling

method leads to significant differences in the capabilities

of FLASH and the J-machine. For example, the J-machine

processor, the MDE has neither the throughput of our

compute processor (e.g., it does not have caches or signifi-

cant number of registers), nor does it have the extra hard-

ware support for data transfer provided in MAGIC to

handle remote ~quests efficiently.

The Thinking Machine’s CM-5 ITMC92] provides

user-level access to the network so that short user mes-

sages can be sent efficiently by the source processor. How-

ever, in contrast to FLASH, the main processor is involved

in all transactions on both the sending and receiving ends.

As discussed for the J-machine, we believe this can con-

siderably reduce the communications and computation

throughput when supporting shared memory.

To address the throughput and overhead issues dis-

cussed above, the Intel Paragon machine provides a sec-

ond processor on each node to act as a messaging

processor. The messaging processor is identical to the

compute processor, and it resides on a snoopy bus along

with the compute processor and the network interface

chip. Unfortunately, because Intel’s messaging processor

is coupled to the compute processor through the snoopy

bus, it will be unable to support FLASH’s goal of support-

ing cache cohenmce. (It needs to be able to observe all

requests issued by the compute processor.) MAGIC’s tight

coupling to the compute processor, the memory system,

and the network allows it to support both cache coherence

and message passing efficiently.

The recently-announced Meiko CS-2 [HM93] machine

incorporates a processor core in its network interface.

While the CS-2 is similar to FLASH at a high level, the

processor core and the surrounding data path are not pow-

erful enough to be able to implement a cache-coherence

protocol efficiently (e.g., there is no on-chip data cache, so

all dwectory data would have to come from main mem-

ory). Even messaging is done using a separate DMA con-

troller in the network interface chip. In contrast in FLASH

all messaging and coherence are handled directly by the

MAGIC protocol processor.

The *T machine proposed by MIT mA92] is in some

ways closest to FLASH. *T proposes to use a separate

remote-memory processor and a separate synchronization

processor in addition to the main compute processor.

While the remote-memory and synchronization processors

in *T are similar to the MAGIC chip in FLASH, the *T

paper discusses them only at a high level, giving the

instruction set additions but no hardware blocks. *T also

does not have effective support of cache coherence as a

goal, and consequently does not discuss the implications

of their design for that issue.

In a paper retated to *T, Henry and Joerg [HJ92] dis-

cuss issues in the design of the network-node interface.

They argue that most protocol processing for handling

messages can be done by a general-purpose processor.

Hardware support is needed in otiy a couple of places,

namely for fast dispatch based on type of incoming mes-

sage and for boundary-caseJerror-case checking (for

example, the processor should be informed when the out-

bound network queue is getting fult to help avoid dead-

lock). Our general experience in the design of MAGIC has

been similar, although the specifics of our design are quite

different.

Fh@ly, the most recent addition to the array of large-

scale multiprocessors has been the Cray T3D. The archi-

tecture supports a single-address-space memory model

and provides a block-transfer engine that can do memory-

to-memory copies with scatter/gather capabilities. T3D

differs from FLASH in its lack of support for cache coher-

ence and in its support of a more specialized bulk data

transfer engine.

8 Concluding Remarks

Recent shared-memory and message-passing architec-

tures have been converging. FLASH is a unified architec-

ture that addresses many of the drawbacks of earlier

proposals — it provides support for cache-coherent shared

memory with low hardware overhead and for message

passing with low software overhead. The goal of support-

312

ing multiple protocols efficient y and flexibly has to a

large extent driven the architecture of FLASH. To achieve

this goal, we made a set of hardware-software tmde-offs.

For flexibility, MAGIC includes a programmable protocol

processor and a progmmrnable hardware dispatch mecha-

nism. In addition, MAGIC uses a portion of the local main

memory for storing all protocol code and data instead of

employing a special memory for this purpose. For effi-

ciency, MAGIC has hardware support optimized to handle

data movement in a high-bandwidrh, pipelined fashion, as

well as on-chip caches for high-bandwidth, low-latency

access to protocol state and code. The result is a single

chip that efficiently and flexibly implements all of the

functionality required in a scalable multiprocessor system.

Acknowledgments

We would like to thank Todd Mowry for his help in

adapting the FlashLite threads package to Tango-Lite and

Stephen Herrod for his help with FlashLite development.

We would also like to acknowledge the cooperation of the

Intel Corporation, Supercomputer Systems Division. This

work was supported by ARPA contract NOO039-91-C-

0138. David Ofel~ Mark Heinrich, and Joel Baxter are

supported by National Science Foundation Fellowships.

John Heinlein is supported by an Air Force Laboratory

Graduate Fellowship. John Chapin is supported by a Fan-

nie and John Hertz Foundation Fellowship.

References

[ACD+91] Anant Agarwat et al. The MIT Alewife Machine:

A Large-Scale Distributed-Memory Multiproces-

sor. MIT/LCS Memo TM-454, Massachusetts

Institute of Technology, 1991.

[Golds93] Stephen Goldschmidt. Simulation of Multiproces-

sors Accuracy and Performance. Ph.D. Thesis,

Stanford University, June 1993.

[HGG94] John Heinlein, Kourosh Gharachorloo, and

Anoop Gupta. Integrating Multiple Communica-

tion Paradigms in High Performance Multiproces-

sors. Technical Report CSL-TR-94-604, Stanford

University, February 1994.

[HJ92] Dana S. Henry and Christopher F. Joerg. A

TlghtJy-Coupled Processor-Network Interface. In

Proceedings of the 5th International Confewrce

on Architectural Support for Programming Lun -

guages and Operating Systems, pages 111-22,

Boston, MA, October 1992.

[HM93] Mark Homewood and Moray McLaren. Meiko

CS-2 Interconnect Elan–Elite Design. In Proceed-

ings of Hot Interconnects 93, pages 2.1.1-4, Stan-

ford University, August 1993.

[HP90] John Hennessy and David Patterson. Computer

Amhitectum: A Quantitative Approach. Morgan

- Kaufmann Publishers, San Mateo, CA. 1990.

[KA93]

[KSR92]

[LLG+90]

[LLG+92]

[NPA92]

[NWD93]

[SGS+93]

[SHL92]

[Simoni92]

[stal193]

[SWG92]

[TMC92]

[vECG+92]

John Kubiatowicz and Anant Agarwal. Anatomy

of a Message in the Alewife Multiprocessor. In

Proceedings of the 7th ACM Intema%ional Con-

ference on SuperComputing, Tokyo, Japan, July

1993.

Kendalt Square Research. KSR1 Technical Sum-

mary. Waltham, MA, 1992.

Daniel Lenoski et al. The Directo~-Based Cache

Coherence Protocol for the DASH Multiproces-

sor. In Proceedings of the 17th International Sym-

posium on Computer Axhitecture, pages 148-59,

Seattle, WA, May 1990.

Daniel Lenoski et al. The Stanford DASH Muki-

processor. IEEE Computer, 25(3):63-79, March

1992.

Rishiyur S. Nikhil, Gregory M. Papadopoulos,

and Arvind. *T A Multithreaded Massively Par-

allel Architecture. In Proceedings of the 19th

[ntematiorud Symposium on Computer Axhitec-

ture, pages 156-67, Gold Coast, Australia, May

1992.

Michael D. Noakes, Deborah A. ‘Wallach, and

Wllliarn J. Dally. The J-Machine Multicomputec

An Architectural Evaluation. In Proceedings of

the 20th [ntemationtd Symposium on Computer

Architecture, pages 224-35, San Diego, CA, May

1993.

Ellen Spertus et al. Evaluation of Mechanisms for

Fine-Grained Parallel Programs in the J-Machine

and the CM-5. In Proceedings of the 20th Intema-

tiomd Symposium on Computer A rhitecture,

pages 302-13, San Diego, CA, May 1993.

Michael D. Smith, Mark Horowitz, and Monica

Lam. Efficient Superscalar Performance ‘Ihrough

Boosting. In Proceedings of the Fcflh Interna-

tional Conference on A rchitecturaJ Support for

Programming Languages and Operuting Systems,

pages 248-59, Boston, MA, October 1992.

Richard Sirnoni. Cache Coherence Directories for

Scalable Multiprocessors. Ph.D. Thesis, Technical

Report CSL-TR-92-550, Stanford University,

October 1992.

Richard Stallman. Using and porting GNU CC.

Free Software Foundation, Cambridge, MA, June

1993.

J.P. Singh, W.-D. Weber, and Anoop Gupta.

SPLASH: Stanford Parallel Applications for

Shared-Memory. Computer Anhitecture News,

20(1):5-44, March 1992.

Thinking Machines Corporation. The Connection

Machine CM-5 Twhnical Summary. Cambridge

MA, kuNIary 1992.

Thorsten von Eicken et al. Active Messages: A

Mechanism for Integrated Communication and

Computation. In Proceedings of the 19th Intern-

ational Symposium on Computer A ~hitecture,

pages 256-66, Gold Coast, Australia~, May 1992.

313

