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Abstract—Video search has become a very important tool,
with the ever-growing size of multimedia collections. This work
introduces our Video Semantic Indexing system. Our experiments
show that Residual Vectors provide an efficient way of aggregat-
ing local descriptors, with complementary gain with respect to
BoVW. Also, we show that systems using a limited number of
descriptors and machine learning techniques can still be quite
effective. Our first participation at the TRECVID evaluation has
been very fruitful: our team was ranked 6th in the light version
of the Semantic Indexing task.

Index Terms—Video semantic indexing, video retrieval, video
categorization, video search, concept detection

I. INTRODUCTION

THE steep rise in the availability of video content, during

the last decade, is hardly breaking news. Today, YouTube

reports that 72 hours of videos are uploaded to its servers

every minute [1]. Video is increasingly ubiquitous and video

collections are increasingly large, throughout the spectrum

ranging from public broadcasters to personal archives. The

size of the databases is growing faster than the technology to

handle it can be developed. Sooner or later, video retrieval will

be a key technology of the new digital world [2].

Most existing commercial video search engines retrieve

videos based on textual tags, descriptions and transcripts. This

provides limited performance in important cases, such as when

the searched visual content is not mentioned in the text, or

when the accompanying text is in a different language.

In a study with broadcast news [3], Hauptmann et al. showed

that text-based retrieval of videos performed poorly. This was

based on 83 use cases developed by the LSCOM effort [4],

a collaboration between several organizations that created a

taxonomy of 1,000 concepts, along with realistic use cases and

queries with a large annotated set of broadcast news videos.

Hauptmann’s work [3] further shows that a system using

320 semantic concepts can improve performance significantly,

even with quite low concept detection performance. Finally,

their work also argues that, in realistic settings, a few thousand

concepts would be sufficient to take video retrieval’s perfor-

mance to the level of existing web text search engines.
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• Keywords for each run

L A stanford1 1. CENTRIST, SIFT, OppSIFT, dense ex-

traction, HarLap keypoint detector, BoVW, SPM, Residual

Vectors, late fusion by linear combination of validation-

weighted scores.

L A stanford2 2. CENTRIST, SIFT, OppSIFT, dense ex-

traction, HarLap keypoint detector, BoVW, SPM, Residual

Vectors, late fusion by average of scores.

L A stanford3 3. CENTRIST, SIFT, OppSIFT, dense ex-

traction, Residual Vectors, late fusion by linear combina-

tion of validation-weighted scores.

L A stanford4 4. CENTRIST, SIFT, dense extraction,

BoVW, SPM, Residual Vectors, late fusion by linear com-

bination of validation-weighted scores.

• Performance comparison among runs

The two first runs were meant to be the most competitive

ones. They perform quite similarly, being the 19th and 20th

top runs. Considering only one run per team, our best run

achieves the 6th rank.

The third run achieves the 43rd rank, and the fourth run

achieves the 49th rank. These naturally perform worse,

since they utilize fewer elements. They are, however, much

more computationally efficient, which demonstrate that,

even with a limited set of descriptors/aggregation methods,

reasonable Semantic Indexing is still possible.

• Estimate of relative contribution of each component

A system using only the efficient CENTRIST descriptor,

and SIFT descriptors, already achieves more than 0.2

MAP (Run 4). If we replace BoVW-aggregated SIFT by

Residual Vectors-aggregated OppSIFT, performance im-

proves further (Run 3). If all these elements are combined,

performance improves by a significant 25% to our best

runs (Runs 1 and 2).

In our preliminary experiments, we verified that using both

BoVW and Residual vectors improved overall system’s

performance, over the use of only one of them.

• Learned lessons

- Systems using limited number of descriptors and machine

learning techniques can still be quite effective;

- Residual Vectors provide an efficient way of aggregating

local descriptors for video indexing;

- Residual Vectors provide complementary gain to BoVW.



Multimodal video indexing has been researched intensely

recently – though mostly in an ad-hoc way, with groups of

researchers tackling isolated problems. Snoek et al. [5] provide

a coherent review, along with a unifying and multimodal

framework containing the different modalities and granular-

ities involved in video indexing.

The same authors provide a comprehensive overview of

concept-based video retrieval [2], discussing the challenges

not only of detecting the concepts, but also of conceiving

a practical system for real users. A key element of such

systems is the way users perform a query, which can be done

by keyword, by example, or by concept. The system could

then have an automatic selection of concepts based on query

prediction techniques.

In concept-based indexing, the objective is to conceive

detectors that, with a generic framework, can handle hundreds

or even thousands of different concepts with reasonable per-

formance. Such a technology should also be able to i) provide

access to specific video segments, and not only to the entire

video, ii) allow for searching videos in databases which do not

have textual tags and iii) enhance video search in the cases

text-based search is effective.

As this is our first participation in the TRECVID evaluation,

we tackled only the light version of the Video Semantic

Indexing task. The task definition is:

“Given the test collection, master shot reference, and con-

cept definitions, return for each concept a list of at most 2000

shot IDs from the test collection ranked according to their

likeliness of containing the concept.”

In other words, the teams are given a number of shots and

semantic concept definitions, and they have to submit a 2000-

length ranked list with the most likely shots to contain the

searched semantic concept. Training data are also provided,

with which the systems are to be trained.

The task is characterized as a large scale one. There are

more than 400k training shots (equivalent to 600 hours), and

more than 100k testing shots (equivalent to 200 hours). The

shot is the unit of analysis, based on which the annotations

are provided.

The remaining of the paper is organized as follows. Section

II gives an overview of our system’s main components. Section

III follows with the experimental setup and our results. Section

IV concludes with a discussion of our main results.

II. OVERVIEW OF THE SYSTEM

In this Section, we introduce our Video Semantic Indexing

System. Figure 1 presents a high-level overview of the task,

with the main system components.

A large set of videos, decomposed into shots, is provided,

with partial labels regarding presence or absence of several

concepts (more detail in the dataset will be provided in Sub-

section III-A). With these training data, features are extracted

and used to train classifiers. At testing time, the same features

are extracted from the testing videos, and the classifier predicts

the presence or absence of each concept.

Figure 2 gives a more detailed view of each high-level block

from Figure 1. Each color represents the use of a different

feature type and classifier - we refer to each of those as ‘feature

channels’. In our system, the input to the feature channels

is a selected representative frame from each shot, as will be

detailed in Subsection II-A.

For example, blue might represent Dense SIFT + BoVW +

HIK-kernel SVM, and purple might represent Spatial CEN-

TRIST + RBF-kernel SVM. These technical details will be

discussed in more detail in the following subsections.

Image-level features can be extracted either in the form

of global descriptors, or by aggregating local descriptors.

Classifier construction is composed by an initial validation

step, which estimates the best classifier parameters, and then

by classifier training.

The classifier can then be applied to the representation of

the testing instance (the video shot). That gives a score for that

particular feature channel, for each of the possible concepts.

We then fuse the scores of the different feature channels, to

obtain a final score for the specific concept with respect to the

specific test instance.

We did not explore the use of label co-occurences to

improve the performance over predicting the occurence of each

concept individually. This was due to two reasons: i) not much

co-occurence training data are available (as will be detailed in

III-A) and ii) previous work shows that it takes 25 times longer

to integrate classifier training if taking correlations among

concepts into account [6].

In the following, we present in more detail the components

of the system.

A. Extraction of descriptors

The TRECVID 2012 SIN dataset (presented in detail in

subsection III-A) provides, together with the videos, outputs

of a speech-to-text engine. For some videos, textual tags and

short descriptions are also made available.

In total, four modalities are present and can potentially be

used/combined in a Semantic Indexing system: i) visual, ii)

audio, iii) textual tags and descriptions and iv) speech-to-text

transcriptions.

Our system only makes use of the visual modality, for

several reasons:

i) Textual tags and descriptions are very sparse, multilingual

and not necessarily consistent among videos presenting similar

concepts.

ii) Speech-to-text transcripts are provided for the English

language, even if the videos are not in English. Also, even for

English-spoken videos, the transcripts are quite unreliable.

iii) Previous editions of the TRECVID workshop show

that audio-based descriptors can be useful for a handful of

concepts, but that they are not useful for most concepts [7]–

[9].

For those reasons, it becomes very difficult to build statis-

tical models based on the textual elements. Due to limitation

of time, our team decided to focus only on visual-based

descriptors, which have been shown to be the most useful

in previous TRECVID editions.

Visual descriptors can be extracted based on a keyframe, or

based on a sequence of frames. According to previous reports,



Fig. 1. High-level overview of the system, with example for the concepts ‘Landscape’, ‘Male Person’, ‘Computer’ and ‘News Studio’. Each thumbnail
represents a video shot. The annotations can be P, when the concept is clearly present, N when the concept is clearly not present, S when the annotator is
not certain (skip), or M, when the annotation is missing.

Fig. 2. The blocks from Figure 1 are presented in more detail. Each color represents a feature channel. Features are extracted from the shots by either
extracting global descriptors or extracting local descriptors and then aggregating them.



the use of descriptors based on a sequence of frames can im-

prove concept detection. However, keyframe-based descriptors

are shown to account for most of the performance [7], [8].

Thus, due to limitation of time, we employ only keyframe-

based visual descriptors.

The proposed system makes use of only one global de-

scriptor and two types of local descriptors. In our system,

local descriptors are extracted both in a dense grid and based

on an interest-point detector. We mention them briefly in the

following.

1) Local descriptors:

a) Extraction of interest points:

It has been reported that improvements in performance are

obtained by combining the extraction of interest points in

different ways, in the context of classification-based tasks [8].

We employ the Harris-Laplace [10] interest point detector and

also extract patches on a dense grid.

The extraction of keypoints based on a dense grid has been

shown to provide the best results for image classification-based

tasks [11]. This is due to the fact that, in these scenarios,

patterns other than the ones extracted by a common interest-

point detector are statistically important.

b) Patch description:

We describe the extracted patches by using the well-known

SIFT descriptors [12] and OppSIFT descriptors [13], which

are a variant of SIFT calculated in each color component in

the Opponent color space.

We verify experimentally that performance gains are ob-

tained when combining these two.

2) Global descriptor: CENTRIST, a very efficient global

descriptor for scene categorization, was introduced recently

[14]. It has been shown that it works well for the Video

Semantic Indexing [15] task.

It works by initially generating a binary pattern for each

pixel, based on the comparison to its neighboring pixels. The

final global descriptor (Spatial Principal component Analysis

of Census Transform histograms - SPACT) is a histogram

of appearances of each binary pattern, pooled over different

spatial regions of the image.

B. Aggregation of local descriptors into feature vectors

In this subsection, we explain the methods by which we

take the local descriptors and aggregate them in a fixed-size

vector, suitable to common classification algorithms.

1) From variable-size sets to fixed-length feature vector:

After the processing described in II-A1, we end up with a set

of local descriptors representing each keyframe. The size of

these sets can vary, due to variations on video resolution and

number of detected keypoints.

In order to feed a fixed-size feature vector to a common

machine learning tool, there is a need to transform the variable-

size set of features into a fixed-size feature vector.

Many approaches have been used to perform such mapping,

the most common being the Bag-of-Visual-Words (BoVW)

method [16]. More recently, several approaches have been

proposed, and a comparison of the most important ones was

presented in [17].

We employ a simplified version of the Fisher Vector

approach [18], inspired on Vector of Locally Aggregated

Descriptors (VLAD) [19] and on Residual Enhanced Visual

Vectors (REVV) [20]. Both are based on the aggregation of

differences of local descriptors and the centroid of the Voronoi

cell to which they are assigned.

In our system, these differences are averaged in each

Voronoi cell. Our fixed-size feature vector is, then, a concate-

nation of these averaged differences. We will refer to these

aggregated vectors as ‘Residual Vectors’ in the rest of the

document.

We also employ a BoVW, and verify experimentally that the

combination of both aggregation methods provide a significant

performance gain.

Lastly, it is important to mention that we use only training

data when training the parameters of the aggregation functions

– in our case, the training of the visual codebook by a common

k-means.

2) Using spatial information: The spatial arrangement of

visual elements is clearly a source of important information

for categorization tasks. The most common way of using it

is by constructing Spatial Pyramids [21], which consist of

aggregating descriptors over each image sub-region - using

one of the methods described in II-B1.

More recently, an elegant formulation for dealing with

spatial information was proposed in [22], but we did not have

time to take advantage of it.

We use Spatial Pyramids when aggregating descriptors

via BoVW, using a 3x1 grid (three horizontal stripes), and

verify improvements in performance. Due to lack of time, we

do not apply Spatial Pyramids to our residual vector-based

aggregation approach.

C. Classification using Support Vector Machines

Having aggregated local descriptors into a fixed-size feature

vector, and having the global descriptor, we can proceed to

the training of classifiers that will distinguish between the

presence and absence of a certain concept in a video.

Video Semantic Indexing is inherently a multi-label prob-

lem: i.e., labels can co-occur. Thus, the most common practice

is to train one-vs-rest classifiers.

The most commonly used tools for classification are Support

Vector Machines (SVM’s), which were shown to be quite

effective for Video Semantic Indexing [8], [9]. That is the

technique we choose. It is usually recommended that the

data instances be weighted according to how unbalanced the

positive and negative classes are [23]. However, this has not

proved useful in our preliminary experiments.

Depending on the type of features, different kernels might

be used. For BoVW-based features, it is well-known that His-

togram Intersection Kernels (HIK) are quite effective [8]. For

residual vector features and for the SPACT global descriptor,

we employ a Radial Basis Function (RBF) kernel, which is

known to be a good general-purpose kernel. For RBF kernels

(in our case defined as exp(−γ||u−v||2)), we set the parameter

γ to an estimate of 1
E(||xi−xj ||2)

, where u and v are two feature

vectors, as is commonly done in practice.



1) AP-based validation: The SVM regularization parameter

C is chosen by performing validation experiments. For the

Semantic Indexing task, since the evaluation is based on

average precision (AP), we choose the C parameter that

optimizes this measure.

We partition the training data in two sets. One partition

is used for validation training, while the other is used for

validation testing. We pick the parameter that achieves best

estimated AP in these tests.

An interesting work studies the best way to perform cross-

validation when optimizing AP, and in the context of Video

Semantic Indexing [24]. It concludes that it is better to em-

ploy Balanced Average Precision (BAP) as a cross-validation

measure. In our case, since we perform only one training and

testing in validation experiments, the use of AP performs as

well as the use of BAP.

Finally, we make sure that the validation classifier training is

not influenced by validation testing data - so, codebook train-

ing and dimensionality reduction for validation experiments

are performed based only on validation training data.

2) Final training and testing: After choosing the regular-

ization parameter C, we train the final classifiers based on the

entire training set. The final performance for a given concept is

given by the estimated AP (see III-B) calculated on the results

given by the application of the classifier on the testing set.

D. Late fusion

After obtaining the scores of the classifiers for each feature

channel, a method is needed to be able to combine them. In

the literature, this process is referred as ‘late fusion’, since the

combination of the scores is done after the classification based

on each feature channel.

This contrasts to what is known as ‘early fusion’, when

the combination is done before classification. This is usually

accomplished by summing up the kernel matrices of each

feature channel, and is equivalent to concatenating the feature

vectors in the space defined by the kernel.

In preliminary experiments, late fusion has proved to be

more useful, so we decided to use it. Depending on the run,

our late fusion strategy consists either of a simple average of

scores from each feature channel, or of a linear combination

of scores with coefficients given by each feature channel’s

validation performance.

III. EXPERIMENTS AND RESULTS

In this section, we present the experimental setup of the

Semantic Indexing task and the results obtained by our team.

A. Dataset

The dataset consists of:

i) Training data: 19,701 videos, which correspond to

400,289 shots (roughly 20 shots/video) and 600 hours. These

are drawn from the IACC.1.tv10.training, IACC.1.A and

IACC.1.B collections.

ii) Testing data: 8,263 videos, which correspond to 145,634

shots and 200 hours. These are drawn from the IACC.1.C

collection.

All these collections are provided by NIST, and are sampled

from the Internet Archive [25]. All videos are provided in the

H.264 format, with duration in the range from 10 seconds to

3.5 minutes. The videos are representative of user-generated

content, with a large variety of topics and quality.

Some metadata, such as titles, textual tags and short de-

scriptions might be provided with each video. Outputs of

English speech-to-text software are also provided. For reasons

explained in II-A, our system only makes use of visual

information for retrieval.

All annotations are provided based on the shot, i.e., a

shot might be tagged with the absence of the concept

‘Ground vehicle’, but with the presence of the concept

‘Person’. A list of all concepts and their definitions can

be found at http://www-nlpir.nist.gov/projects/tv2012/tv11.sin.

500.concepts ann v2.xls.

There are 500 concepts in total, of which 346 are chosen

for the Full experiment type, and 50 are chosen for the Light

experiment type. The 2,000 shots most likely to contain each

concept must be submitted, in a ranked list. After submission,

a subset of them are chosen for judgment, by the workshop

organization: 15 in the Light task, 46 in the Full task. Our

team decided to participate on the Light experiment only.

The annotation of the shots is done collaboratively, with

the participation of members from the groups participating in

TRECVID. It is important to mention that not all shots are

annotated. Based on an active learning system, a subset of the

shots are chosen to be annotated. At a high-level, the system

estimates which shots can be more valuable for a Semantic

Indexing system, and then suggests the most important ones

to the human annotator. For more details, the reader is referred

to [26].

Only the shots containing labels are used by our system.

9.75% of the shots in the training set do not contain labels,

and thus are not used. It is known that unannotated shots can

still help with a general classification task (usually referred as

semi-supervised learning), but we did not exploit this strategy

due to limited time constraints.

Not many shots contain enough annotations so as to leverage

the correlations between concept appearances (for example,

the presence of the concept ‘News Studio’ usually occurs

together with the presence of the concept ‘Person’). Only

47.2% of the shots contain more than 10 annotations, and

only 16% of the shots contain more than 100 annotations.

Also, as previously mentioned in II, previous work shows

that the system becomes significantly more computationally

demanding if using co-occurence information [6].

Lastly, two weeks before the submission deadline, col-

leagues at the Brno University of Technology released another

750k annotations on the training data [27]. Due to the close-

ness to the submission deadline, most teams (including us)

did not make use of these annotations. For our team, another

important issue was memory constraints: with the available

annotations, there was just enough room in memory for the

features of some concepts. Adding more data would probably

require re-engineering some of the key algorithms of our

system.

http://www-nlpir.nist.gov/projects/tv2012/tv11.sin.500.concepts_ann_v2.xls
http://www-nlpir.nist.gov/projects/tv2012/tv11.sin.500.concepts_ann_v2.xls


B. Evaluation measures

Since not all shots are annotated, it is not possible to

calculate Average Precision (AP). A system that estimates

this measure is then used [28]. The final measure for each

concept is called infAP (or, in some cases, xinfAP), which

stands for Inferred Average Precision (respectively, Extended

Inferred Average Precision).

Whenever referring to the measure of performance taking

into account all concepts, MinfAP (Mean of the Inferred

Average Precisions) is used. This is simply the average of

the infAP’s over all concepts.

Similarly, a precise calculation of precision and recall is

not possible. The same system is then used to estimate the

Precision-Recall curve at different recall points.

C. Submitted concept detection runs

Each team could submit four different runs to the Semantic

Indexing task. Our four runs are detailed as follows.

1) Run 1: This is our top-performing run, combining all of

the techniques mentioned above, and performing late fusion

with validation-based weights. It achieves the 19th best result

among all runs in the light experiment, and the 6th best result

considering only the best run per team. It achieves the 3rd best

result for the concepts ”Landscape” and ”Male person”.

The feature channels used in this run are composed of:

i) Dense keypoint extraction + OppSIFT. BoVW and Spa-

tial Pyramid pooling in a 3x1 grid with a 4096-size visual

dictionary;

ii) Dense keypoint extraction + SIFT. BoVW and Spatial

Pyramid pooling in a 3x1 grid with a 4096-size visual dictio-

nary;

iii) HarLap keypoint extraction + OppSIFT. BoVW pooling

with a 4096-size visual dictionary;

iv) HarLap keypoint extraction + SIFT. BoVW pooling with

a 4096-size visual dictionary;

v) Residual vectors on PCA-reduced (to 64 dimensions)

densely extracted OppSIFT, using a 256-dimensional visual

dictionary;

vi) Residual vectors on PCA-reduced (to 32 dimensions)

densely extracted SIFT, using a 512-dimensional visual dic-

tionary;

vii) SPACT: Spatial Principal component Analysis of Cen-

sus Transform Histograms (CENTRIST).

2) Run 2: This run employs the exact same feature channels

as Run 1, the sole difference being the way the scores are

combined: in this case, we use a simple average of the scores.

It achieves the 20th best result among all runs in the light

experiment.

3) Run 3: This run evaluates the use of residual vector

aggregation. We add the SPACT global descriptor, since it is

very efficient and always helps, and perform late fusion with

validation-based weights. It achieves the 43rd highest result

among all runs in the light experiment.

This run is composed of the following feature channels:

i) Residual vectors on PCA-reduced (to 64 dimensions)

densely extracted OppSIFT, using a 256-dimensional visual

dictionary;

Fig. 3. Inferred precision-recall curve for each of our runs, and for the
top-performing run. The runs “L A stanford1 1’ and “L A stanford2 2”’
overlap in the graph, since they are very similar.

ii) Residual vectors on PCA-reduced (to 32 dimensions)

densely extracted SIFT, using a 512-dimensional visual dic-

tionary;

iii) SPACT: Spatial Principal component Analysis of Census

Transform Histograms (CENTRIST).

4) Run 4: One of the most computationally costly steps

of the Semantic Indexing system is the extraction of local

descriptors. This run evaluates the use of only one local de-

scriptor – densely extracted SIFT – with different aggregation

methods. We add the SPACT global descriptor, since it is

very efficient and always helps, and perform late fusion with

validation-based weights. It achieves the 49th highest result

among all runs in the light experiment.

This run is composed of the following feature channels:

i) Dense keypoint extraction + SIFT. BoVW and Spatial

Pyramid pooling in a 3x1 grid with a 4096-size visual dictio-

nary;

ii) Residual vectors on PCA-reduced (to 32 dimensions)

densely extracted SIFT, using a 512-dimensional visual dic-

tionary;

iii) SPACT: Spatial Principal component Analysis of Census

Transform Histograms (CENTRIST).

D. Detailed results

Table I presents the detailed results for all our runs, to-

gether with the top-performing run, “L A kobe muro l18 3”.

Figures 3 and 4 show graphically Precision-Recall and Preci-

sion@n extracted from this Table.

Figure 5 compares the performance for each of our runs

with respect to the best and median results for each concept

– note: the comparison is done with respect to the best result

for each concept, and not the result for each concept of the

“L A kobe muro l18 3” run.

E. Timing

We report some timing numbers to give an idea of com-

putational complexity. The following numbers are based on

24-core Intel Xeon 2.40GHz servers, with 64GB RAM.



TABLE I
DETAILED RESULTS FOR ALL OUR RUNS, AND FOR THE TOP-PERFORMING RUN.

Run L A kobe muro l18 3 (best) L A stanford1 1 L A stanford2 2 L A stanford3 3 L A stanford4 4

MinfAP 0.3578 0.265 0.263 0.212 0.206

Recall Inferred precision

0 0.9389 0.909 0.904 0.918 0.886

0.1 0.6577 0.487 0.482 0.41 0.357

0.2 0.4013 0.228 0.227 0.153 0.141

0.3 0.2663 0.158 0.16 0.092 0.075

0.4 0.1365 0.051 0.054 0.011 0.004

0.5 0.0711 0.021 0.021 0 0

0.6 0.0201 0.005 0.005 0 0

0.7 0.0113 0 0 0 0

0.8 0 0 0 0 0

0.9 0 0 0 0 0

1 0 0 0 0 0

Depth Inferred precision

10 0.82 0.74 0.747 0.747 0.693

100 0.678 0.587 0.589 0.527 0.515

1000 0.4424 0.359 0.36 0.323 0.315

2000 0.3633 0.3 0.298 0.267 0.258

Concept infAP per concept

Airplane Flying 0.424 0.258 0.273 0.109 0.139

Bicycling 0.08 0.021 0.02 0.009 0.014

Boat Ship 0.219 0.162 0.15 0.123 0.121

Computers 0.064 0.058 0.056 0.057 0.048

Female Person 0.686 0.552 0.557 0.532 0.515

Instrumental Musician 0.38 0.229 0.224 0.146 0.145

Landscape 0.55 0.607 0.605 0.571 0.532

Male Person 0.918 0.936 0.933 0.716 0.846

Nighttime 0.297 0.18 0.175 0.16 0.145

Scene Text 0.495 0.165 0.159 0.166 0.133

Singing 0.194 0.065 0.066 0.039 0.039

Sitting Down 0.003 0.003 0.003 0.002 0.003

Stadium 0.203 0.215 0.208 0.138 0.075

Throwing 0.187 0.124 0.121 0.1 0.076

Walking Running 0.667 0.395 0.393 0.308 0.256

All 0.358 0.265 0.263 0.212 0.206

Fig. 4. Inferred precision@n for each of our runs, and for the top-performing
run. The runs “L A stanford1 1’ and “L A stanford2 2”’ overlap in the
graph, since they are very similar.

The computational cost breaks down into i) descriptor

extraction, ii) local descriptor aggregation, iii) validation ex-

periments, iv) classifier training and v) classifier testing. Late

fusion does not take a significant amount of time.

Descriptor extraction and aggregation take from 1 to 2 days.

We precompute the SVM kernels for each pair of shots,

which makes classifier training and testing very efficient. The

major computational cost becomes, then, the precomputation

of the kernel matrices. These depend basically on the feature

dimension and the chosen kernel.

Precomputation of validation training matrix took from

2 hours to 2.5 days. Precomputation of validation testing

matrix took roughly twice the time of precomputing validation

training kernel matrix.

Precomputation of training kernel matrices could take from

10 hours to 5 days. Precomputation of the testing kernel matrix

took roughly half of the time that it took for the the training

kernel matrix precomputation.

F. Visualization of results

We present in Figure 6 top-10 results for our best run for

nine different queries - 3 best-performing concepts, 3 worst-

performing concepts and 3 average-performing concepts. The

shots are represented by a keyframe, which usually contains

most of the visual elements that appear along the shot.

Further visualization of results, including full submitted

results for all concepts in the light experiment and precise



Fig. 5. infAP per concept, for each of our runs. As a reference, we also show the median infAP per concept, and the best infAP per concept.

Fig. 6. Top-10 retrieved shots (only keyframe is shown) for selected concepts, for our best run (first retrieved shot on left). All results for all runs can be
examined at http://stanford.edu/∼afaraujo/trecvid.

http://stanford.edu/~afaraujo/trecvid


definition of concepts, is available online, via the project

webpage: http://stanford.edu/∼afaraujo/trecvid.

IV. CONCLUSION

In this work, we have put together a system that automat-

ically annotates video shots with semantic concepts. Tagging

semantic concepts has been shown recently to be an effective

tool for searching videos.

The system is based on state-of-the-art image processing

and machine learning techniques. It uses SIFT, OppSIFT,

CENTRIST descriptors, BoVW and Residual Vector aggrega-

tion, spatial pyramids and classification based on one-vs-rest

SVM’s.

The system has been evaluated on the large-scale TRECVID

2012 SIN task dataset, which contains more than 400k training

shots and more than 100k testing shots.

In our team’s first participation in the TRECVID workshop,

the achieved performance was very satisfactory: our team

ranked 6th in the Semantic Indexing light experiment .

REFERENCES

[1] “Youtube statistics,” Oct. 2012. [Online]. Available: http://www.
youtube.com/t/press statistics

[2] C. G. M. Snoek and M. Worring, “Concept-Based Video Retrieval,”
Foundations and Trends in Information Retrieval, vol. 2, no. 4, pp. 215–
322, 2007.

[3] A. Hauptmann, R. Yan, W.-H. Lin, M. Christel, and H. Wactlar, “Can
high-level concepts fill the semantic gap in video retrieval? A case study
with broadcast news,” IEEE Transactions on Multimedia, vol. 9, no. 5,
pp. 958–966, 2007.

[4] M. Naphade, J. Smith, C. S. Tesic, Jelena, W. Hsu, L. Kennedy,
A. Hauptmann, and J. Curtis, “Large-scale concept ontology for multi-
media,” IEEE Multimedia, vol. 13, no. 3, pp. 86–91, 2006.

[5] C. G. Snoek and M. Worring, “Multimodal Video Indexing: A Review of
the State-of-the-art,” Multimedia Tools and Applications, vol. 25, no. 1,
pp. 5–35, Jan. 2005.

[6] G. Qi, X. Hua, Y. Rui, J. Tang, T. Mei, and H.-J. Zhang, “Correlative
multi-label video annotation,” in ACM Multimedia, 2007.

[7] B. Delezoide, F. Precioso, P. Gosselin, M. Redi, B. Merialdo, L. Granjon,
D. Pellerin, M. Rombaut, H. Jegou, R. Vieux, B. Mansecal, J. Benois-
Pineau, S. Ayache, B. Safadi, F. Thollard, G. Quenot, H. Bredin,
M. Cord, A. Benoit, P. Lambert, T. Strat, J. Razik, S. Paris, and
H. Glotin, “Irim at TRECVID 2011: Semantic indexing and instance
search,” in TRECVID Workshop, 2011.

[8] C. Snoek, K. van de Sande, X. Li, M. Mazloom, Y.-G. Jiang, D. C.
Koelma, and A. W. M. Smeulders, “The MediaMill TRECVID 2011
Semantic Video Search Engine,” in TRECVID Workshop, 2011.

[9] N. Inoue, Y. Kamishima, T. Wada, K. Shinoda, and S. Sato, “TokyoTech
+ Canon at TRECVID 2011,” in TRECVID Workshop, 2011.

[10] T. Tuytelaars and K. Mikolajczyk, “Local Invariant Feature Detectors:
A Survey,” Foundations and Trends in Computer Graphics and Vision,
vol. 3, no. 3, pp. 177–280, 2007.

[11] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-of-
features image classification,” in European Conference of Computer

Vision (ECCV), 2006, pp. 490–503.

[12] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, Nov. 2004.

[13] K. E. A. van de Sande, T. Gevers, and C. G. M. Snoek, “Evaluating
color descriptors for object and scene recognition.” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1582–
96, Sep. 2010.

[14] J. Wu and J. M. Rehg, “CENTRIST: A Visual Descriptor for Scene
Categorization.” IEEE Transactions on Pattern Analysis and Machine

Intelligence, pp. 1–14, Dec. 2010.
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