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Abstract: We consider a state-dependent single server queue with orbit. This is a versatile model for the
study of service systems, where the server needs a non-negligible time to retrieve waiting customers every
time he completes a service. This situation arises typically when the customers are not physically present
at a system, but they have a remote access to it, as in a call center station, a communication node etc. We
introduce a probabilistic approach for the performance evaluation of this queueing system, that we refer to
as the Queueing and Markov Chain Decomposition approach. Moreover, we discuss the applicability of this
approach for the performance evaluation of other non-Markovian service systems with state dependencies.

Keywords: state-dependent queueing system; orbit; retrial queue; non-negligible retrieval time; steady-
state distribution; conditional sojourn time distributions; variable arrival rate; variable service speed; Queue-
ing and Markov Chain Decomposition

1 Introduction

In many service systems, customers submit their petitions for service remotely. Then, they can begin their
service immediately if they find an idle server, otherwise their petitions are queued and customers are
assumed to wait at a virtual queue that is referred to as the orbit. Upon finishing a service, the server turns
his attention to the orbit and looks for a customer to begin a new service. However, this seeking time is
usually non-negligible, since the retrieval of a customer from the orbit may require some preliminary steps
(e.g., to find an associated file, to call back the customer etc.). Then, if a new customer arrives during the
seeking time, the retrieval process is abandoned and the server begins to serve the newly arrived customer.
This situation occurs in a variety of service contexts: For example, consider customers that do not find an
idle server at a call center, who may leave their contact details and wait to be called back later. Similarly,
consider a person that answers emails for a commercial website. Such a person begins immediately to answer
a newly arrived email if he is idle, otherwise he needs some time to retrieve a waiting email from his list.
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Moreover, a node in certain communication networks begins immediately the transmission of a new message
if it is idle, otherwise it needs some additional time to retrieve stored messages to be processed.

Our objective is to study a versatile model for the representation of such service systems, where the
retrieval of waiting customers requires a non-negligible time. Indeed, the main motivation of the proposed
model is the consideration of a framework that captures this feature. However, we notice that real service
systems with this feature have other additional characteristics. Under this point of view, our model consti-
tutes a first attempt for the study of such systems and more involved models should be developed. More
concretely, we introduce a general state-dependent queue with a general retrial/retrieval policy. The consid-
eration of the state-dependent version of this model seems particularly important mainly for four reasons.
First, in many systems the arrival rate depends on the number of jobs in the orbit. An important example
arises in the study of the strategic behavior of customers in such systems. Indeed, when the arriving cus-
tomers assume a certain joining/balking strategy, then the arrival rates become state-dependent. Therefore,
to evaluate a tagged customer’s best response against a strategy of the others, one needs to use the perfor-
mance measures of a state-dependent version of the model. Second, the consideration of state-dependencies
allows the study of dynamic control policies in a system with orbit. Third, in many applications the length
of a retrieval period depends on the number of customers in orbit. For example, in the classical retrial policy
where each job from the orbit retries independently, the retrieval time becomes smaller as the number of
customers in orbit increases. And fourth, the service distribution and speed may also depend on the number
of customers in orbit (see e.g., Abouee-Mehrizi and Baron (2016) for a similar situation in the framework of
the classical M/G/1 queue). These economic and control issues motivate us to consider the state-dependent
version of the model. We focus on its performance evaluation and derive efficient recursive schemes for
various performance descriptors.

As a specific application of our model consider load sharing in distributed systems, see e.g., Eager,
Lazowska and Zahorjan (1986) and references within. The idea behind load sharing is to smooth the load
on the processors in different stations of a network. There are many different algorithms for the application
of load sharing. Each algorithm takes two decisions: when to transfer a task from a station and how to
allocate transferred tasks among stations. It has been demonstrated in Lazowska, Zahorjan, Cheriton and
Zwaencpocl (1984) that the processor time for a task transfer (packaging, transmitting, and unpackaging) is
more instrumental than the network cost. Thus, the latter cost is often ignored in the analysis of algorithms
for load sharing.

A simple and effective transfer policy is a threshold policy, where new tasks are transferred if and only if
the number of tasks in queue is bigger than a threshold, T , when the station is at its transferring phase, and
are accepted otherwise, when the station is in its processing phase. This transfer policy can be combined
with various allocation policies, such as random allocation or allocation to the shortest queue.

Two important observations on the analysis of load sharing are as follows. First, the performance
measures of the system can be obtained from the analysis of any individual station. As Eager, Lazowska and
Zahorjan (1986) state, this analysis is accurate if all stations are identical, i.e., the network is homogeneous,
asymptotically exact when the number of stations grows, and has been shown to be quite accurate in
simulation results with 20 or more stations. Second, load balancing algorithms result in a state-dependent
arrival rate to stations. For any policy, this rate depends on at least whether the station is in its processing
or transferring phases. This rate is clearly state-dependent for allocation policies that use information on
the state space, such as allocation to the shortest queue.

In the reasonable case where each station prioritizes its own work, new arrivals during a seeking time
interrupt the seeking time and immediately get into service. Then, with the description above, our state-
dependent M/G/1 queue with orbit is an appropriate model for analyzing the performance of load sharing
algorithms, by setting the threshold T , modeling the processor task transfer time as seeking time, capturing
the state-dependent arrival rate, and allowing for generally distributed processing times that differ between
new and allocated arrivals.
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Additional applications for our approach can be found in Phung-Duc, Rogiest and Wittevrongel (2017) for
state-dependent retrial queues and Yajima and Phung-Duc (2017) for state-dependent service rate. See also
Phung-Duc (2014, 2017a, 2017b) for further discussion of motivating applications and relevant extensions.

The main contributions of the paper can be summarized as follows:

• On the modeling side, we consider a general model of a service system where the retrieval of waiting
customers requires, possibly, a non-negligible time. This system allows generally distributed service
and seeking (retrieval) times and extensive state-dependencies regarding the arrival rates and the
service and seeking time distributions.

• On the technical side, we develop an intuitive probabilistic methodology for the performance evalu-
ation of non-Markovian queueing systems with state-dependencies, that we refer to as the Queueing
and Markov Chain Decomposition (QMCD) approach. This approach is effectively applied for the
model of interest and easily yields its performance descriptors. More importantly, we discuss how
this methodology can be adapted for the study of other non-Markovian queueing systems with state-
dependencies.

The paper is structured as follows: In Section 2 we present the literature review. In Section 3, we present
the model of the state-dependent single server queue with orbit and the performance quantities of interest.
In Section 4, we present an overview of the QMCD approach in general terms and then we briefly specify
its application for the study of the model of interest. In Section 5, we apply this methodology to obtain
efficient computational schemes for various descriptors of the model. Finally, in Section 6, we conclude our
paper with some conclusions and future research directions. Proofs not in the text appear in the Appendix
that also contains some technical analytic proofs.

2 Literature review

The analysis of queues with orbit, known also as retrial queues, constitutes an important subfield of Queue-
ing Theory, since the consideration of the retrial feature enables the more accurate representation and
quantification of real service systems with finite waiting spaces. Indeed, in such systems, it is assumed that
arriving customers who do not find a free waiting position join a so-called retrial orbit and return later for
service. The literature on retrial queues is very rich, see e.g., the books of Falin and Templeton (1997) and
Artalejo and Gomez-Corral (2008) and references therein.

Most studies on retrial queueing systems assume the so-called classical retrial policy for the customers in
orbit, according to which each retrying customer conducts attempts for service independently of the other
customers, usually with exponentially distributed inter-retrial times. However, there are certain service
situations in which the intervals between the successive retrials from the orbit are independent of the
number of customers in it. Such cases occur when only the customer that is at the ‘head’ of the orbit is
allowed to conduct retrials or, more realistically, when it is the server that looks for customers from the orbit
after every service completion (see e.g., the situations of a call center with a call-back option, the email list
and the communication node in the discussion above). This retrial policy is known as the constant retrial
policy.

The constant retrial policy was introduced by Fayolle (1986) in a Markovian framework where both
service and retrial (seeking) times are exponential. Later on, Choi, Park and Pearce (1993) considered the
corresponding model where the seeking times are generally distributed, while Martin and Artalejo (1995)
considered the model where the service times are generally distributed. Finally, Gomez-Corral (1999)
considered the single server retrial queue with the constant retrial policy and general service and seeking
times. This paper presented an exhaustive analysis of this general model which includes the stability
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condition, the probability generating function of the steady-state distribution and the Laplace-Stieltjes
transforms of the waiting time, busy period and idle period distributions. Many papers have appeared since
the seminal work of Gomez-Corral (1999) that extend his analysis in systems with additional characteristics.
However, there is no generalization for the analysis of the state-dependent version of this model. One of our
objectives is to fill this gap and to provide effective computational procedures for this case.

The performance evaluation of queueing models with state-dependencies has received recently consid-
erable attention. Kerner (2008) analyzed the M/G/1 queue with state-dependent arrival rates, using an
analytic approach, based on the supplementary variable method (see Cox (1955)). The same problem
was analyzed by Economou and Manou (2015) using a probabilistic approach which we extend and clar-
ify in the present paper. Abouee-Mehrizi and Baron (2016) studied a generalization where the service
time distributions depend on the number of customers in the queue at a service beginning, in addition to
state-dependent arrival rates. Oz, Adan and Haviv (2015, 2017) and Oz (2016) considered models with
state-dependencies under a different viewpoint, using a rate balance principle. Finally, Manou, Economou
and Karaesmen (2014) considered the analysis of a clearing system with state-dependent arrival rates as a
necessary step towards the study of customer strategic behavior in a transportation station. In general, the
study of customer strategic behavior in observable queueing systems requires the consideration of models
with state-dependencies.

3 The model

We consider the following queueing system, which we refer to as the Mn/Gn/1/1 queue with orbit: There
is one server that serves customers singly, no waiting space, and customers that arrive when the server is
busy join a retrial orbit. When the server becomes free, after a service completion, he begins to retrieve
a customer from the retrial orbit according to the FCFS discipline (we assume FCFS as it is standard in
the literature, but this is not essential for our analysis). If the seeking (retrieval) time is completed before
the next arrival, the server begins to serve the oldest customer from the orbit. Otherwise, i.e., when a new
customer arrives during the seeking time, the retrieval process is interrupted and the new customer enters
service. The retrieval process begins anew the next time the server is free. We consider a general system
with state dependencies on the number of customers in service and in orbit, i.e., we allow inter-arrival,
seeking, and service times to depend on the number of customers in service and in orbit. Moreover, service
times may also depend on whether the served customer has come from the orbit or is a new arrival. This is
important, e.g., when customers from the orbit require a shorter identification process by the server.

Regarding the state-dependencies, we assume that the time till the next arrival is exponentially dis-
tributed with rate λij , whenever there are i customers in service (i = 0 or 1) and j customers in orbit
(j = 0, 1, 2, . . .). We denote a corresponding random variable by Tλij , in accordance with the notation Ts for
denoting an exponentially distributed random variable with rate s, that we will use in the paper. In other
words, customers arrive to the system according to a state-dependent Poisson process. A typical service
time of a customer from the orbit that observes j customers in the orbit upon the start of service (i.e., there
were j+1 customers in the system before his service beginning) is denoted by B0j , whereas B1j represents a
service time of a new customer that observes an idle or seeking server upon arrival and j customers in orbit.
Finally, we let Aj denote a generic seeking time that begins when there are j customers in orbit. Moreover,
we assume that the various service, seeking and inter-arrival times are independent. For any random variable
Z that appears in the paper, we denote its expectation by E[Z], its cumulative distribution function by
Z (x), its Laplace-Stieltjes transform (LST) by Z̃(s) :=

∫∞
0 e−sxdZ(x), and its probability density function

(in case that Z has a continuous distribution) by z (x).
To obtain a Markovian description of the system, we define for each time t, the random variables C(t),

Q(t), and S(t) that record, respectively, the state of the server (0 or 1), the number of customers in the
retrial orbit, and the remaining time till the next service/seeking completion. More specifically, C(t) = 1
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when the server is busy (serving) at time t, whereas C(t) = 0 when the server is idle or seeking at time t,
and S(t) records the remaining service time at time t when C(t) = 1 or the remaining seeking time at time
t when C(t) = 0. For times t such that C(t) = Q(t) = 0, the random variable S(t) is not defined.

A moment of reflection shows that the stochastic process {(C(t), Q(t), S(t)) : t ≥ 0} is a continuous time
Markov process with state space {(0, 0)} ∪ {(0, j, x) : j = 1, 2, . . . ;x ≥ 0} ∪ {(1, j, x) : j = 0, 1, . . . ;x ≥ 0}.
We are interested in the limiting behavior of this process as t → ∞, i.e., in the steady-state probabilities
pij = limt→∞ Pr[C(t) = i, Q(t) = j], for (i, j) ∈ {0, 1}×{0, 1, 2, . . .}. We will derive these probabilities using
a method we refer to as the Queueing and Markov Chain Decomposition (QMCD). The QMCD approach
is intuitive and uses simple probabilistic arguments. We assume throughout the paper that the system is
stable. The stability condition is given in Theorem 5.3. In the special case where all quantities (arrival
rates, seeking and service time distributions) become state-independent, the stability condition is given in
Theorem 5.4 and coincides with the one in Gomez-Corral (1999) (Theorem 1).

4 Overview of the QMCD approach

The QMCD approach that will be described in detail below in the framework of the present model is a
versatile technique for the performance evaluation of a variety of other non-Markovian queueing systems
with state-dependencies.

The fundamental idea of the method is that a given queueing system can be seen as a network of its
states, where a single customer (the so-called pointer) circulates in it indicating which is the actual state
of the system at each time. Then, a number of useful equations can be derived, by relating the remaining
generally distributed times (e.g., service times, inter-arrival times etc.) as the system changes states, by
equating arrival and departure rates at each subsystem and by applying Little’s law.

To be concrete, consider a queueing system represented by a continuous-time Markov chain with transi-
tion rates qij and stationary probabilities pj . Then, we can associate a network of subsystems to it, in which
a pointer circulates from state to state of the original system. By equating the arrival and the departure
rates at each subsystem j we deduce that ∑

i 6=j
piqij =

∑
i 6=j

pjqji

which is the balance equation for state j. However, the same equation can be derived by applying Little’s
law at subsystem j. Indeed, for each subsystem j, we have

E[Qj ] = ΛjE[Wj ],

where E[Qj ], Λj and E[Wj ] are, respectively, the mean number of customers, the arrival rate, and the mean
sojourn time at subsystem j. Since there is only one customer (the pointer) that circulates in the network,
we have that Qj is 1 if the pointer is at subsystem j (with probability pj) and 0 if it is not, i.e., E[Qj ] = pj .
Moreover, the arrival rate at subsystem j is Λj =

∑
i 6=j piqij , whereas the sojourn time at subsystem j is

exponential with rate
∑

i 6=j qji, from which we have E[Wj ] =
(∑

i 6=j qji

)−1
. Hence, Little’s law yields

pj =
∑
i 6=j

piqij

∑
i 6=j

qji

−1

,

which is also the balance equation of state j.
In the case of a non-Markovian queueing system, the same idea applies, i.e., we can see the system as the

network of its states with the pointer circulating in it. Then, we obtain two sets of equations that involve
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the steady-state probabilities, by equating arrival and departure rates at each subsystem and by applying
Little’s law at each subsystem. However, these two sets of equations are not identical in the non-Markovian
case. Moreover, they involve two sets of new quantities: transition rates due to generally distributed time
completions and the remaining generally distributed times when a subsystem is entered. We then need an
additional set of equations to have sufficient number of equations to derive all three types of quantities. This
last set of equations is derived by considering how the remaining generally distributed times evolve as the
system changes states.

Thus, in a non-Markovian queueing system, even with state-dependencies, where only one generally
distributed time runs each instant, we can apply the QMCD approach to derive sufficient number of equations
for the steady-state probabilities, the transition rates due to generally distributed time completions and the
LSTs of the remaining generally distributed times when a state is entered.

The application of QMCD in this paper and the discussion above focus on the case where each subsystem
is of a single state. Nevertheless, QMCD is also applicable when the decomposition is to subsystems which
correspond to sets of states. For example, see its application in Wang, Baron and Scheller-Wolf (2015) for a
multi-server queue, and in Abouee-Mehrizi, Baron and Berman (2014) for a queueing network. Overall the
QMCD approach includes the following four phases:

QMCD - Phase A: Decompose the system to subsystems. This phase reduces the complexity of
the analysis from a combined system to smaller, simpler subsystems.

QMCD - Phase B: Tie the subsystems together – transitions among subsystems and other
effects. It is instrumental to consider the effects of subsystems on each other before solving them.
Such effects may modify the subsystems and therefore should be carefully captured in their analysis. An
important premise of QMCD is that only the average effects among the subsystems should be captured.
That is, QMCD analyzes subsystems with the same steady state distribution as the corresponding part
of the system, acknowledging that the subsystems differ than the system in their sample paths.

QMCD - Phase C: Solve each subsystem. Solving the modified subsystems can often be done using
known queueing approaches. An important part of this solution is to characterize the average time
spent in each subsystem.

QMCD - Phase D: Use the normalization equation. The normalization of the solution is the last
step going from the steady-states of the modified subsystems to the steady-state of the entire system.
This step is tied to the stability condition of the entire system.

In the case where each subsystem is of a single state the phase B of the QMCD is divided to two steps.
Then, the QMCD requires the completion of 5 steps (1 step for each of the phases A, C and D, and 2 steps
for phase B).

To be concrete, we now describe these steps in the framework of our model. First, note that there are
three fundamental quantities that are involved in the QMCD approach:

• the steady-state probabilities pij ,

• the steady-state rates µij of service/seeking time completions per time unit that initiated from state
(C(t), Q(t)) = (i, j) (note that these are unconditional rates, i.e., rates of certain transitions per time
unit, whereas λij are conditional rates, i.e., rates of transitions per unit time that the pointer is in
subsystem (i, j)),

• the random variables Sij that represent the limiting conditional distribution of S(t) given that (C(t), Q(t)) =
(i, j), for (i, j) 6= (0, 0). That is, S1j and S0j represent, respectively, the conditional remaining service
and seeking times given that there are j customers in orbit. We let S̃ij(s) denote their LSTs.

6



Step 1 of the QMCD approach consists in decomposing the original system into infinitely many subsys-
tems, one for each single state of (C(t), Q(t)), i.e., instead of the original system, we consider a queueing
network (where the nodes-subsystems correspond to the various states) and there is a single customer - the
so-called pointer - that circulates in it. When the pointer is at a given subsystem, the original system is
found in the corresponding state. Having this consideration in mind, the above quantities of interest acquire
new meanings for each state (i, j) of (C(t), Q(t)):

• The random variable Sij is the remaining customer service/seeking time, when the pointer is at
subsystem (i, j).

• The probability pij is the long-run fraction of time that the pointer is at subsystem (i, j).

• The rate µij is the rate of customer service/seeking time completions that force the pointer to leave
subsystem (i, j), per time unit.

• The rate λijpij is the rate of customer arrivals, when the pointer is at subsystem (i, j).

In step 2 of the QMCD approach, we relate the LSTs of the random variables Sij . In step 3, we equate
the in and out rates at each subsystem (i, j) and obtain equations that involve the probabilities pij and
the rates µij . In step 4, we apply Little’s law at each subsystem. Thus, we obtain the necessary number
of equations to compute quantities of interest up to a multiplicative constant. This constant is determined
by the normalization equation that requires the sum of the probabilities of the system being in the various
states to be equal to 1. This constitutes the final step of the QMCD approach, which also gives the stability
condition of the system.

We note that QMCD can be useful in studying queueing networks as well. For example, the consideration
of each of the nodes/subnetworks in a tandem queueing network as a subsystem and a similar treatment
using a pointer can facilitate its analysis. Indeed, one can think of the solution approach for the multi-echelon
inventory system in Abouee-Mehrizi, Baron and Berman (2014), and the solution of unidirectional quasi-
birth-death processees in Doroudi, Fralix and Harchol-Balter (2015) as applications of QMCD to queueing
networks. Of course, other ideas of queueing decomposition for the approximate analysis of non product
form networks have been developed extensively in the literature. Reiser and Kobayashi (1974) presented
a key method that has subsequently been used by many authors. Its application to manufacturing was
pursued by Bitran and Tirupati (1988) and Caldentey (2001).

Similarly, for queueing systems with priorities, the overall service time of customers with other priorities
can be seen as the single generally distributed time at each instant and thus analysis of such systems using
QMCD seems also beneficial. Indeed, one can think of the solution approach for the M/M/c queues with
priorities in Wang, Baron and Scheller Wolf (2015) as an application of QMCD to queues with priorities.

5 Applying the QMCD approach

5.1 QMCD - Step 1: Decompose the system in subsystems

In this step, as explained above, we decompose the original system into subsystems. This is done by
associating with each state of the original system a node (subsystem) of a closed queueing network with
one customer. This customer is referred to as the pointer and circulates from subsystem to subsystem. His
position at any given time shows the state of the original system.
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5.2 QMCD - Step 2: Relate the remaining generally distributed times as the system
evolves

In this step we derive recursive equations for the LSTs and the mean values of the random variables Sij .
First, we note that the rate with which service starts when there are j customers in orbit, i.e., when the
pointer passes into subsystem (1, j), is

ν1j := µ0,j+1 + λ0jp0j . (5.1)

The first term is the seeking completion rate that leads the original system from state (0, j + 1) to state
(1, j). After such a transition, a service of a customer from the orbit starts. This customer observes j
customers in the orbit upon his service beginning. Thus, his service time is distributed as B0j . The second
term is the customers’ arrival rate that leads the original system from (0, j) to (1, j). After this transition
a service of a new customer starts. This customer observed an idle (if j = 0) or a seeking (if j > 0) server
and j customers in the orbit upon arrival. Thus, his service time is distributed as B1j . Then, µ0,j+1/ν1j

is the probability that a service time that started with j customers in the orbit of the original system is
distributed as B0j and λ0jp0j/ν1j is the probability that this service time is distributed as B1j . Therefore,
a service time that started with j customers in the orbit has the representation

Bj
d
=

{
B0j with probability

µ0,j+1

ν1j

B1j with probability
λ0jp0j
ν1j

,
(5.2)

i.e., Bj is a mixture of B0j and B1j and its LST, B̃j (s), is given by

B̃j (s) =
1

ν1j

(
µ0,j+1B̃0j (s) + λ0jp0jB̃1j (s)

)
. (5.3)

Now, recall that Sij stands for a random variable with the limiting conditional distribution of S (t) given
that the pointer is at subsystem (i, j). Since customers arrive according to a Poisson process with rate λij as
long as the pointer is at the subsystem (i, j), we can use the conditional Poisson Arrivals See Time Averages
(PASTA) property (see van Doorn and Regterschot (1988), Theorem 1). We conclude that Sij is identically
distributed with the remaining service/seeking time observed by arriving customers that find the original
system at state (i, j).

Let aj be the conditional probability that an arriving customer is the first during the ongoing service
time, given that the state after his arrival is (1, j). Using aj , we are able to state the following distributional
relationships for the random variables Sij .

So far, we have introduced all the parameters involved in our analysis. Table 1 summarizes the system
parameters and their definitions.

Proposition 5.1 (Relating the conditional seeking and service times) Given aj we have

S0j
d
= (Aj − Tλ0j |Aj ≥ Tλ0j ), j ≥ 1, (5.4)

S10
d
= (B0 − Tλ10 |B0 ≥ Tλ10), (5.5)

S1j
d
=

{
(Bj − Tλ1j |Bj ≥ Tλ1j ) with probability aj
(S1,j−1 − Tλ1j |S1,j−1 ≥ Tλ1j ) with probability 1− aj ,

j ≥ 1. (5.6)

Proof. Consider a tagged customer that arrives at the original system and his arrival corresponds to a
transition from state (0, j) to (1, j), for some j ≥ 1. Then, this customer interrupted the ongoing seeking
time and no other arrivals had occurred during this seeking time. Therefore, the arrival of the tagged
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λij arrival rate, when there are i customers in service and j customers in orbit

pij steady-state probability that there are i customers in service and j customers in orbit

Ts exponentially distributed random variable with rate s

B0j service time of a customer from the orbit that observes j customers in the orbit upon
the start of service

B1j service time of a new customer that observes an idle or seeking server upon arrival and
j customers in orbit

Aj seeking time that begins when there are j customers in orbit

S0j remaining seeking time, when there are j customers in the orbit

S1j remaining service time, when there are j customers in the orbit

µ0j rate of seeking time completions, when there are j customers in the orbit

µ1j rate of service time completions, when there are j customers in the orbit

aj the conditional probability that an arriving customer is the first during the ongoing
service time, given that the state after his arrival is (1, j).

Table 1: Main quantities of the model

customer is the first event of a Poisson process with rate λ0j during a seeking time Aj and the remaining
seeking time at the arrival instant is distributed as Aj − Tλ0j . Of course, the existence of such a customer
requires that Aj ≥ Tλ0j and we obtain (5.4).

The proof of (5.5) that refers to a tagged customer that arrives at the system and his arrival corresponds
to a transition from (1, 0) to (1, 1) is similar after replacing Aj by B0.

Finally, consider a tagged customer that arrives at the original system and his arrival corresponds to a
transition from (1, j) to (1, j + 1), for some j ≥ 1. There are two cases for such a transition. Either it is the
first arrival during the ongoing service time, leading to the first branch of (5.6) (similarly to the justification
of (5.5)), or it is not the first during the ongoing service time. In that case, the arrival time of the tagged
customer is the first event of a Poisson process with rate λ1j during the remaining service time S1,j−1 of the
previous customer who arrived at state (1, j − 1). This argument yields the second branch of (5.6). �

Now, we can translate (5.4)-(5.6) in terms of LSTs, using the following Lemma 5.1 that can be easily
proved by direct calculations (for a proof see Lemma 3.3 in Economou and Manou (2015)).

Lemma 5.1 (LST of a residual time) Let X be a non-negative generally distributed random variable with
LST F̃ (s) and Tλ an exponential random variable with rate λ, independent of X. Let H̃(s) denote the
conditional LST of X − Tλ given that X ≥ Tλ, i.e., H̃(s) = E[e−s(X−Tλ)|X ≥ Tλ]. Then, for s 6= λ,

H̃(s) =
λ

s− λ
· F̃ (λ)− F̃ (s)

1− F̃ (λ)
. (5.7)

Therefore, Proposition 5.1, in light of (5.7), yields Corollary 5.1.
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Corollary 5.1 The LSTs S̃ij(s) satisfy the 1st QMCD system of equations:

S̃0j(s) =
λ0j

s− λ0j
· Ãj(λ0j)− Ãj(s)

1− Ãj(λ0j)
, j ≥ 1, (5.8)

S̃10(s) =
λ10

s− λ10
· B̃0(λ10)− B̃0(s)

1− B̃0(λ10)
, (5.9)

S̃1j(s) =
λ1j

s− λ1j

(
aj
B̃j(λ1j)− B̃j(s)

1− B̃j(λ1j)
+ (1− aj)

S̃1,j−1(λ1j)− S̃1,j−1(s)

1− S̃1,j−1(λ1j)

)
, j ≥ 1. (5.10)

We can calculate the expectations of Sij from their LSTs. We have E[Sij ] = −S̃′ij(0). Therefore,

E [S0j ] =

 λ0j

(s− λ0j)
2 ·

Ãj(λ0j)− Ãj(s)
1− Ãj(λ0j)

+
λ0j

s− λ0j
·

dÃj(s)
ds

1− Ãj(λ0j)

∣∣∣∣∣∣
s=0

=

(
1

λ0j
· Ãj(λ0j)− 1

1− Ãj(λ0j)
+

E [Aj ]

1− Ãj(λ0j)

)

=
E [Aj ]

1− Ãj(λ0j)
− 1

λ0j
, j ≥ 1 (5.11)

and similarly

E [S10] =
E [B0]

1− B̃0(λ10)
− 1

λ10
, (5.12)

E [S1j ] = aj
E [Bj ]

1− B̃j(λ1j)
+ (1− aj)

E [S1,j−1]

1− S̃1,j−1(λ1j)
− 1

λ1j
, j ≥ 1. (5.13)

Now, in Proposition 5.2, we proceed to the computation of aj .

Proposition 5.2 (Probability of an arrival to be the first during a service time) The conditional probability
aj that an arriving customer is the first during an ongoing service time, given that he finds the state
(C(t), Q(t)) = (1, j) upon arrival, is

aj =
ν1j(1− B̃j(λ1j))

λ1jp1j
, (5.14)

where ν1j is defined in (5.1).

Proof. Because of the regenerative nature of the original system the probability aj can be interpreted as
the long-run rate of customers that see state (C(t), Q(t)) = (1, j) upon arrival and who are the first in the
ongoing service time (excluding the customer that initiated the service), denoted by bj , over the long-run
rate of customers that see state (C(t), Q(t)) = (1, j) upon arrival, denoted by cj :

aj =
bj
cj
. (5.15)

Using the interpretation of the quantities pij , λijpij , µ0j and µ1j in Section 4, we have that

cj = λ1jp1j . (5.16)

To compute bj , note that each tagged arriving customer that sees state (C(t), Q(t)) = (1, j) upon arrival and
who is the first in the ongoing service time is in one-to-one correspondence with a service time that before
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its start either (i) the state was (C(t), Q(t)) = (0, j + 1) and a seeking process was terminated or (ii) the
state was (C(t), Q(t)) = (0, j) and a new arrival occurred. In other words, each such arriving customer is in
one-to-one correspondence with a service beginning with j customers in orbit. In addition, this service time
should exceed the arrival time of the tagged customer. Hence, the arrival rate of customers that see state
(C(t), Q(t)) = (1, j) upon arrival and who are the first in the ongoing service time is equal to the product of
the rate of service beginnings at state (C(t), Q(t)) = (1, j) times the conditional probability that at least one
customer arrived during a service time given that the service time started from state (C(t), Q(t)) = (1, j).

Recalling that ν1j denotes the steady-state rate of service beginnings at state (C(t), Q(t)) = (1, j) and
that the conditional probability that at least one customer arrived during a service time given that the
service time started from state (C(t), Q(t)) = (1, j) is simply Pr[Tλ1j < Bj ] = 1− B̃j(λ1j), we obtain that

bj = ν1j(1− B̃j(λ1j)). (5.17)

Combining (5.15), (5.16) and (5.17) yields (5.14). �

Substituting aj from Proposition 5.2 into (5.8)-(5.10) and (5.11)-(5.13) yields recursive schemes for the
LSTs and the mean values of the random variables Sij .

5.3 QMCD - Step 3: Equate in and out rates for each subsystem

In this step we relate the probabilities pij with the rates µij , by equating the ‘in’ and the ‘out’ rates at each
subsystem (i, j), i.e., the rates in which the pointer enters and leaves a given subsystem.

Proposition 5.3 (Equating ‘in’ and ‘out’ rates at the subsystems) We have the formulas:

µ10 = λ00p00, (5.18)

µ1j = λ0jp0j + µ0j , j ≥ 1, (5.19)

λ00p00 + µ01 = µ10 + λ10p10, (5.20)

λ0jp0j + λ1,j−1p1,j−1 + µ0,j+1 = µ1j + λ1jp1j , j ≥ 1 (5.21)

that correspond to subsystems (0, 0), (0, j), with j ≥ 1, (1, 0), and (1, j), with j ≥ 1, respectively.

Proof. The ‘in’ rate at subsystem (0, 0) is µ10, since an entrance of the pointer at (0, 0) happens only
when a service completion occurs that changes the state of the original system from (1, 0) to (0, 0). The
‘out’ rate at subsystem (0, 0) is λ00p00 since a departure of the pointer from (0, 0) happens only when an
arrival occurs that changes the state of the original system from (0, 0) to (1, 0). By equating these two rates
we obtain (5.18).

Similarly, for a subsystem (0, j) with j ≥ 1, we have that the ‘in’ rate is µ1j , whereas the ‘out’ rate is
λ0jp0j + µ0j , since a departure of the pointer from subsystem (0, j) occurs either because of new customer
arrival or the completion of a seeking time, leading to (5.19). Similarly, for subsystem (1, 0), we have that
the ‘in’ rate is λ00p00 + µ01, whereas the ‘out’ rate is µ10 + λ10p10. Equating these rates yields (5.20).

Finally, the ‘in’ rate for a subsystem (1, j), with j ≥ 1, is λ0jp0j +λ1,j−1p1,j−1 +µ0,j+1, whereas the ‘out’
rate is µ1j + λ1jp1j . Again, equating the two rates yields (5.21). �

Note that (5.18)-(5.21) can be simplified considerably to get:

Corollary 5.2 The steady-state probabilities pij and rates µij satisfy the 2nd QMCD system of equations:

λ00p00 = µ10, (5.22)

λ0jp0j = µ1j − µ0j , j ≥ 1, (5.23)

λ1jp1j = µ0,j+1, j ≥ 0. (5.24)
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This system can be also derived by equating upcrossing and downcrossing rates for each possible number
j of customers in the original system and its orbit. For example, let Σ1 = {(i, k) : i = 0, 1 and k ≤ j} and
Σ2 = {(i, k) : i = 0, 1 and k > j}. The pointer can move from Σ1 to Σ2 only if an arrival that finds the
system at (1, j) occurs, i.e., at rate λ1jp1j . Moreover, the pointer can move from Σ2 to Σ1 only if a seeking
time completion occurs with j + 1 customers in the orbit, i.e., at rate µ0,j+1. Equating the rates, we obtain
(5.24). However, we preferred to expose here the more general idea of equating the ‘in’ and ‘out’ rates of
the corresponding subsystems, since it can be applied in other models as well. The 2nd QMCD system can
be used to express the steady-state probabilities pij in terms of the rates µij . Moreover, an implication of
(5.24) is that ν1j from (5.1) becomes

ν1j = µ0,j+1 + λ0jp0j = λ1jp1j + λ0jp0j . (5.25)

5.4 QMCD - Step 4: Apply Little’s law for each subsystem

In this step we apply Little’s law at each subsystem. For deriving the mean sojourn time of the pointer at
each subsystem, we will need an auxiliary result that is presented in Lemma 5.2.

Lemma 5.2 (Expected value of the minimum of an exponential and a general random variable) Let X be a
non-negative generally distributed random variable with LST F̃ (s) and Tλ an exponential random variable
with rate λ, independent of X. Then

E[min(X,Tλ)] =
1− F̃ (λ)

λ
. (5.26)

Proposition 5.4 (Applying Little’s law at each subsystem) The steady-state probabilities satisfy the follow-
ing formulas:

p00 =
µ10

λ00
, (5.27)

p0j =
µ1j(1− Ãj(λ0j))

λ0j
, j ≥ 1, (5.28)

p10 =
λ00p00(1− B̃10(λ10)) + µ01(1− B̃00(λ10))

λ10
, (5.29)

p1j =
λ0jp0j(1− B̃1j(λ1j)) + λ1,j−1p1,j−1(1− S̃1,j−1(λ1j)) + µ0,j+1(1− B̃0j(λ1j))

λ1j
, j ≥ 1. (5.30)

Proof. Applying Little’s law at each subsystem (i, j) yields

E[Qij ] = ΛijE[Wij ], i = 0, 1, j ≥ 0, (5.31)

where E[Qij ] is the mean number of customers in subsystem (i, j), Λij is the arrival rate at subsystem
(i, j) and E[Wij ] the mean sojourn time at subsystem (i, j). Since, there is only one customer (the pointer)
that circulates in the network of the subsystems, we have that Qij is 1 with probability pij and 0 with the
complementary probability 1− pij . Therefore,

E[Qij ] = pij , i = 0, 1, j ≥ 0. (5.32)

For a given subsystem (i, j), the arrival rate Λij is the ‘in’ rate at this subsystem. The left-hand sides
of (5.18)-(5.21) give

Λ0j = µ1j , j ≥ 0, (5.33)

Λ10 = λ00p00 + µ01, (5.34)

Λ1j = λ0jp0j + λ1,j−1p1,j−1 + µ0,j+1, j ≥ 1. (5.35)
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We now derive expressions for the mean sojourn times E[Wij ]. When the pointer enters subsystem (0, 0),
then the system is empty, so the pointer will leave this subsystem at the time of the first customer arrival
that happens after an exponential time with rate λ00. Therefore

E[W00] =
1

λ00
. (5.36)

When the pointer enters a subsystem (0, j) with j ≥ 1, then a seeking time starts anew, so the pointer
will leave the subsystem when the seeking time ends or a new customer arrives, whatever occurs first. The
seeking time is distributed as Aj , with distribution Aj(x), whereas the time till the next new customer’s
arrival (if nothing else happens) is exponentially distributed with rate λ0j . Moreover, these two times are
independent. Using (5.26), we conclude that

E[W0j ] = E[min(Aj , Tλ0j )] =
1− Ãj(λ0j)

λ0j
, j ≥ 1. (5.37)

Finally, the pointer may enter a subsystem (1, j) with j ≥ 1, either from the subsystem (0, j) due to a new
arrival, or from the subsystem (1, j − 1) due to a new arrival, or from the subsystem (0, j + 1) due to a

seeking time completion. The corresponding probabilities are
λ0jp0j

Λ1j
,
λ1,j−1p1,j−1

Λ1j
and

µ0,j+1

Λ1j
.

Conditioning on the arrival to subsystem (1, j) from each of the subsystems the analysis is similar to
the one leading to (5.37). That is, there is a competition of an exponential time to next arrival with rate
λ1j with an independent new service time B1j , residual service time S1,j−1, and new service time B0j , when
arriving from subsystems (0, j), (1, j − 1) and (0, j + 1), respectively. Then, using the above probabilities
we get:

E[W1j ] =
λ0jp0j

Λ1j
· 1− B̃1j(λ1j)

λ1j
+
λ1,j−1p1,j−1

Λ1j
· 1− S̃1,j−1(λ1j)

λ1j
+
µ0,j+1

Λ1j
· 1− B̃0j(λ1j)

λ1j
, j ≥ 1. (5.38)

For j = 0, i.e., for E[W10], there are no entrances from subsystem (1,−1), i.e., no middle term in (5.38), so:

E[W10] =
λ00p00

Λ10
· 1− B̃10(λ10)

λ10
+
µ01

Λ10
· 1− B̃00(λ10)

λ10
. (5.39)

Now, Little’s law, i.e., (5.31), applied to subsystems (0, 0), (0, j), (1, 0) and (1, j), taking into account the
various expressions for E[Qij ], Λij and E[Wij ] yields (5.27)-(5.30) �

Multiplying each of (5.28)-(5.30) by the denominator of its right-hand side (RHS), separating the terms
that involve LSTs from the other terms, simplifying using (5.19)-(5.21) and taking into account (5.3), yields
Corollary 5.3.

Corollary 5.3 The steady-state probabilities pij, rates µij and LSTs S̃ij(s) satisfy the 3rd QMCD system
of equations:

µ0j = µ1jÃj(λ0j), j ≥ 1, (5.40)

µ10 = λ00p00B̃10(λ10) + µ01B̃00(λ10) = ν10B̃0(λ10), (5.41)

µ1j = λ0jp0jB̃1j(λ1j) + λ1,j−1p1,j−1S̃1,j−1(λ1j) + µ0,j+1B̃0j(λ1j)

= ν1jB̃j(λ1j) + λ1,j−1p1,j−1S̃1,j−1(λ1j), j ≥ 1. (5.42)
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5.5 QMCD - Recursive schemes

The three QMCD systems (Corollaries 5.1, 5.2 and 5.3), in combination with the formula for the probability
aj (Proposition 5.2) provide sufficient number of equations to compute all the quantities of interest S̃ij(s),
µij and pij , given that p00 is known. In practice p00 is treated as a multiplicative constant that is computed
at the end of all computations, using the normalization equation. The recursive scheme that computes the
LSTs S̃ij(s) and the rates µij is given in the following theorem.

Theorem 5.1 (Recursive scheme for the rates µij and the LSTs S̃ij(s)) Given the probability p00, the
quantities µij and S̃1j(s) can be computed by the recursive scheme

µ0,j+1 =
1− B̃1j(λ1j)

B̃0j(λ1j)
µ1j +

B̃1j(λ1j)− S̃1,j−1(λ1j)

B̃0j(λ1j)
µ0j , j ≥ 1, (5.43)

µ1,j+1 =
1

Ãj+1(λ0,j+1)
µ0,j+1, j ≥ 1, (5.44)

S̃1j(s) =
λ1j

s− λ1j

(
aj
B̃j(λ1j)− B̃j(s)

1− B̃j(λ1j)
+ (1− aj)

S̃1,j−1(λ1j)− S̃1,j−1(s)

1− S̃1,j−1(λ1j)

)
, j ≥ 1, (5.45)

where

aj =
(

1− B̃j(λ1j)
)(

1 +
µ1j − µ0j

µ0,j+1

)

=
µ0,j+1

(
1− B̃0j (λ1j)

)
+ (µ1j − µ0j)

(
1− B̃1j (λ1j)

)
µ0,j+1

, j ≥ 1, (5.46)

and initial conditions

µ10 = λ00p00, (5.47)

µ01 =
λ00(1− B̃10(λ10))

B̃00(λ10)
p00, (5.48)

µ11 =
λ00(1− B̃10(λ10))

Ã1(λ01)B̃00(λ10)
p00, (5.49)

S̃10(s) =
λ10

s− λ10
· B̃0(λ10)− B̃0(s)

1− B̃0(λ10)
. (5.50)

Moreover, we have

S̃0j (s) =
λ0j

s− λ0j
· Ãj(λ0j)− Ãj(s)

1− Ãj(λ0j)
, j ≥ 1. (5.51)

Note that the initial conditions (5.47)-(5.50) as well as (5.51) can all be calculated based upon the
problem’s primitives. Using their values, we can calculate (5.43) followed by (5.44), for j = 1. The second
line of (5.46) can now also be calculated and is used in calculating (5.45), for j = 1. And then, given the
quantities µ0,j+1, µ1,j+1, S̃1j and aj for a given j, we can follow another recursive step, using (5.43)-(5.46),
and find them for j + 1. We can now proceed to a recursive scheme for the steady state probabilities pij .
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Theorem 5.2 (Recursive scheme for the steady-state probabilities) Given p00, the steady-state probabilities
pij can be computed by the recursive scheme

p0j =
λ1,j−1

(
1− Ãj (λ0j)

)
λ0jÃj (λ0j)

p1,j−1, j ≥ 1, (5.52)

p1j =
λ0j

(
1− B̃1j (λ1j)

)
λ1jB̃0j (λ1j)

p0j +
λ1,j−1

(
1− S̃1,j−1 (λ1j)

)
λ1jB̃0j (λ1j)

p1,j−1

=
λ0j

(
1− B̃j (λ1j)

)
λ1jB̃j (λ1j)

p0j +
λ1,j−1

(
1− S̃1,j−1 (λ1j)

)
λ1jB̃j (λ1j)

p1,j−1, j ≥ 1, (5.53)

with S̃1j(s) given in (5.45) and (5.50) and the initial condition

p10 =
λ00

(
1− B̃10 (λ10)

)
λ10B̃00 (λ10)

p00 =
λ00

(
1− B̃0 (λ10)

)
λ10B̃0 (λ10)

p00. (5.54)

Next corollary provides the dependence of µij , S̃ij(s), B̃j(s), ν1j and pij on p00. This result will be used
in the following subsection to derive the stability condition and compute the quantity p00.

Corollary 5.4 The rates µij and ν1j, and the probabilities pij are linear in p00. The LSTs S̃ij(s) and B̃j(s)
are independent of p00.

5.6 QMCD - Step 5: Use the normalization equation

In this step we note that whenever the system is stable, the normalization equation holds, i.e.,

1∑
i=0

∞∑
j=0

pij = 1. (5.55)

From Corollary 5.4, we have that the probabilities pij are linear in p00. Thus, the normalization equation
enables to determine the probability p00 and derive the stability condition of the system. The results are
stated in the following theorem.

Theorem 5.3 (Stability condition and the steady-state probability p00) Let kj, lj, for j ≥ 1, and q defined
by

kj =
λ1,j−1

[(
1− B̃1j(λ1j)

)(
1− Ãj(λ0j)

)
+ Ãj(λ0j)

(
1− S̃1,j−1(λ1j)

)]
λ1jB̃0j(λ1j)Ãj(λ0j)

, j ≥ 1, (5.56)

lj =
λ1,j−1

(
1− Ãj(λ0j)

)
λ0jÃj(λ0j)

, j ≥ 1 (5.57)

and

q =
λ00

(
1− B̃10(λ10)

)
λ10B̃00(λ10)

. (5.58)

The stability condition for the system is

∞∑
j=1

(kj + lj)

j−1∏
i=1

ki <∞ (5.59)
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and, under the stability condition, the stationary probability p00 is given by

p00 =
1

1 + q + q
∑∞

j=1(kj + lj)
∏j−1
i=1 ki

. (5.60)

5.7 The state-independent case

We now consider the state-independent case, where λij = λ, Bij(x) = B(x) and Aj(x) = A(x), for all i, j.
Then, using the previous results, we can derive the stability condition of this system and the probability
generating function of the stationary distribution of the number of customers in system. Thus, we have
alternative proofs of the main results of Gomez-Corral (1999), where the state-independent case was treated
(see Theorems 1 and 2 of that paper, in particular equation (16)).

Theorem 5.4 (Stability condition and probability generating function of the steady-state number of cus-
tomers in system) The stability condition for the system in the state-independent case is

λE[B] < Ã(λ). (5.61)

Let K(z) be the generating function of the number of customers in system in steady-state. Then, under the
stability condition,

K(z) =
(Ã(λ)− λE[B])(1− z)B̃(λ(1− z))

Ã(λ)B̃(λ(1− z))(1− z)− z(1− B̃(λ(1− z))
. (5.62)

6 Conclusion and Future Work

In this paper we presented the basic steps of the QMCD approach for the study of queueing systems
with state-dependencies and generally distributed times and applied this methodology for the performance
evaluation of the state-dependent M/G/1 queue with orbit. The QMCD approach constitutes a probabilistic
alternative to the classical analytic approaches that use supplementary variables and transform methods for
the analysis of queueing systems with generally distributed inter-arrival and service times. Among its
advantages, we can list the following:

1. The QMCD approach provides a direct relationship of the conditional remaining service times of cus-
tomers that find n and n−1 customers upon arrival at the system, in terms of random variables, rather
than in terms of transforms. Therefore, it outperforms the analytic methods (e.g., the supplementary
variable method) in explanatory power, as it provides a direct link between the system dynamics and
the recursive relationships of conditional remaining service times of customers.

2. Relating the conditional remaining service times in terms of random variables enables the use of sample
path arguments for the study of stochastic comparison issues in the framework of the underlying
system.

3. The arguments of the probabilistic approach are still valid even when the underlying distributions are
not absolutely continuous. Indeed, the probabilistic approach uses relations of random variables that
are then interpreted in terms of Laplace-Stieltjes transforms. In particular the existence of probability
densities is not required for the generally distributed times, in contrast to the supplementary variables
method.

4. The probabilistic approach seems more economic, in the sense that it avoids long calculations that are
indispensable when applying the analytic methods.
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5. The QMCD approach is applicable also in settings where the supplementary variables method is not,
e.g., see its application in Wang, Baron and Scheller-Wolf (2015) for a multi-server queue, and in
Abouee-Mehrizi, Baron and Berman (2014) for a queueing network.

Apart from the methodological contribution, the study of the state-dependent M/G/1 queue with orbit
allowed us to determine the customer equilibrium behavior, regarding the joining/balking dilemma, in the
observable version of this queueing system. The results are reported in Baron, Economou and Manou (2017).

The next steps for future work regarding the methodological dimension of the paper is to characterize
which systems are solvable using the QMCD approach and how it can be extended by considering subsystems
that do not correspond to single states, e.g. in multi-server queues with priorities.
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7 Appendix: Technical analytic proofs

In the Appendix, we provide several technical analytic proofs of various results of the paper. The proofs
are quite tedious but straightforward, depending mainly on algebraic manipulations and they are given for
completeness.

Corollary 5.2 - Proof. In light of (5.18), (5.20) yields

µ01 = λ10p10. (7.1)

Now, by substituting µ1j by the RHS of (5.19) into (5.21) and canceling λ0jp0j yields λ1,j−1p1,j−1 +µ0,j+1 =
µ0j + λ1jp1j , for j ≥ 1, that can be written as

µ0,j+1 − µ0j = λ1jp1j − λ1,j−1p1,j−1, j ≥ 1. (7.2)

Summing (7.2) for consecutive values of j and canceling equal terms yields

µ0,j+1 − µ01 = λ1jp1j − λ10p10, j ≥ 1, (7.3)

which reduces to µ0,j+1 = λ1jp1j , for j ≥ 1, using (7.1). �

Lemma 5.2 - Proof. We have

E[min(X,Tλ)] =

∫ ∞
0

Pr[min(X,Tλ) > x]dx =

∫ ∞
0

Pr[X > x]e−λxdx

=

∫ ∞
0

∫ ∞
x

dF (y)e−λxdx =

∫ ∞
0

∫ y

0
e−λxdxdF (y)

=

∫ ∞
0

1− e−λy

λ
dF (y) =

1− F̃ (λ)

λ
.

�

Theorem 5.1 - Proof. We first establish the initial conditions. The initial condition (5.47) is simply
(5.22). By (5.47) and (5.41) we have that

λ00p00 = λ00p00B̃10(λ10) + µ01B̃00(λ10),

which yields (5.48). By (5.40) for j = 1 we have

µ01 = µ11Ã1(λ01),

which, in combination with (5.48), yields (5.49). Also, (5.50) is identical to (5.9).
Now, solving (5.42) for µ0,j+1 yields (5.43). Indeed, we have that

µ0,j+1 =
µ1j − λ0jp0jB̃1j(λ1j)− λ1,j−1p1,j−1S̃1,j−1(λ1j)

B̃0j(λ1j)

=
µ1j − (µ1j − µ0j)B̃1j(λ1j)− µ0jS̃1,j−1(λ1j)

B̃0j(λ1j)

= µ1j
1− B̃1j(λ1j)

B̃0j(λ1j)
+ µ0j

B̃1j(λ1j)− S̃1,j−1(λ1j)

B̃0j(λ1j)
, j ≥ 1,
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where in the second equality we used the equations (5.23) and (5.24). Now, (5.44) immediately follows from
(5.40) for j ≥ 1 and (5.45) is identical to (5.10). Substituting (5.1) into (5.14) and using (5.23) yields

aj =
µ0,j+1

(
1− B̃j(λ1j)

)
+ λ0jp0j

(
1− B̃j(λ1j)

)
λ1jp1j

=
µ0,j+1

(
1− B̃j(λ1j)

)
+ (µ1j − µ0j)

(
1− B̃j(λ1j)

)
µ0,j+1

=
(

1− B̃j(λ1j)
)(

1 +
µ1j − µ0j

µ0,j+1

)
,

which gives the first line in (5.46). The second line follows using (5.1), (5.3) and (5.23). Indeed, we have

aj =

(
1− µ0,j+1B̃0j (λ1j) + (µ1j − µ0j) B̃1j (λ1j)

µ0,j+1 + µ1j − µ0j

)
µ0,j+1 + µ1j − µ0j

µ0,j+1

=

(
µ0,j+1 + µ1j − µ0j − µ0,j+1B̃0j (λ1j)− (µ1j − µ0j) B̃1j (λ1j)

µ0,j+1 + µ1j − µ0j

)
µ0,j+1 + µ1j − µ0j

µ0,j+1

=
µ0,j+1

(
1− B̃0j (λ1j)

)
+ (µ1j − µ0j)

(
1− B̃1j (λ1j)

)
µ0,j+1

.

Finally, (5.51) is identical to (5.8). �

Theorem 5.2 - Proof. Using (5.23) and (5.24), we deduce that

µ1j = λ0jp0j + µ0j = λ0jp0j + λ1,j−1p1,j−1, j ≥ 1. (7.4)

Equations (5.24) and (5.40) yield

λ1,j−1p1,j−1 = µ0j = µ1jÃj(λ0j), j ≥ 1,

so, using (7.4), we conclude that

λ1,j−1p1,j−1 = (λ0jp0j + λ1,j−1p1,j−1) Ãj(λ0j), j ≥ 1. (7.5)

Solving for p0j yields (5.52). Next, equations (5.41) and (5.22) imply that

λ00p00 = µ01B̃00 (λ10) + λ00p00B̃10 (λ10) = ν10B̃0 (λ10) = (λ10p10 + λ00p00) B̃0 (λ10) ,

where the second and third equality follow by (5.3) and (5.25), respectively. Noting that µ01 = λ10p10 from
(5.24) and solving for p10 yields both expressions in (5.54).

Finally, substituting (7.4) and (5.24) into the left hand side and right hand side of (5.42) respectively,
we get

λ0jp0j + λ1,j−1p1,j−1 = λ1jp1jB̃0j(λ1j) + λ0jp0jB̃1j(λ1j) + λ1,j−1p1,j−1S̃1,j−1(λ1j)

= ν1jB̃j (λ1j) + λ1,j−1p1,j−1S̃1,j−1 (λ1j) , j ≥ 1. (7.6)

Rearranging terms in the first equality yields

λ1jp1jB̃0j(λ1j) = λ0jp0j

(
1− B̃1j (λ1j)

)
+ λ1,j−1p1,j−1

(
1− S̃1,j−1 (λ1j)

)
, j ≥ 1.
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Solving for p1j yields the first line in (5.53). Substituting (5.25) in the second line of (7.6) implies that

λ0jp0j + λ1,j−1p1,j−1 = (λ1jp1j + λ0jp0j) B̃j (λ1j) + λj−1p1,j−1S̃1,j−1 (λ1j) , j ≥ 1.

Solving for p1j yields the second line in (5.53). �

Corollary 5.4 - Proof. We are going to prove the result by induction. First, note that (5.47)-(5.49) imply
that µ10, µ01 and µ11 are linear in p00. Also, (5.51) shows that LSTs S̃0j(s) are independent of p00, for
j ≥ 1. Since µ01 is linear in p00, (5.1) for j = 1 implies that ν10 is linear in p00. Moreover, since ν10 and µ01

are linear in p00, (5.3) implies that B̃0(s) is independent of p00 and consequently S̃10(s) is independent of
p00. From formulas (5.52) for j = 1 and (5.54), we have that p01 and p10 are linear in p00.
We make the induction hypothesis: Assume that the rates µ01, µ02, . . . , µ0j , the rates µ10, µ11, . . . , µ1j , the
rates ν10, ν11, . . . , ν1,j−1, the probabilities p10, p11, . . . , p1,j−1, and the probabilities p01, p02, . . . , p0j are
linear in p00. Moreover, assume that the LSTs B̃0(s), B̃1(s), . . . , B̃j−1(s) and S̃10(s), S̃11(s), . . . , S̃1,j−1(s)
are independent of p00.
We will prove the following: (i) µ0,j+1 is linear in p00, (ii) µ1,j+1 is linear in p00, (iii) ν1j is linear in p00, (iv)
B̃j(s) is independent of p00, (v) S̃1j(s) is independent of p00, (vi) p1j is linear in p00 and (vii) p0,j+1 is linear
in p00.
(i) Since µ0j and µ1j are linear in p00 and S̃1,j−1(s) is independent of p00, (5.43) implies that µ0,j+1 is linear
in p00.
(ii) Using that µ0,j+1 is linear in p00, (5.44) gives that µ1,j+1 is linear in p00.
(iii) Since µ0,j+1 and p0j are linear in p00, (5.1) implies that ν1j is linear in p00.
(iv) Since µ0,j+1, p0j and ν1j are linear in p00, (5.3) implies that B̃j(s) is independent of p00.
(v) Using that µ1j , µ0j , and µ0,j+1 are linear in p00, (5.46) gives that aj is independent of p00. Then, using
that aj , S̃1,j−1(s) and B̃j(s) are independent of p00, (5.45) implies that S̃1j(s) is independent of p00.
(vi) Since p0j and p1,j−1 are linear in p00 and S̃1,j−1(s) is independent of p00, (5.53) shows that p1j is linear
in p00.
(vii) (5.52), using that p1j is linear in p00, yields that p0,j+1 is linear in p00. �

Theorem 5.3 - Proof. Using (5.53) in combination with (5.52) gives

p1j =
λ1,j−1

[(
1− B̃1j(λ1j)

)(
1− Ãj(λ0j)

)
+ Ãj(λ0j)

(
1− S̃1,j−1(λ1j)

)]
λ1jB̃0j(λ1j)Ãj(λ0j)

p1,j−1. (7.7)

Thus,
p1j = kjp1,j−1, j ≥ 1. (7.8)

Also, (5.52) and (5.54) can be written as

p0j = ljp1,j−1, j ≥ 1 (7.9)

and
p10 = qp00, (7.10)

respectively. Then,

p0j + p1j
(7.8),(7.9)

= (kj + lj)p1,j−1
(7.8)
= (kj + lj)

j−1∏
i=1

kip10
(7.10)

= q(kj + lj)

j−1∏
i=1

kip00, j ≥ 1. (7.11)
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Normalization equation yields

∞∑
j=0

(p0j + p1j) = 1

⇒ p00 + p10 +
∞∑
j=1

(p0j + p1j) = 1

(7.10),(7.11)⇒ p00 + qp00 +
∞∑
j=1

q(kj + lj)

j−1∏
i=1

kip00 = 1

⇒

1 + q + q
∞∑
j=1

(kj + lj)

j−1∏
i=1

ki

 p00 = 1.

Thus, the stability condition is given by (5.59) and p00 is given by (5.60). �

Theorem 5.4 - Proof. Let P̃ij(s) = pijS̃ij(s) be the Laplace transform of the steady state density

pij(r) = lim
t→∞

lim
dr→0+

Pr[C(t) = i, Q(t) = j, S(t) ∈ (r, r + dr]]

dr
,

i.e.,

P̃ij(s) =

∫ ∞
0

e−srpij(r)dr.

Multiplying (5.8)-(5.10) with the corresponding pijs yields the following equations for P̃ij(s):

P̃0j(s) =
1

s− λ

(
λp0jÃ(λ)

1− Ã(λ)
− λp0j

1− Ã(λ)
Ã(s)

)
, j ≥ 1, (7.12)

P̃10(s) =
1

s− λ

(
λp10B̃(λ)

1− B̃(λ)
− λp10

1− B̃(λ)
B̃(s)

)
, (7.13)

P̃1j(s) =
1

s− λ

(
λp1jajB̃(λ)

1− B̃(λ)
+
λp1j(1− aj)S̃1,j−1(λ)

1− S̃1,j−1(λ)

− λp1jaj

1− B̃(λ)
B̃(s)− λp1j(1− aj)

p1,j−1(1− S̃1,j−1(λ))
P̃1,j−1(s)

)
, j ≥ 1. (7.14)

We simplify the coefficients appearing in these equations, using the formulas (5.22)-(5.24) and (5.40)-(5.42)
of the 2nd and 3rd QMCD system. We have that

ν1j = µ0,j+1 + λp0j = λp1j + λp0j , j ≥ 1, (7.15)

aj =
ν1j(1− B̃(λ))

λp1j
, j ≥ 1, (7.16)

1− aj =
λp1,j−1(1− S̃1,j−1(s))

λp1j
, j ≥ 1, (7.17)
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so we can easily see (using (5.14), (5.22)-(5.24) and (5.40)-(5.42)) that

λp0jÃ(λ)

1− Ã(λ)
= µ0j , j ≥ 1, (7.18)

λp0j

1− Ã(λ)
= µ1j , j ≥ 1, (7.19)

λp10B̃(λ)

1− B̃(λ)
= µ10, (7.20)

λp10

1− B̃(λ)
= ν10, (7.21)

λp1jaj

1− B̃(λ)
= ν1j , j ≥ 1, (7.22)

λp1j(1− aj)
p1,j−1(1− S̃1,j−1(λ))

= λ, j ≥ 1 (7.23)

and

λp1jajB̃(λ)

1− B̃(λ)
+
λp1j(1− aj)S̃1,j−1(λ)

1− S̃1,j−1(λ)
= µ1j , j ≥ 1. (7.24)

Substituting (7.18)-(7.24) in (7.12)-(7.14) yields

P̃0j(s) =
1

s− λ

(
µ0j − µ1jÃ(s)

)
, j ≥ 1, (7.25)

P̃10(s) =
1

s− λ

(
µ10 − ν10B̃(s)

)
, (7.26)

P̃1j(s) =
1

s− λ

(
µ1j − ν1jB̃(s)− λP̃1,j−1(s)

)
j ≥ 1. (7.27)

We now apply a generating function approach to determine the equilibrium distribution of the number of
customers in the system. To this end, we introduce the generating functions

P̃0(s, z) =

∞∑
j=1

P̃0j(s)z
j , P̃1(s, z) =

∞∑
j=0

P̃1j(s)z
j , (7.28)

M̃0(z) =

∞∑
j=1

µ0j , M̃1(z) =

∞∑
j=0

µ1j . (7.29)

Multiplying (7.25) by (s− λ)zj , and summing for j ≥ 1 yields

(λ− s)P̃0(s, z) = (M̃1(z)− µ10)Ã(s)− M̃0(z). (7.30)

Similarly, multiplying (7.27) by (s− λ)zj , summing for j ≥ 1, and summing also (7.26) yields

(λ− s)P̃1(s, z) =

∞∑
j=0

(µ0,j+1 + λp0j)z
jB̃(s) + λzP̃1(s, z)− M̃1(z). (7.31)

Note, however, that
∞∑
j=0

µ0,j+1z
j =

M̃0(z)

z
,

∞∑
j=0

λp0jz
j = λp00 + λ

∞∑
j=1

P̃0j(0)zj = λp00 + λP̃0(0, z),

23



so (7.31) assumes the form

(λ− s)P̃1(s, z) =
1

z
M̃0(z)B̃(s) + λp00B̃(s) + λP̃0(0, z)B̃(s) + λzP̃1(s, z)− M̃1(z). (7.32)

Setting s = 0 in (7.30), s = 0 in (7.32), s = λ in (7.30), and s = λ(1− z) in (7.32) yields the system

λP̃0(0, z) = M̃1(z)− µ10 − M̃0(z), (7.33)

λ(1− z)P̃1(0, z) =
1

z
M̃0(z) + λp00 + λP̃0(0, z)− M̃1(z), (7.34)

M̃1(z)Ã(λ) = µ10Ã(λ) + M̃0(z), (7.35)

M̃1(z) =
1

z
M̃0(z)B̃(λ(1− z)) + λp00B̃(λ(1− z)) + λP̃0(0, z)B̃(λ(1− z)), (7.36)

in the unknowns M̃0(z), M̃1(z), P̃0(0, z), and P̃1(0, z). We can easily solve the system by using sequentially
(7.35), (7.33), and (7.34), to express the unknowns M̃1(z), P̃0(0, z), and P̃1(0, z) in terms of M̃0(z). We get:

M̃1(z) = λp00 +
1

Ã(λ)
M̃0(z), (7.37)

P̃0(0, z) =
1− Ã(λ)

λÃ(λ)
M̃0(z), (7.38)

P̃1(0, z) =
1

λz
M̃0(z). (7.39)

(7.40)

We can then plug (7.37)-(7.39) and obtain the equation

λp00 +
1

Ã(λ)
M̃0(z) =

(
1

z
M̃0(z) + λp00 +

1− Ã(λ)

Ã(λ)
M̃0(z)

)
B̃(λ(1− z)) (7.41)

for M̃0(z). Solving (7.41) for M̃0(z) and substituting in (7.37)-(7.39) yields the following explicit expressions
for M̃0(z), M̃1(z), P̃0(0, z), and P̃1(0, z):

M̃0(z) =
λÃ(λ)z(1− B̃(λ(1− z)))

Ã(λ)B̃(λ(1− z))(1− z)− z(1− B̃(λ(1− z))
p00, (7.42)

M̃1(z) =
λÃ(λ)B̃(λ(1− z))(1− z)

Ã(λ)B̃(λ(1− z))(1− z)− z(1− B̃(λ(1− z))
p00, (7.43)

P̃0(0, z) =
(1− Ã(λ))z(1− B̃(λ(1− z)))

Ã(λ)B̃(λ(1− z))(1− z)− z(1− B̃(λ(1− z))
p00, (7.44)

P̃1(0, z) =
Ã(λ)(1− B̃(λ(1− z)))

Ã(λ)B̃(λ(1− z))(1− z)− z(1− B̃(λ(1− z))
p00. (7.45)

The generating function of the number of customers in system in steady-state is

K(z) =
∞∑
j=0

p0jz
j +

∞∑
j=1

p1,j−1z
j = p00 + P̃0(0, z) + zP̃1(0, z). (7.46)

Using (7.44)-(7.45), we obtain

K(z) =
Ã(λ)(1− z)B̃(λ(1− z))

Ã(λ)B̃(λ(1− z))(1− z)− z(1− B̃(λ(1− z))
p00. (7.47)
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The probability of an empty system p00 is determined from the normalization equation K(1) = 1. Using
L’Hospital’s rule we obtain

p00 = 1− λ(−1)B̃′(0)

Ã(λ)
= 1− λE[B]

Ã(λ)
. (7.48)

The system is stable if and only if p00 > 0, which gives the stability condition (5.61). Substituting (7.48) in
(7.47) yields (5.62). �

In the rest of the Appendix, we use the well-known supplementary variable method, introduced by Cox
(1955), to provide analytic proofs for the three QMCD Systems (Corollaries 5.1-5.3) which constitute the
basis for the recursive schemes for the performance analysis of the model.

To this end, we introduce the following transient probabilities and densities

p
(t)
ij = Pr[C(t) = i, Q(t) = j], i = 0, 1, j ≥ 0, (7.49)

p
(t)
0j (r) = lim

dr→0+

Pr[C(t) = 0, Q(t) = j, S(t) ∈ (r, r + dr]]

dr
, j ≥ 1, (7.50)

p
(t)
1j (r) = lim

dr→0+

Pr[C(t) = 1, Q(t) = j, S(t) ∈ (r, r + dr]]

dr
, j ≥ 0, (7.51)

and their steady-state counterparts

pij = lim
t→∞

p
(t)
ij , i = 0, 1, j ≥ 0, (7.52)

p0j(r) = lim
t→∞

p
(t)
0j (r), j ≥ 1, (7.53)

p1j(r) = lim
t→∞

p
(t)
1j (r), j ≥ 0. (7.54)

A moment of reflection reveals that the analytic quantity pij(0) is identical to the corresponding rate µij of
service/seeking time completions that we considered in the probabilistic derivations, for all i, j. Therefore,
similarly to (5.1) and (5.3), we have in the present analytic framework the equations

ν1j = p0,j+1(0) + λ0jp0j , (7.55)

B̃j (s) =
1

ν1j

(
µ0,j+1B̃0j (s) + λ0jp0jB̃1j (s)

)
. (7.56)

Moreover, we denote by P̃ij(s) the Laplace transform (LT) of the steady-state density pij(r), i.e.,

P̃ij(s) =

∫ ∞
0

e−srpij(r)dr = pijS̃ij(s), (i, j) ∈ {0, 1} × {0, 1, 2, . . .} \ {(0, 0)}. (7.57)

We consider the evolution of the continuous time Markov process {(C(t), Q(t), S (t)) : t ≥ 0} in the interval
[t, t+ dt]. Then, we have Lemma 7.1.

Lemma 7.1 The steady-state probabilities p0j , j ≥ 1, the steady-state densities pij(0) and the LTs P̃ij(s), (i, j) ∈
{0, 1} × {0, 1, 2, . . .} \ {(0, 0)} satisfy the following system of equations.

λ00p00 − p10(0) = 0 (7.58)

(s− λ0j)P̃0j(s) = p0j(0)− p1j(0)Ãj(s), j ≥ 1, (7.59)

(s− λ10)P̃10(s) = p10(0)− p01(0)B̃00(s)− λ00p00B̃10(s), (7.60)

(s− λ1j)P̃1j(s) = p1j(0)− p0,j+1(0)B̃0j(s)− λ0jp0jB̃1j(s)− λ1,j−1P̃1,j−1(s). (7.61)
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Proof. Considering the evolution of {(C(t), Q(t), R(t)) : t ≥ 0} in the interval [0, t+ dt] and conditioning
on its value at time t, we have the equations

p
(t+dt)
00 = p

(t)
00 (1− λ00dt) + p

(t)
10 (0)dt+ o(dt), (7.62)

p
(t+dt)
0j (r − dt) = p

(t)
0j (r)(1− λ0jdt) + p

(t)
1j (0)aj(r)dt+ o(dt), j ≥ 1, (7.63)

p
(t+dt)
10 (r − dt) = p

(t)
10 (r)(1− λ10dt) + p

(t)
01 (0)dtb00(r) + p

(t)
00λ00dtb10(r) + o(dt), (7.64)

p
(t+dt)
1j (r − dt) = p

(t)
1j (r)(1− λ1jdt) + p

(t)
0,j+1(0)dtb0j(r) + p

(t)
0j λ0jdtb1j(r)

+p
(t)
1,j−1(r)λ1,j−1dt+ o(dt), j ≥ 1, (7.65)

for dt→ 0+. Taking the limits of (7.62)-(7.65), as t→∞ and using (7.52)-(7.54) yields

p00 = p00(1− λ00dt) + p10(0)dt+ o(dt), (7.66)

p0j(r − dt) = p0j(r)(1− λ0jdt) + p1j(0)aj(r)dt+ o(dt), j ≥ 1, (7.67)

p10(r − dt) = p10(r)(1− λ10dt) + p01(0)dtb00(r) + p00λ00dtb10(r) + o(dt), (7.68)

p1j(r − dt) = p1j(r)(1− λ1jdt) + p0,j+1(0)dtb0j(r) + p0jλ0jdtb1j(r)

+p1,j−1(r)λ1,j−1dt+ o(dt), j ≥ 1, (7.69)

for dt→ 0+. Rearranging the terms appropriately, dividing by dt and taking the limits as dt→ 0+ in(7.66)-
(7.69) yields

p10(0) = λ00p00, (7.70)

p′0j(r) = λ0jp0j(r)− p1j(0)aj(r), j ≥ 1, (7.71)

p′10(r) = λ10p10(r)− p01(0)b00(r)− λ00p00b10(r), (7.72)

p′1j(r) = λ1jp1j(r)− p0,j+1(0)b0j(r)− λ0jp0jb1j(r)− λ1,j−1p1,j−1(r), j ≥ 1. (7.73)

Equation (7.70) yields immediately (7.58). Also, multiplying (7.71)-(7.73) by e−sr and integrating with
respect to s ∈ [0,∞) yields equations (7.59)-(7.61). �

Now, we can provide an analytic proof of the 2nd and the 3rd QMCD systems.

Lemma 7.2 The steady-state probabilities pij and the steady-state densities pij(0) satisfy the 2nd QMCD
system:

λ00p00 = p10(0), (7.74)

λ0jp0j = p1j(0)− p0j(0), j ≥ 1, (7.75)

λ1jp1j = p0,j+1(0), j ≥ 0. (7.76)

Together with the LSTs S̃ij(s), they also satisfy the 3rd QMCD system

p0j(0) = p1j(0)Ãj(λ0j), j ≥ 1, (7.77)

p10(0) = λ00p00B̃10(λ10) + p01(0)B̃00(λ10) = ν10B̃0(λ10), (7.78)

p1j(0) = λ0jp0jB̃1j(λ1j) + λ1,j−1p1,j−1S̃1,j−1(λ1j) + p0,j+1(0)B̃0j(λ1j)

= ν1jB̃j(λ1j) + λ1,j−1p1,j−1S̃1,j−1(λ1j), j ≥ 1. (7.79)

Proof. Equation (7.58) yields immediately (7.74). Taking s = 0 in (7.59)-(7.61) yields

λ0jp0j = p1j(0)− p0j(0), j ≥ 1 (7.80)

λ10p10 = p01(0) + λ00p00 − p10(0), (7.81)

λ1jp1j = p0,j+1(0) + λ0jp0j + λ1,j−1p1,j−1 − p1j(0), j ≥ 1. (7.82)
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Equation (7.80) is identical to equation (7.75). Also, using (7.74), equation (7.81) yields (7.76) for j = 0.
Using (7.75), equation (7.82) assumes the form

λ1jp1j = p0,j+1(0)− p0j(0) + λ1,j−1p1,j−1, j ≥ 1.

Iterating this equation yields

λ1jp1j =

j∑
i=1

(p0,i+1(0)− p0i(0)) + λ10p10

= p0,j+1(0)− p01(0) + λ10p10, j ≥ 1.

Then, using (7.76) for j = 0, we deduce (7.76) for j ≥ 1.
Equation (7.59) for s = λ0j yields (7.77). Also, setting s = λ10 in equation (7.60) and using (7.56) yields

(7.78). Similarly, equation (7.61) for s = λ1j in combination with (7.56) and (7.57) yields (7.79). �

Finally, we provide an analytic proof of the 1st QMCD system, i.e., of Corollary 5.1 with aj given by
(5.14).

Corollary 5.1 - Proof. (Analytic proof of (5.8)-(5.10) with aj given by (5.14)).

Equation (7.59) can be written as

P̃0j(s) =
1

s− λ0j

(
p0j(0)− p1j(0)Ãj(s)

)
, j ≥ 1.

Using (7.77), the above equation yields

P̃0j(s) =
1

s− λ0j
p1j(0)

(
Ãj(λ0j)− Ãj(s)

)
, j ≥ 1.

Dividing by p0j , we deduce that

S̃0j(s) =
λ0j

s− λ0j
· p1j(0)

λ0jp0j

(
Ãj(λ0j)− Ãj(s)

)
=

λ0j

s− λ0j
·
p1j(0)

(
1− Ãj(λ0j)

)
λ0jp0j

· Ãj(λ0j)− Ãj(s)
1− Ãj(λ0j)

(7.77)
=

λ0j

s− λ0j
· p1j(0)− p0j(0)

λ0jp0j
· Ãj(λ0j)− Ãj(s)

1− Ãj(λ0j)

(7.75)
=

λ0j

s− λ0j
· Ãj(λ0j)− Ãj(s)

1− Ãj(λ0j)
, j ≥ 1,

that proves formula (5.8).
Equation (7.60) can be written as

P̃10(s) =
1

s− λ10

(
p10(0)− p01(0)B̃00(s)− p00λ00B̃10(s)

)
.

Using (7.78) we obtain

P̃10(s) =
1

s− λ10

[
p01(0)

(
B̃00(λ10)− B̃00(s)

)
+ p00λ00

(
B̃10(λ10)− B̃10(s)

)]
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and dividing by p10 yields

S̃10(s) =
λ10

s− λ10

[
p01(0)

λ10p10

(
B̃00(λ10)− B̃00(s)

)
+
λ00p00

λ10p10

(
B̃10(λ10)− B̃10(s)

)]
(7.56)

=
λ10

s− λ10
· ν10

λ10p10

(
B̃0(λ10)− B̃0(s)

)
=

λ10

s− λ10
·
ν10

(
1− B̃0(λ10)

)
λ10p10

· B̃0(λ10)− B̃0(s)

1− B̃0(λ10)

(7.78)
=

λ10

s− λ10
· ν10 − p10(0)

λ10p10
· B̃0(λ10)− B̃0(s)

1− B̃0(λ10)

(7.74)
=

λ10

s− λ10
· ν10 − λ00p00

λ10p10
· B̃0(λ10)− B̃0(s)

1− B̃0(λ10)

(7.55)
=

λ10

s− λ10
· p01(0)

λ10p10
· B̃0(λ10)− B̃0(s)

1− B̃0(λ10)

(7.76)
=

λ10

s− λ10

B̃0(λ10)− B̃0(s)

1− B̃0(λ10)
,

that proves formula (5.9).
Similarly, equation (7.61) is written as

P̃1j(s) =
1

s− λ1j

(
p1j(0)− p0,j+1(0)B̃0j(s)− p0jλ0jB̃1j(s)− λ1,j−1P̃1,j−1(s)

)
, j ≥ 1.

Using (7.79) and (7.57) we obtain

P̃1j(s) =
1

s− λ1j

[
p0,j+1(0)

(
B̃0j(λ1j)− B̃0j(s)

)
+ λ0jp0j

(
B̃1j(λ1j)− B̃1j(s)

)
+ λ1,j−1

(
P̃1,j−1(λ1j)− P̃1,j−1(s)

)]
, j ≥ 1.

Dividing by p1j yields

S̃1j(s) =
λ1j

s− λ1j

[
p0,j+1(0)

λ1jp1j

(
B̃0j(λ1j)− B̃0j(s)

)
+
λ0jp0j

λ1jp1j

(
B̃1j(λ1j)− B̃1j(s)

)
+
λ1,j−1p1,j−1

λ1jp1j

(
S̃1,j−1(λ1j)− S̃1,j−1(s)

)]
(7.56)

=
λ1j

s− λ1j

[
ν1j

λ1jp1j

(
B̃j(λ1j)− B̃j(s)

)
+
λ1,j−1p1,j−1

λ1jp1j

(
S̃1,j−1(λ1j)− S̃1,j−1(s)

)]

=
λ1j

s− λ1j

ν1j

(
1− B̃j(λ1j)

)
λ1jp1j

· B̃j(λ1j)− B̃j(s)
1− B̃j(λ1j)

+
λ1,j−1p1,j−1

(
1− S̃1,j−1(λ1j)

)
λ1jp1j

· S̃1,j−1(λ1j)− S̃1,j−1(s)

1− S̃1,j−1(λ1j)


=

λ1j

s− λ1j

[
αj
B̃j(λ1j)− B̃j(s)

1− B̃j(λ1j)
+ (1− αj)

S̃1,j−1(λ1j)− S̃1,j−1(s)

1− S̃1,j−1(λ1j)

]
, j ≥ 1,
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where

αj =
ν1j

(
1− B̃j(λ1j)

)
λ1jp1j

, j ≥ 1 (7.83)

and

λ1,j−1p1,j−1

(
1− S̃1,j−1(λ1j)

)
λ1jp1j

(7.79)
=

λ1,j−1p1,j−1 − p1j(0) + p1
j B̃j(λ1j)

λ1jp1j

(7.75)
=

λ1,j−1p1,j−1 − λ0jp0j − p0j(0) + p1
j B̃j(λ1j)

λ1jp1j

(7.76)
=

−λ0jp0j + p1
j B̃j(λ1j)

λ1jp1j

(7.55)
=

p0,j+1(0)− p1
j + p1

j B̃j(λ1j)

λ1jp1j

(7.76)
=

λ1jp1j − p1
j

(
1− B̃j(λ1j)

)
λ1jp1j

(7.83)
= 1− αj , j ≥ 1.

Thus, formula (5.10) has been proved with aj given by (5.14). �
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